
1

Fundamentals of Digital System Design
ECE/CS 3700

Spring 2018, Homework # 2

Assigned, Tuesday Feb 6, Due Date: Tuesday, Feb 13, 2018, by midnight in the HW locker.

1) (FPGA Placement and Routing - 10 points) Refer to Fig. B.39, in the textbook, given on page 768 Appendix

B. The figure shows how Look-up Tables (LUTs) are interconnected by two layers of wiring: horizontal and

vertical. The blue coloured cross-mark (×) indicates that a connection has been made between the horizontally

and vertically drawn wires. Convince yourselves that f = f1 + f2 = x1x2 + x′2x3.

Based on the above concepts, you are asked to program an FPGA, whose LUTs and inter-connection wires

are shown in Fig. 1. The function to be implemented is f = f1 · f2, where f1 = a+ b and f2 = a+ c. LUT

1 should implement f1. LUT 2 should implement f2 and LUT 3 should implement f1 · f2. The horizontally

and vertically placed interconnection wires are fabricated in different planes. In order to depict a connection

between these wires at a cross-point, place a cross-mark (×). The inputs a, b, c and the output f have already

been connected to the “input-output pads” for your (in)convenience. Have fun!

LUT 1 (f1) LUT 2 (f2)

LUT 3 (f)

a

b c

f

Fig. 1. Fill-up the truth-table entries in the look-up tables. Label the inputs and outputs of each LUT properly. Put a × mark to show an

electrical connection between the vertical and horizontal metal wires.

2

2) (MUX-based design - 10 points) Given a Boolean function F (a, b, c) = a⊕ b⊕ c, implement a circuit using

only multiplexor (MUX) gates and 0, 1 (ground and VDD) inputs. How many MUXes do you need? Draw a

circuit schematic.

If, in addition to MUXes, 0 and 1 inputs, NOT gates (inverters) are also allowed, can the number of MUXes

be reduced in the implementation of F ? If so, draw a simplified circuit, and provide the gate count of the

number of MUXes and NOT gates needed.

3) (Boolean Function Manipulation - 10 points) Let F (a, b, c) = a·b+a·c+b·c, then F (a, b, c) = a·b+a·c+b·c,

where a denotes the complement of a. Now answer the following:

• Is F (a, b, c) = F (a, b, c)?

• Now consider an arbitrary Boolean function F (a, b, c). Is inverting the inputs of F equivalent to inverting

the function itself? In other words, for an arbitrary Boolean function F (a, b, c), is F (a, b, c) = F (a, b, c)?

If yes, prove it. Otherwise, give a counter-example.

4) (K-Map minimization - 25 points) For the following functions, whose on-set minterms are shown using

the sigma(
∑
) notation, derive a minimum Sum-of-Product (SOP) form expression using Karnaugh maps

(K-maps). Note that your final answer should be a sum-of-product form Boolean expression, derived using

cube-covering on the K-maps.

• F (A,B,C,D) =
∑

m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)

• F (A,B,C,D) =
∑

m(1, 2, 3, 6, 7, 11)

• F (A,B,C,D) =
∑

m(2, 3, 5, 7, 10, 11, 13, 14, 15)

• F (A,B,C,D,E) =
∑

m(2, 5, 7, 8, 10, 13, 15, 17, 19, 21, 23, 24, 29, 31)

• F (A,B,C,D,E) =
∑

m(0, 4, 18, 19, 22, 23, 25, 29)

5) (K-maps with don’t cares - 10 points). Derive minimum cost SOP forms for these functions.

• F (A,B,C,D) =
∑

m(1, 3, 5, 7, 9) +
∑

d(6, 8, 12, 13)

• F (A,B,C,D) =
∑

m(0, 2, 8, 9, 10, 15) +
∑

d(1, 3, 6, 7)

6) (Another Min cost SOP - 15 points) Consider the function f(x1, . . . , x4) =
∑

m(0, 3, 4, 5, 7, 9, 11) +

D(8, 12, 13, 14). Working on a K-map, first generate and list all the prime implicants of the function.

Subsequently, from among these primes, identify the essential primes, and then derive a minimum (literal)

cost SOP form Boolean expression. How many product-terms does the min-cost SOP form have? What is

the total literal cost of the min-cost SOP?

3

7) (Synthesis of a decomposed Boolean function by exploiting don’t care conditions - 20 points) Consider

the Boolean function F (a, b, c, d, e) whose K-map is shown below in Fig. 2 (i). Now suppose that a logic

synthesis algorithm decomposes F as F (a, b, c, d, e) = h(g0(a, b, c), g1(a, b, c), d, e), shown in Fig. 2, where

the SOP representations are:

• Functions g0 = a′bc+ ab′c+ abc′ and g1 = a′b′c+ abc

• Function h = g′0g
′

1e
′ + g0g

′

1d
′ + g′0g1e

You are asked to solve the following:

a) From the K-map of F (a, b, c, d, e), identify a minimum SOP form representation of F in its undecom-

posed form in terms of the primary inputs {a, b, c, d, e}. What is the SOP literal cost of F ?

b) Now assume the a decomposition is applied as shown in Fig. 2. Minimize the SOP form of g0, g1, h.

Are they already given in minimal form?

c) This decomposition creates don’t care conditions at the input of the h(g0, g1, d, e) block. Identify the

don’t care conditions at the input of h.

d) Using the don’t care conditions, minimize the SOP form of h. What is the total SOP literal cost of

g0, g1 and h. Do the don’t care conditions result in further logic simplification with literal cost savings?

4

10

de

0
0

0
b
a 0

1
0
0 0 1 1 1 1

01

00 1

0

0

0

1

1

0

1

1

0

0

0

1

1

0

0 0

1

1

0

0

0

0

1 0

1

1

1

01

1

1

(i) F(a, b, c, d, e)

a
b
c

a
b
c

d

e

g

g

h F

don’t care
conditions?

0

1 00 1
11 1 1

1 0
0 0

c

1

(ii) A decomposed implementation of F(a,b,c,d,e)

11

Fig. 2. Decomposition of F (a, b, c, d, e) = h(g0(a, b, c), g1(a, b, c), d, e). Compute the don’t cares at the input of the h(g0, g1, d, e) block

and simplify the SOP form of h.

