University of Utah

Computer Engineering Program

Digital System Design

A comprehensive tutorial for the HW/SW platforms

Xilinx ISE 14.7 and Digilent Nexys 3

This tutorial will show you how to:
e Part 0: Download and install ISE 14.7
Part I: Set up a new project in ISE 14.7
Part 11: Implement a function using Schematics
Part 111: Implement a function using Verilog HDL
Part IV: Simulate the schematic/Verilog circuit using the 1Sim + Verilog test fixture
Part V: Constraint, Synthesize, Implement, Generate, and Program for Nexys 3 FPGA board

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Installation Notes for Xilinx 14.7 on Windows 10

1. These instructions are for installing the Xilinx ISE version 14.7 on Windows 10 only. If you are using
Windows 7/XP, then you can follow the instructions in Part 0 in the original manual written by Prof. Erik
Brunvand from Page 4 onwards. In that case, please use the following link instead of the link provided in
the step 1 on Page 4. The next screenshot is for the following link.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-
tools/v2012 4---14 7.html

Applications Products Developer Zone
] ISE Design Suite - 14.7 Full Product Installation
2 Download Type Full Product Installation
A Last Updated October 2013 iy
Last Updated Oct 23,2013

As of October 2013, ISE has moved into the sustaining phase
of its product life cycle, and there are no more planned ISE
releases.

ISE supports the following devices families and their previous
generations: Spartan-6, Virtex-6, and Coolrunner. For more
information, pleas S| n Sute

te for new design starts

Xilinx recommends Vivada Design s
and Zyng-7000.

with Virtex-7, Kintex-7, Arti

ull ile Download Image (TAR/GZIP - 7.78 GB)
MDS5 SUM Value: bfe4e9c3cd8d2d7024163ca140113d25

& Full Installer for Linux (TAR/GZIP - 6.09 GB)
MDS SUM Va e8065b2ffb411bb74ae32efad75f3817

7/XPiServer (TAR/GZIP - 6.18 GB)
fbeca642503e2721b270

2. For using the tool on Windows 10, there are two options: Go to the following link,
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html

ILINX s 0 wo

ALL PROGRAMMABLE.

Applications Products Developer Zone
nx - All Programmable > Support > Downloads
Downloads
® Installation Overview Video ® Doc Navigator Video (5:28) @ Licensing Help
Embedded SDx Development
Vivado Development Environments ISE Device Models CAE Vendor Libraries

Version

ISEesign Suite for Windows 10 - 14.7

gbt Updated December 2017

Last Updated Dec 14, 2017

Answers

Archive
his version of ISE Design Suite only supports Spartan®-6
FPGAs. Xilinx recommends Vivado® Design Suite for new
design starts with Virtex®-7, Kintex®-7, Artix®-7, and
Zynq®-7000. For other products, ISE Design Suite 14.7 is
available by clicking the appropriate link on the left.

Documentation

& 14.7 Window 10 (TAR/GZIP - 6.94 GB)
MDS5 SUM Value: 4d97aff8303fb0fabb6229978fe4b3d4

A Important Information

The first option is 14.7(Windows 10) which supports Windows 10 Pro or Windows 10 Enterprise. Since I
don’t have either one of those (I have Windows 10 Home), I had some errors while running it after

UTKARSH GUPTA

installation. But I can tell you that it installs a virtual machine (VM) with a Red Hat linux OS with Xilinx
ISE already installed. Xilinx ISE needs to be run in that VM. If you have either Windows 10 Pro or
Windows 10 Enterprise, you can try installing this version. We can help you out if there is some problem.

The other option (which I used) is to use the 14.7 option highlighted in the above figure. The problem
with this version is that it is meant for Windows 7/XP and causes problems running the appropriate
binaries after the installation. But fortunately, Rajath and I were able to come up with work arounds that
would be sufficient for this course. I will go through the process in the next steps.

Click the 14.7 link in the figure for step 2. Then find and click the link as shown in the figure for the step
1. You will then be prompted to login to your Xilinx account.

AILIN s o om0 a

Applications Products Developer Zone Support

mmable > Signin

Sign In

Username*
Password ™

Forgot your username or password?

Ngwmxm
By signing in, you agree to the X\ - meshid Privacy Policy.

Applications Products Developer Zone Support About Xilinx

Shaping the Future FPGAS & 3D ICs Software Zone Downloads & Licensing Newsroom

Solutions by Market SoCs, MPSoCs & RFSoCs Hardware Zone Community Forums Xcell Daly Blog

Partners Cost-Optimized Portfolio Systern Zone Product Return Video Portal

Powered by Xilinx Core Technologies Acceleration Zone Knowledge Base Careers
Quality & Reliability revisiON Zone Events

By using this website, | accept the use of cookies. Learn more © Dismiss

If you don’t have an account, then create one using the link in the above figure. After creating your
account, you will need to fill out the name and address verification questions. Continuing through that,
you will get a prompt to download the Xilinx ISE DS Win_14.7 1015 1.tar file.

After downloading the tar file, use some file extraction software like 7zip to extract it into some directory.
Next, follow the steps 3-5 on the page 5.

This is a large software, so it may take anywhere from 30 minutes to an hour, but keep in mind that
you will be prompted a couple of times when it gets to about 90% of the installation. Accept the
third-party installations offered through those prompts.

From this step onwards, I am assuming that you installed the software in the C:\Xilinx directory. Please
make the changes accordingly if you installed in some other directory.

The shortcuts that you will get on the Desktop or Start menu folder (after the installation is finished) are

all linked to the 64-bit binaries. We need to force all these shortcuts to run the 32-bit version instead so
that they run on this OS.

UTKARSH GUPTA

0.

10.

1.

12.

13.

14.

Right click the shortcut on Desktop, click on properties, and change the Target field from
C:\Xilinx\14.7\ISE_DS\settings64.bat C:\Xilinx\14.7\ISE_DS\ISE\bin\nt64\ise.exe to
C:\Xilinx\14.7\ISE_DS\settings64.bat C:\Xilinx\14.7\ISE_DS\ISE\bin\nt\ise.exe

Then we need to add the free WebPACK license to the Xilinx ISE software. For this go to the folder
C:\Xilinx\14.7\ISE_DS\common\bin\nt and run the executable xlcm.exe and follow the steps 6 and 7 on
Page 5 after the window License Configuration Manager opens. The figure in step 7 (Page 6) tells you
to select the option Vivado Design Suite (includes ISE): WebPACK license. But as Xilinx website has
been updated, you will need to select the option ISE WebPACK License. You will then receive a
Xilinx.lic file in your email (that you used to make the Xilinx account). Download this file and keep
somewhere safe (probably in the C:\Xilinx\14.7 folder). In the License Configuration Manager window,
go to the tab Manage Licenses, click Load License... and navigate to the Xilinx.lic file. This will make
the ISE software use this license when you start your project.

This sets up your Xilinx ISE software and the license. There are two more fixes that we need to perform
to run the inbuilt simulator for testing your code and to run the software PlanAhead that maps the
inputs/outputs to the switches and LEDs on the FPGA.

Download the zip file sim_planahead_fix.zip from the class website. Unzip this file. You will find two
files in the folder one each for the two fixes mentioned above.

Go to the folder C:\Xilinx\14.7\ISE_DS\ISE\bin\nt. There, find a file called fuse.exe. Rename this file to
something like fuse orig.exe, and then copy (in this directory) the fuse.exe file from the folder you
unzipped in the last step. I renamed the original file so that we will have a copy of the original file in case
we need it later. This should fix the error which occurs while using the simulator.

Go to the folder C:\Xilinx\14.7\ISE_DS\PlanAhead\bin. There, rename the file rdiArgs.bat to something
like rdiArgs.bat.orig, and then copy (in this directory) the rdiArgs.bat file from the folder you unzipped in
the step 12. This should fix the error while running the PlanAhead utility. These are all the errors and
their fixes while trying to run the 14.7 Xilinx ISE for Windows 7/XP on Windows 10. After following
through these steps go to the Part I in the original manual on Page 7 and start your first project. Start the

project navigator from the Desktop shortcut (so that it runs the binary in the target C:\Xilinx\14.7\ISE_DS\settings64.bat
C:\Xilinx\14.7\ISE_DS\ISE\bin\nt\ise.exe)

There are other fixes available too. I have mentioned the solution that I used for the installation on my system. We
(TAs) will be happy to help in case you have any questions with any of the steps or if you still get some error in
running the software.

Websites/Forums referred:

https://www.eevblog.com/forum/microcontrollers/guide-getting-xilinx-ise-to-work-with-windows-8-64-bit/

https://forums.xilinx.com/t5/Installation-and-Licensing/pn-exe-crash-in-ISE-14-5/m-p/468650/highlight/true#M7071

https:/forums.xilinx.com/t5/Simulation-and-Verification/ERROR-Simulator-86 1 -Failed-to-link-the-design/m-p/355863/highlight/true#M7719

UTKARSH GUPTA

Part 0: Download and install ISE 14.7

Go to the Xilinx website and to the Downloads option under Support and select the ISE Design
Tools tab, or follow the link below:
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html

i A se Image - Fil= 1/4
a3ba2b7110fa730c6b15067d8
i A-Fie2 Platform Studio and Embedded
c0862036464f8b772b20c03202/854b Development Kit
Softw Development Kit (SDK)
4 n 3 = 374 System Generator for DSP
148a7eacTc02664b507idM07 540242
it G il = Full Product Installation
4 Install Datz C - File 4/4 = Oct
000433131272083e5020f3e742416417
A

Full Product Instaliation

e3085b2f411bb743e32ef2475f3317

Click on the appropriate full installer link depending on your operating system, and you will be
prompted to log in. If you do not have one, you need to create an account with Xilinx (free) in
order to get downloads and licenses. After putting in your information, you will be asked to
allow the Akamai Download manager to proceed. This is the portal in which you will receive a
tar file and you will need to extract it. For Windows you can use the WINRAR program.

Products Applications Support Buy About Xilinx

Sign in to Download File

Why register?
User ID Get easy access to all your design needs
when you register on Xilinx.com

Password « Sign up for product alerts and news

= Join Xilinx support forums

+ Download software and tools
+ Order preducts and tools

+ Gettechnical help

+ Gain access to special content

r‘: -

[in JERREY fRL

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html

About the Download Manager

The Download Manager helps ensure that your Xilinx product download is If your internet ion is temporarily lost or your computer is restarted, the Download Manager is able to continue the download process where it left off.

You are being presented with a browser security waming regarding the installation of this Download Manager. By accepting the Akamai Technologies Inc. security certificate, the Download Manager will install and begin to download the requested file.

3.

4.

r 2
Internet Explorer - Security Warning &J

Do you want to install this software?

i‘,‘] Name: Akamai Download Manager
= Publisher: Akamai Technologies Inc.

‘E More options Install Don't Install

(i | While files from the Internet can be useful, this file type can potentially harm
&/ your computer. Only install software from publishers you trust. What's the risk?

Go to the extracted folder and run xsetup, it will take a few moments for it to pop open, it is
much better if you are not doing this over a network and your anti-virus is disabled,

After clicking Next on the initial page and accepting the terms and conditions (two pages) you
need to select which package to install. You should download the first option ISE WebPack as it
is the version that works with the free license, the other versions require a full license and they
are about three GBs larger.

ISE 14.7 Installer ‘ s 33#“

4 Edition List
19 ISE WebPACK :

(©) ISE Design Suite Logic on

= : : edded Edition

(©) ISE Design Suite DSP Edition

I _) ISE Design Suite System Edition

) Lab Tools - Standalone Installation

ISE 14.7 Installer

Welcome 2 3
] Disk Space Required : 17480 MB
Accept License Agreements
-> Select Products to Install
Select Installation Options Description of ISE WebPACK
Select Destination Directory
Installation ISE WebPACK contains the most important tools you need for designing CPLDs and small to

medium-sized FPGAs. Includes: ISE Design Tools (w/reduced device support), PlanAhead,
Connectivity DSP IP. ChipScope Pro and The Embedded Development Kit will also be installed
with WebPACK but are licensed separately (not included in a WebPACK license file).

Do not change anything in the next page that is Installation Options, and leave all options
checked. | recommend not changing the program path but do so if you want it installed in
another specific place. Follow the summary page and click install when you get to it.

This is a large software so it may take anywhere from 30 minutes to an hour, but keep in mind
that you will be prompted a couple of times when it gets to about 90% of the installation. When
the installation is complete the License Configuration Manager will automatically pop up.
Make sure to choose the second option Get Free Vivado/ISE webpack License, do not get the
30 day option as it will not be appropriate for our purposes. This program will not work without
this free Webpack license.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

ISE 14.7 Installer [100%]

. -

7
% Xilinx License Configuration Manager
- g g

ISE 14.7 Installer

Welcome
Accept License Agreement
Select Products to Install

Select Installation Options
Select Destination Directos

-> Installation

Acquire a License | Manage Licenses] Borrow/Restore Licenses Return Licenses Internet Settings ‘

Select one of options

() Start Now! - 30 Day Trial (No Bitstream,

@ Get Free Vivado/ISE WebPack License

rt 30 Day Evaluation
(") Get My Purchased License(s)

() Locate Existing License(s)
Description of the above selected option

Get a free Vivado/ISE WebPack license and start using your Xilinx software. You will be taken to the Xilinx website where you can generate a license
for Vivado/ISE WebPack. Once your license file is generated, the "Manage Xilinx Licenses” tab will open to enable you to configure your system to use
the license. For more information on Vivado/ISE WebPack, including supported devices and applications, please visit www.xilinx.com.

Note: WebTalk is always enabled for WebPACK users. WebTalk ignores user and install preference when a bitstream is generated using the WebPACK
license. If a design is using a device contained in WebPACK and a WebPACK license is available, the WebPACK license will always be used. To change
this, please see Answer Record 34746.

Follow the instruction as you will be prompted to login to your account again and validate your
information. Choose the first option Vivado Design Suite (includes ISE): Webpack License,
which has no end date. Follow the rest of the instructions on the website and you will get node-

locked with the license and ready to use ISE.

& XILINX

ALL PROGRAMMABLEw

Home : Support : Product Licensing

Product Licensing

| Create New Licenses

Have a Voucher to Redeem? |2
2000X-X00000-X000-X0000000K

enter voucher code

Create a New License File

Certifcate Based Licenses

Product

|j Petalinux SDK Evaluation License (No Support)

My Account | Sign Out Language v Documentation Downloads Contact Us
enter keywords
Advancad Search
Products Applications Support Buy About Xili
@+
Manage Licenses Legacy Licensing
= Evaluation and No Charge Cores |?
‘(& Search the Evaluation and No Charge cores catalog Search N
| OMB and add specific cores to table below (2ERREN D0, |
| Redeem Now |
Create a new license file by making your product selections from the table below.| 2
Type License Available Status Subscription
Seats End Date
Vivado Design Suite {includes ISE): WebPACK License Certificate - No Charge Node 1171 Current None
aiuation. Node-Locked License Certificate - Evaluation Node 11 Current 30 days
Certificate - Evaluation Node 11 Current 365 days
Certificate - Evaluation Node 1n Current 30 days

[l Vivado HLS Evaluation License

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part I: Set up a new project in ISE 14.7

Attention: Make sure to use the appropriate version of the ISE, 64 bit navigator for a 64 bit
0OS, and 32 bit for 32 bit. If you don’t pay attention to this, there will be
unexpected behavior in the ISE software and thing may not work properly!

1. Open the Xilinx ISE Design Suit 14.7. You can click on the ISE icon on the desktop, or search

Start — All Programs — Xilinx ISE Design Suite 14.7 — ISE Design Tools — Project
Navigator

If for some reason you cannot find the icons, you can also find the ISE project navigator by

going to the following path and finding ise.exe (note nt64 for the 64bit version, go to the “nt”
folder for the 32 bit version):

C:\Xilinx\14.7\ISE DS\ISE\bin\nt64\ise.exe

The screen should look something like the following, the ISE always defaults to the last open
project unless none where open before just like the following:

i Edi) View! " Projact Source ! Process)! Tools Window " Layout) " Help

DeEALsnbxwal A R AR e n] sRpcl@

Recent projects
Double cck on a projectin the st below o open

0

Additional resources

Applcation Notes

Ll F——
2] consde [@ Erors |) Wrmings | i@ FrdnFiesResus

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

2. Now either press the New Project tab or select File — New Project... and change the Name
and Location to whatever you like.

Attention: Xilinx does not allow spaces in path or file names! For example “C:\ECE 3700
will not work, same for the file name! Use the under_score for spaces if you need to.

The selected Top Level Source Type is Schematic because that’s what we’re planning on
using first. This is not critical, as you can always add a new source file of any type later. The
dialog box for the project wizard looks like:

r B

& New Project Wizard

Create New Project

Specify project location and type.

Enter a name, locations, and comment for the project

Name: Exampl_Project]
Location: C:Wilinx\Exampl_Project |7‘
Working Directory: | C:\Xilinx\Exampl_Project [:J

Description:

Select the type of top-evel source for the project

Top-evel source type:

Schematic E]
L] p
0 More Info ‘ | Next | I Cancel l

.

3. Click NEXT and in the next dialog box you should fill in the fields as shown here. You can
do this in two ways, one is to select an “Evaluation Development Board” from the drop
down list, and in our case you should select “Nexys 3”. This will automatically fill out the
board information in the next five sections. If the board does not exist in the list then you can
set correct choices according to the following image.

We are using a General Purpose product in the Xilinx Spartan6 family. The specific chip
on the Nexys 3 board is an XC6SLX16 in a CSG324 package and the —3 speed grade.

Attention: If you fail to set the correct options in this part, you will not be able to
implement your design and program it on the Nexys 3 board!

Please make sure that the Synthesis Tool is XST, the Simulator is the 1Sim, and the Preferred
Language is Verilog. This is very important for proper operation.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Project Settings
Specify device and project properties.
Select the device and design flow for the project
l Property Name /ﬁfu? =
Product Category All -
Family Spartanb -
Device XC6SLX16 -
Package CSG324 -
Speed -3 / -
Top-Level Source Type -~ =
Synthesis Tool XST (VHDL/Verilog) ™\, -
Simulator ISim (VHDL/Verilog)) -
Preferred Lanquage Verilog / v
Property Specification in Project File Store all values -
| Manual Compile Order
VHDL Source Analysis Standard IVHDL-93 E |
| | Enahle Meccane Eilterinn [l | |
Cae) Lo

. ==

4. Click NEXT and review the project summary page and then click FINISH, it is always good
to double-check the summary to prevent headaches due to the problems you can face while
implementing your design if the information is incorrect.

=)

@ & New Project Wizard
. e —

Project Summary

I Project Navigator will create a new project with the following specifications. I

Project:
Project Name: Example Project
Project Path: C:\Xilinx\Example Project
Working Directory: C:\Xilinx\Example Project
Description:
Top Level Source Type: Schematic

Device:
Evaluation Development Board: Nexys 3 Board
Device Family: Spartané

Device: XCc631x16
Package: csg324
Speed: =3

Top-Level Source Type: Schematic

Synthesis Tool: XST (VHDL/Verilog)

Simulator: ISim (VHDL/Verilog)

Preferred Language: Verilog

Property Specification in Project File: Store all values
Manual Compile Order: false

VHDL Source Analysis Standard: VHDL-93

Message Filtering: disabled

s [ol]

E—3 4

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part I1: Implement a function using Schematics

. Now you should have a new project that targets the correct Xilinx part and other features of
the ISE system. Notice the window to the left, and also notice the four tabs Start, Design,
Files, ..., and in the case of an open schematic a Symbols tab will appear. Ensure that the
“Implementation” choice is selected on the design pane.

| C———
[come [@ 6ron [Wi [e

Now you can create a new schematic in your project. Choose Project — New Source or
right click on the Hierarchy section of the design windows to get the dialog box that adds a
new source file to your project (or use the New Source widget on the left vertical tool bar).
Source files can be of many types. Add a Schematic and name it simple_logic for
example. Make sure to both fill in the File Name and select the Schematic type from the
list on the left. I’ve filled in my dialog box as shown below. Now click NEXT and after
observing the summary page click FINISH.

T o |

& New Source Wizard

Select Source Type

Select source type, file name and its location.
o IP (CORE Generator & Architecture Wizard)
By Schematic

=] User Document
Verilog Module
W] Verilog Test Fixture
% VHDL Module

[y VHDL Library

[7] VHDL Package |simple_logic

File name:

g VHDL Test Bench

s Embedded Processor Location:

‘ C:\Xilinx\Example_Project ! @

Add to project

| [roresoio | [vet][comel |

)

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

3. Now you have a blank schematic view, and also a Design Summary view in the main pane of
the ISE window. You can switch between windows in the main pane with the tabs along the
bottom. The (empty) schematic looks like below. Also note the Hierarchy created and the
number of processes such as “Synthesis”, “Implement”, “Generate”, etc. you can run on it.

o ISE Project Navigator [PA9) =
D e Edt Yiew Prject

8 Corsce |© Erars | L Wores || FramFiGsResiS

4. 1If you don’t see this exact view, you may be looking at a different tab in a window. Each
pane has tabs at the bottom that let you switch to look at different things. For example, for
the left pane in the image above there are multiple tabs to allow different things, “Files”,
“Snapshot”, “Libraries”, and “Symbols” tabs that you can click on and get different
information about the project. The lower left pane is the Processes tab and Options tab that
show different tools and steps. The main window in the figure above has a
“simple_logic.sch” tab for the new schematic, and a “Design Summary” tab. If you open
more schematics, or other types of files (like Verilog files) the main pane will have
additional tabs.

Now you can select components from the Symbols tab of the upper left pane and
drag them to your schematic. You can narrow down your choices using the
Categories, or by typing the first few characters of the symbol you’re looking for in
the Symbol Name Filter, or just scroll through the lists and see what’s there. The
important category for now is Logic: General logic gates. See the Lab handouts for
restrictions on which logic gates you should use!

I’ll grab some components from those Categories to make a very simple schematic to
implement (A & (!B)) | (B & C) and drop them into the schematic page. Now we need to
add wires and 1/O markers by using the tools on the vertical bar between the schematic
page and the side pane. Also pay attention to the “Options™ tab at the bottom of the left
pane. This section gives you some options on the schematic such as “selecting the entire
wire branch” or “selecting line segments”. This is good to know if you wanted to only
remove a piece of wire and not everything that it is attached to.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

r SE Project Navigator (PAS3) - CGInAIER cjec 2]
B Ele Edit View Project Source Process Add Tools Window Layout Help
DEFI L& X|wo| » 2288 2RI =51 FRipcL @

Smbs eO8x
%
|
‘r
| =
| =
| = JEnEng S
12 >O i
‘\ b g
| O
= (M3 ANDZ
o : BEoaE :
\A 3
| @ 5 : :
[3 oRe
i . e e
&4
| & i
@t 2 ANDZ
“Nl = 2
| -
)
|
Orentatin |
Rotie0 = |
SymbolInfo | B = S|
Q] 2 symbos [F o 4]0 B simpie_ogcsch® alE Desgn Summary x

Corsoe “08 X

g Schematic”.

restesch ~intstyle ise ~family spartané C:/Xilinx/Example Project/simple logic.sch

Process "Creating Schematic” completed succes:

© simple logic.sch®.

[E consoe @ Erors [1) wamings [FrdinFlesResis

ls.4721]

Use the wiring tool 5 to wire up the components. It is in the tool bar and looks like a red
line and a pencil. You could also use Add —Wire from the menu. I’'m using the following
components (from the Logic category) in this example:

a. and2: a two-input AND gate
b. or2: atwo-input OR gate
c. inv:aninverter

| ISE Project Navigator (P.43d) - CKilmaE
[File Edit View Project Source Process Add Jools Window Layout Help

D2EFIs4snDbx|vwe| e, RIm=eaclsrircllQ

|Options “08&x [E
[E—r—]

= u
[When you diick on a branch: =

@ Select the entire branch
) Select the ine segment

When you move an object:

o Keep the connectons to other
jects

. Break the connections to other
- objects

When you use the area select too), select
the objects that:
© Ace enclosed by the area

Intersect the area

When you use the area select tool, select:
© Objects induding attribute windows.

OlEpemdpdz>O0NO J|EB|OT

(©) Objects exduding attribute windows
© Attributes windows only
< — m
5| B torares| 2 symbois | 29 optons [4]] B simple_logic.sch™ gz Design Summary x]
Console

Started : "Creating Schematic"”.
Running createsch...
Command Line: createsch -intstyle ise -family sparcan6 Ci/Xilinx/Example_Project/simple_logic.sch

Process g Schematich 11

Started : "Launching Schematic Editor to edit simple logic.sch".
Launching Design Summary/Report Viewer...

il

Ll ——]
[E] Console |@ Erors | 1 Wemings | 128 Frdin Fies Results

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Now place I/0O Markers to the inputs and outputs. I’ve used the 1/0 Marker widget =
that looks like two little labels. You can also use the Add — I/O Marker command from the
menu. Click on the endpoints of the wire to add the marker.

B Hle Edt View Project Source

DAEDPIL &% Xwa| » 2L2BR2RA RET LR PEL T
ootens ~D8x &
‘Add 1/0 Merker Opbions b
u
When you dick near the end of a branch, =
st yau w12 da: p
o Addan sutomatc masker -
Add an input marker F’:‘
Add & output marker =
Add bdvecton mker = L e e T S SR D Lo LR
e 4 XLXN_10) T,
S I S A T G e e s e SR
When you sdd an O marker set s XIXN_12 X 4
arentoton o ot drecton om s o (T2 L ANDZ
cormecson ot =1 Vi R v s R CA i 3 R R R I e
o | o ‘_\ &
7 Sy IR -
In sdton to cicking on 2 ranch end / /
ekt e e || 3 e il
‘branch end ponts to add or to remor OR2
t thoee ® TR haisy RS e e
a N
XEXN_ 7 /
AND2
=

il caroe [© v [1 Wareor |18 FeamRG e

1808,1596]

You should always change the name of the marker to whatever you want but choose a good
identifier. You should double click the marker, or select the marker and right click to get a
menu and choose Edit — Properties. Then click on “Nets” and then edit the “Name”, also
observe the Port Polarity, then click OK. I’'m calling the inputs A, B and C and the output F.
An 1/0 Marker dialog box looks like:

[[2) Object Properties - Net Attributes I < F - — ﬂ
Category View and edit the attributes of the selected nets
= 1/O Markers
&N e;(LXN_lO Name Value Visible New
LXLXN_10 Name [4 I Add i
2 ‘ Edit Traits
PortPolarity | Input B[Add]
' Delete
|
Lok || concel || ey [[Heb]'J
S == —— = — — =

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

B3 Desgn Fies |) Lorares| 2 4501 B €\ Example_Project mmple_ogcsch Qe Design Summary

5] Consoe | @ Erors | L Viwrros | FrdinFlamealts

8. Now the resulting schematic looks like the following and it is ready for simulation or
synthesis. Once your schematic is saved it should show up in the Sources pane in the upper
left of the ISE screen.

When you are happy with your schematic (and your schematic will likely include other logic
gates from the Logic category that I haven’t used in this example!), save it. Hopefully you
don’t have any errors or warnings. If you do, you need to fix them.

Part I11: Implement a function using Verilog

This schematic representation of the function F = (A & (!B)) | (B & C) is now ready for
further processing either for simulation or implementation on the Nexys 3 board. Now we
will explore the implementation of the same circuit using a “Verilog” module instead of a
schematic, and both with have the same functionality.

1. Just like step 2 of the schematic capture, we need to first add a new source. So again choose
Project — New Source or right click on the Hierarchy section of the design windows to get
the dialog box that adds a new source file to your project (or use the New Source widget on
the left vertical tool bar). This time choose “Verilog Module” and give it a file name.

Attention: it is important that you create the correct form of Verilog file for the specific use.
Remember to ONLY use “Verilog Module” for Implementation and “Verilog
Test Fixture” for simulation purposes. Do not do this the other way or things will
not wok right

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

-‘,—.._. ——

V New Source Wizard

"‘-- -

——

Select Source Type

Select source type, file name and its location.

BMM File
€* ChipScope Definition and Connection File

"] Implementation Constraints File
IP (CORE Generator & Architecture Wizard)

MEM File

D] Schematic

=] User Document

Verilog Module

W] Verilog Test Fixture

g VHDL Module

VHDL Library

|P] VHDL Package

s VHDL Test Bench

Embedded Processor

File name:

| simple_verilog

Location:

% C:\Wilinx\Example_Project

l'

Add to project

et [concel |

J

2. Click NEXT and you should see the module definition box. Here you can setup I/O names
with correct polarity and a choice for buses and the width which we will be using in the
future labs. Note that you do not have to add anything here right away and you can always
add the I/O definitions to the module’s header when it is created. After you’re done click
NEXT and then observe the summary page for a quick review of your 1/O list.

‘ - -
@ New Source Wizard
™ - L
\
Define Module
Specify ports for module.
Module name | simple_verilog
Port Name Direction Bus MSB LSB ok
A input x| [
B input =
2 input x| [
F_structural output v
F_functional output v [l =
F_behavioral ! v
l input x| ['
input b
input ~| [
input - n
input x| [>
[t][concel |
Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Now you should have a tab for the Verilog file opened in the ISE main pane. There is a line
reading “*timescale 1ns / 1ps”. Please leave line alone and never delete it. It just lets the ISE
know that each unit of time should be 1ns and have the resolution up to 1ps for any timing
purposes (more on this later).

Next is the module header that contains the module name and the list of 1/O as its parameters.
If you notice | have declared multiple outputs to implement the same circuit using different
HDL forms when writing in Verilog. These will all implement the same function F
represented by the schematic in Part I.

Also you should notice that the Verilog file is added to the Hierarchy next to the schematic as
a part of this project. Now we’re ready to implement the Verilog description of the function
F in the three intended forms.

L ISE Project Navigator (P49d
[2) File Edit View Project Sou
D3EF | & G
Desion 08X §
w: © {8} implementation O fffl Smuation 5=

139398 v

$ Co et Device
@ Analyze Design Using ChipScope

[#3 esion [Fies [R tbrares| = 4} (& C:\Wiinx|Example_Project\smple_ogic.sch T Design Summary E] simple_veriog.v* [x]

|« i
[] consdle |@ Ermors | 1\ Wamings [12§ Findin Fies Resuits |

For the implementation the three forms we have different formats. Sometimes we want to
declare internal wires to connect things easily and in a more organized fashion, but if you
didn’t declare these wires, ISE will assume a single bit wire for the use.

The Structural version: This is done using gate primitives that are automatically taken from
the Xilinx libraries (just as you would with a schematic) by calling their name and passing
parameters, so for a two input gate we have the format “gate (output, inputl, input2)” and
this is just like doing a schematic in words.

The Functional version: Using the “assign” keyword to assign the results of the function
expression to the output. The expression of the function looks a lot like how you would write
it down on paper.

The Behavioral version: Using a synthesis directive called an “Always Block” we can
implement the same function. The difference is that it only wakes up and assign the output

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

when any of the inputs are changes, hence the (*) which means “any change”. We will be
using this format extensively in the future labs. One thing to notice is that any output being
assigned inside of an always block needs to be declared as a “reg” for synthesis purposes,
and that you cannot use the “assign” keyword inside of such block.

[APBE "@!L"‘-: molieRirELlQ

Create Date: 09:41:57 01/29/2013
// Design Name:
/ Module Name: simple verilog
/ Project Name:

/ Target Devices:

Tool versions:

Description:

[
O W W1 WU WR I OIWMm-Jo ;s W

1
1 // Dependencies:

l /

1 // Revision:

2 & / Revision 0.01 - File Created

1 // Additional Comments:

1 //

2 PP P LR PSR L T R L L R R LD T L PR RS R R P LR R P S R R R P AR R P PR
21 module simple verilog(input a, B8, C,

22 output F_structural, F_functional,
23 output reg F_behavioral):
24

25 // Structural implementation

26 wire B n;

27 wire A_and_s_n;

28 wire B and C;

29

30 not (B n, B):

31 and (A_and B n, A, B n);

32 and (B_and C, B, C):

33 or (F_structural, A and B n, B _and C);

34

35 // Functional implementation

36 assign F _functional = (A & (~B)) | (B & C):
37

38 // Behavioral implementation

39 always@ (*)

40 F behavioral = (A & (~B)) | (B & C):

41

42 endmodule

43

simple_verilog.v

|

5. You should always save your work multiple times as there always a slight chance that the

tool may crash and you will lose your work. It is important to understand that hardware CAD
tools are massive and complex so there is always a chance for unexpected or faulty behavior.

Now the circuit is ready for simulation or implementation on the board. It is important to
notice that most processes are the same for both the schematic and the Verilog version of
your design.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part IV: Simulate the schematic/Verilog circuit
using the ISIM and a Verilog test fixture

Now that you have a saved schematic, you need to simulate its behavior. The simulator
we’ll use is the ISE built in simulator, which is essentially a Verilog simulator. The
schematic that you just drew will be saved as a piece of Verilog behind your back if you
choose to simulate it. In order to simulate the circuit you need:

Testbench: is a file that becomes a top module to your design and applies inputs to your
circuit, and potentially checks that the outputs are correct. This will be another Verilog file
written slightly differently than circuit implementation. The testbench will instantiate one
copy of your circuit, and call it UUT for “Unit Under Test”. You will then write the
Verilog statements that set the inputs to your circuit (the UUT), and looks at the outputs
produced by your circuit. You need to know only very basic Verilog syntax to do this.

First you need to ensure that the ISE more is changed to “Simulation” from implementation.
Go to the top left pane and change the “View” field to simulation. The design window will
then change slightly with different options. Referring back to the same step in creating a
“New Source” create a “Verilog Test Fixture” to create a Verilog file that will contain the
test code.

3l Corsce @ Evors | 1\ Waminos | 88 Findin Fles Results

Click NEXT and choose which design you want to associate the test bench with. This is very
important as you will have multiple modules or schematics in the future and you need to be
sure which design will be going under test using the test bench. In this case | will just choose
the “simple_verilog” module to be tested. The procedure for testing the schematic version is
exactly the same, you just have to choose the appropriate source to be associated with the test
bench.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

@ New Source Wizard

Associate Source

Select a source with which to assodiate the new source.

simple_logic

simple_verilog

Click NEXT and after observing the summary click FINISH. Now you’ll get a new piece of
Verilog code generated for you. This Verilog code instantiates the “simple_verilog” module
as the UUT, and includes some other stuff related to how the UUT is connected to the

testbench. It looks like this:

JArRRrRIR BmEOiseirE L)@

19 // Revision:
20 // Revision 0.01 - File Created
21 // Additional Comments:
222
23 SSILLLLLLILLLLLL LA L L LTI L AL LL AL LE T L L i i/
24
25 nmodule test_bench;
26
27 // Inputs
28 reg A;
29 reg B’
30 reg C;
31
32 // Outputs
33 wire F_structural;
34 wire F_functional;
35 wire F_behavioral;
36
37 // Instantiate the Unit Under Test (UUT)
38 simple_verilog uut (
39 B(R),
40 .B(B),
41 .c©, |
42 .F_structural (F_structural),
43 .F_functional (F_functional),
44 .F_behavioral (F_behavioral)
45)
46
47 initial begin
48 // Initialize Inputs
49 A =0;
50 B=0;
51 C=10;
52
53 // Wait 100 ns for global reset to finish
54 #100;
55
56 // Add stimulus here
57
58 end
59
60 endmodule
61
62
< | n

simple_verilog.v xHIE]

test_bench.v

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

4. You can now write your test bench code as an initial block right before the endmodule.
Basically you set the values of your inputs, and tell the simulator how long to wait
between each change on the inputs. The results will eventually be plotted on a waveform
for you. Verilog syntax for setting a variable is very simple, and the #50 notation just
means for the simulation to wait for 50 ticks of the simulation clock before moving on to
the next statement. A very simple test bench for this circuit looks like the following. |
added the lines between initial and end to drive the inputs with different values so that we
can see what the circuit result is. Note that each statement in Verilog ends with a
semicolon, and you can put multiple statements on a line if you like.

Later in upcoming labs we will explore different options that we can write the sequencing
of the inputs to prevent having to hardcode lots of input changes, you can see that if we
had two more inputs then we had to write out 32 different possibilities for 5 inputs. We
will see how using a “For” loop in the test bench will make things a lot and shorter.

»i 0 2R X 5‘11@—:‘:——' PR L:Q
36
37 / Instantiate the Unit Under Test (UUT)
38 simple verilog uut (
39 WA(R),
40 -B(B),
41 .C(C),
42 .F_structural (F_structural),
43 .F_functional (F_functional),
44 .F_behavioral (F_behavioral)
45):
46
47 initial
48 begin
49 Initialize Inputs
50 A=0;
51 B =0;
52 c.= 03
53
54 / Wait 1 ns for global reset to finis
55 #100
56
57 ’/ BAdd stimulus here
se[> AR=0;B=0;C=1 1
59 #50
60
61 A=0; B=1;:C=0 1
62 #s50
63
64 s 0;: B=1; C=1 11
65 %50
66
67 A=1: B.=:0; C.=0 1
68 %50
69
70 A= B.=0; Ci=1 101
71 #s50
72
73 n i; B=1; C=0 11
74 %50
75
76 A=1; B=1; Ci=1 111
77 end
78
79 endmodule
an

< Ll

simple_verilog.v test_bench.v*

5. We usually want to test all possible inputs to be able to draw a better conclusion on
whether the circuit is functioning correctly. After you’re satisfied with the input setting of
your test bench make sure to save. Always observe the console window to look out for
errors after saving.

Now you are ready to simulate your Verilog circuit. Observe that the test bench Verilog
file is now the top module to your “simple verilog” module in the simulation design

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

view. It is very important to have the test bench file selected for simulation or things will
go wrong. After selecting and highlighting the test bench file in the design windows, you
can check your test bench for syntactic errors by clicking the “Behavioral Check
Syntax” in the processes windows right below. If your code is correct syntactically then
you’ll get a green check mark. This is not crucial as if you run the simulation without it
then the syntax will be automatically checked by the ISim and will not run if there are
errors in your test bench. Now you can double-click the “Simulate Behavioral Model”
to see the waveform generated by the ISim.

o 58 PrcjctNovigtor (494 - C\i\Ecample Prject ol Prectie - lestbenchy I
File Edit View Project Source Process Tools Window Layout Help
o2 RS X|oa| »ipp
Design +08& X ¢ 36
| |view: © {8 implementation © [Smulation 5= | 37 nder Test (UUT)
] [pehaviora [+] 38
39
\E‘EJ Hierarchy a0
== (8] fefple_Project 41 s .
it | B xcbshd6-3csg324 42 .F_structural (F_structural),
g [=) simple_logic.sch) 2 43 .F_functional (F_functional),
5 test_bench (test_bench.v) — 44 .F_behavioral (F_behavioral)
uut - simple_verilog (simple_ve A4 45 ¥
\ % 46
- 47 initial
— 48 begin
4 49 / D
—| so a=0
QO s 5=0
52 cC=0
53
54 /1 fo b £
55 $#100
56
< 57 // Add mulus here
se[> A=0;B=0;C=1
P | T2 No ProgeseesRIM: 59 $50;
7f | Prpeses: test bench :? i G Cm§
1 —0; 8= -
{5 Y 1SimSimulator s #3504
€)@ Behavioral Check Syntax 63
;
7% fl Simulate Behavioral Model = Fe oBs Pl §
— 65 #50;
66
67 A=1;:B=0;:C=0
68 #50
69
70 A=1;B=0:C=1
71 #50
72
73 A=1;B= C=0
74 $50;
75
76 Rom I Bm Q=X
77 end
78
79 endmodule
an
<
= Strt | B3 Design |3 Fies |) Lbraries| [F] simple_veriog.v E] test_bench.v [%]
Console

Running vlogcomp. ..
isim temp -intstyle ise -prj C:/Xilinx/Example Project/test_bench stx beh.prj
of HDL files

g - . Project/simple verilog.v" into library isim temp
Erilog file "C:/Xilinx/Example Proje st_bench.v" into library isim temp
g Verilog file "C:/Xilinx/14.4/ISE_DS/ISE//veT®™gg/src/glbl.v" into library isim temp

"Behavioral Check Syntax" completed successfully

q m
[E] Console | @ Errors | YT et o RESE |

Double-clicking the Simulate Behavioral Model will fire up the simulator on your testbench
file. Because your testbench includes an instance of your schematic (the UUT) and some
commands to drive signals into your schematic, this will result in simulating your schematic.
The output will be displayed as waveforms as shown. Note that the simulator is by default set
up to simulate for 1000ns, so all the stuff I did is bunched up at the beginning of the
simulation (the first Ons). | had to zoom out a little to see this view. The values reported for
A, B, S, and F are the values seen at the blue bar. You can pick up (with the mouse) and
move the blue bar to see the values at different points in the simulation.

By looking at the waveform we can see that all three different forms of expressing the
function in Verilog (structural, functional, and behavioral) are all holding the same behavior
throughout the simulation. You can click on the waveform in different places (the yellow line
is where in the range of time in the waveform it was clicked) and you can see values quickly
for all I/0O in the “Name” and “Value” sections to the left of the waveform.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

The simulation is now done. You can always go back to the test bench and make a more
complicated set of tests and re-simulate the circuit.

Ll ISim (P.494) - [Defauitweta T
T File Edit View Simulation Window Layot Help

024 £ ®|o JH=Es FRIAEB AR et (@ » X100 [7]6 |l |[@Redounch]
Simulation Objects for test_bench

EEEEED o e ——

Object Name Value Data Type »” s -

L F_structural
\@ F_functional
(& F_behavioral
D A

Logic
Logic
Logic
Logic
Logic
Logic

g c

1 F_structural

1
1
= 0

« :

be L

5 C 0

IT== B OO

15

Instances and Processes 08 x

Instance and Process Name Design Unit
4} test bench test_bench
{ gl qibl

| “ IiilIIlI

X1: 376.500 ns
b o4

pe oy B

Console

15im P.49d (signature 0x7708f090)

This is a Full version of ISim.

Time resolution is 1ps

Simulator is doing circuit initialization process.
Finished dircuit initialization process.

1Sim>

@ Console |[] Compiationlog | @ Breakpoints | (24 FindinFlesResults | gy SearchResults

It is good to observe the other capabilities of your simulation windows. The console is where
all of the simulator messages will be printed. Look for errors or warning about your design.

The left panes will allow you to dig into your design hierarchy to grab signals that are deep in
the design and may not be set in the top module, recall that the test bench is only created for
one module, so if you have a multiple level hierarchy then you need to use these windows to
navigate to the desired signal and drag-and-drop into the simulation windows.

Sometimes we want the values of the test bench results for the Verilog module’s output to be
printed into the console of the simulator windows. We can then add the Verilog print
statement called $display in between our test bench code. This will allow us to monitor
signals in large designs and long waveforms with many signals being looked at. We can also
format the printed statement to what we want it to show on the console for better readability
of the results. This is called a Self-Checking testbench.

Below are some $display statements added to the current test bench to show the effects it will
have. Never the less, you should always put a $display statement at the beginning and the end
of your test code to indicate the starting and actual finishing of the simulations.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

»

2288, 0izET SR

134

9

47 initial
48 begin
49 §display("The simple verilog module simulation is starting ...");
50
51 // Initialize Inputs
52 A=0;
53 B=0;
54 c.=0;
55
56 // Wait 100 ns for global reset to finish
57 #100;
58 §display("RABC = %bibib, F structural = %b, F functional = %b, F behavioral = %b", A, B, C, F_structural, F_functional, F_behavioral);
59
60 // Bdd stimulus here
61 A=0;B=0;C=1; //001
62 #50;
63 §display("ABC = %bib%b, F_structural = %b, F functional tb, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
64
65 A=0;B=1; C=0; //010
66 #50;
67 §display("ABC = %bib%b, F_structural = 3b, F functional tb, F_behavioral %b", A, B, C, F_structural, F_functional, F behavioral);
68
69 A=0;B=1; C=1; //011
70 #50;
71 §display("ABC = 3bibib, F structural = 3b, F functional %b, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
72
73 A=1; B=10; C=0; //100
74 #50;
75 §display("ABC = %btb%$b, F_structural = ib, F_behavioral = %b", A, B, C, F_structural, F_functional, F behavioral);
76
77 A=1;B=0; C=1; //101
78 £50;
79 §display("ABC = %bib%b, F_structural = %b, F functional %b, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
80
81 A=1;B=1; C=0; //110
82 #50;
83 §display("ABC = %bib%b, F structural = 3b, F functional %b", A, B, C, F_structural, F_functional, F behavioral);
84
85 A=y Bo=ily €507 //111
86 #50;
87 §display("ABC = 3bibib, F structural = 3b, F functional %b, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
88
89E> §display("The simple verilog module simulation has ended ...");
90 end
a1

< 11l

simple_verilog.v ¢ 1 B test_bench.v* B8 |
And the resulting console output for the above test bench code is the following:
4 > 4 »
< |, . @ Default.wi
| Console

L e L e g

This is a Full version of ISim.
Time resolution is 1 ps
Simulator is doing circuit initialization process.

The simple_verilog module simulation is starting ...
Finished circuit initialization process.

ABC = 000, F_structural = 0, F_functional
ABC =001, F_structural = 0, F_functional =
ABC =010, F_structural = 0, F_functional
ABC =011, F_structural = 1, F_functional =
ABC = 100, F_structural = 1, F_functional =
ABC = 101, F_structural = 1, F_functional = 1, F_behavioral = 1
ABC = 110, F_structural = 0, F_functional = 0, F_behavioral = 0
ABC = 111, F_structural = 1, F_functional = 1, F_behavioral = 1
The simple_verilog module simulation has ended ...
1Sim> |

0,
0,
0,
1,
1,

F_behavioral =0
F_behavioral =0
F_behavioral =0
F_behavioral = 1
F_behavioral = 1
F

Console |[~] Compiationlog | @ Breakpoints | @4 Findin Files Results | gy SearchResults

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

We can also get a bit fancier and use loops to assign values to the circuit inputs. With larger bus
widths we will need to use them to compose a more elegant and comprehensive test fixture.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

integer i,j,k;

initial

Inputs

oW~
o
o

// Wait 100 ns

#100;
// Add stimulus
for: fio=u0p A
for(j =07 3J
for(k = 0
begin

w
LI T
L

{
¥
1]
¥
w

t
]

endmodule

.......

1)

Please note that the loop limits match the values each input can take, for a single input 2°1=2 here
for each input. We can also use concatenation {} to reduce the loops even further to only a single
loop for all inputs. This way the loop limit is 23=8 since the A, B, and C combined width is three.
This way all possibilities will be assigned to the inputs and nothing missed.

43
44
45
46
47
48
49
S0
51
52
S3
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

-~

integer i;

initial
begin

S$display("Simulation

Initialize Inputs

0w~
LI

0;
0:
0:

// Add stimulus here

for (i =0; i

endmodule

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part V: Constraint, Synthesize, Implement, Generate
Bitstream, and Program the Nexys 3 FPGA board

Overview:. Now that you have a correctly simulating Verilog module, you will have the ISE tools
synthesize your Verilog or schematic to something that can be mapped to the Xilinx FPGA. That is,
the Verilog code will be converted by ISE to some gates that are on the FPGA. To be even more
specific, ISE will convert the Verilog description into a set of configuration bits that are used to
program the Xilinx part to behave just like the Verilog code. Those configuration bits are in a .bit
file and are downloaded to the Xilinx part in this next section of the tutorial.

For the purposes of this tutorial 1 will choose to put the Verilog version on the Nexys board, but the
process is exactly the same for any other design form i.e. schematics. | will use the first three toggle
switches on the board for A, B, and C, and the first three LEDs for F.

F=1
plle

s

(eSS

el

e, . M@z . o
?'%:"?n‘ =] U_%ss]) 8 | 0| RIZpET el S5 (TR g
- USBl e f s S =Y sad
o L N R - T

st I DO

WSII0072 5 N p e

ml W

AR

UCF (User Constraints File): Because we’re headed towards putting this on the Xilinx FPGA on
the Nexys 3 board, we need to set some constraints. In particular, we need to tell ISE which pins on
the Xilinx chip we want A, B, C, and F assigned to so that we can access those from switches and
LEDs on the Nexys 3 board. For that we need a “User Constraints File”.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

First, you need to ensure that you’re in the Implementation view and that the module you’re
trying to implement on the board is set as the top module in the top left pane in order to get the
options to synthesize, implement, and generate the design. Now if you look at the bottom left
pane you can see a number of processes you can run on this Verilog top module.

TR SR 4

& ISE Project Navigator (P.49d) - CAXilimExample.t J se - [De
% File Edit View Project Source Process JTools Window Layout Help
DPEHP| L DEX|vwa| »2AL2,3RAPRAIRBEDD
Design s 08 X| . | = Design Overview
7 (R - R i s Summar;

3 ;@) B8 — @ Y

D ﬂew 0 @Ilmp!ementanon & Slmulahon @ I_T 10B Properties

] | Hiera [Module Level Utilization
& 8] Example_Project (5) [Timing Constraints
e €1 xchshas - 6 [Pinout Report

o 2] simple_logic (simple_logic.sch) [Clock Report

= [¥]e% simple_verilog (simple_verilog.v) I~ @ Static Timing

g] 2o | B Errors and Warnings

= @ [2) Parser Messages

4 [2) Synthesis Messages

@ s [Translation Messages

€2 No Processes Running

Processes: simple_verilog

X iDesign Summary/Reports
@ % Dacias sk

=% User Constraints
v et

g Constraints

View Technology Schematic
Check Syntax

Generate Programming File
Configure Target Device

[) Bitgen Me

[2 AllImplementation Messages
= Detailed Reports

[E) Synthesis Report

[Translation Report

wer Repo
[Bitgen Repo
=} Secondary Reports

[E) ISIM Simulator Log

rt

Project File: Example_Project.xise
Module Name: simple_verilog
Target Device: xc6slx 16-3csa324
Product Version: ISE 14.4
Design Goal: Balanced
Design Strategy: Xilinx Default (unlocked
Environment: System Settings
Device Ut
| | Logic Utilization Used
| | Number of Slice LUTs
| Number of fully used LUT-FF pairs
‘ Number of bonded I0Bs
f Report Name Status Generated
Synthesis Report Current Tue Jan 29 10:

| | Translation Report

Map Report

; Place and Route Report
|

Design Properties
[7] Enable Message Filtering
Optional Design Summary Contents
[7] Show Clock Report
[] Show Failing Constraints
[7] Show Warnings
[7] Show Errors

| |Power Report

Post-PAR Static Timing Report

Bitgen Report

Report Name

Status

ISIM Simulator Log

Current

l’ Start ‘ B Design |Uu Files l@ Libraries ‘

Design Summary

Constraint: Now it starts with creating a floor plan by setting the UCF file. To do this take a
look at the User Constraints drop down option in the bottom left pane. We can set the pins in
two different ways. Double click on the 1/0 Pin Planning (Planahead) — Pre-Synthesis since
we want to set our pins before the synthesis process so they are included in it. This should bring
up a message box for adding a new UCF file to your design, so click yes and this will kick start
another Xilinx tool called Plan Ahead. This program allows you to set all constraints on all 1/0
pins in the design. Please follow these steps carefully.

% ISE Project Navigator

I&Jq

4 N
| J
\)
b ¢ 4

time?

This process requires that an Implementation Constraint File (UCF) be added to
the project and associated with the selected design module. Would you like
Project Navigator to automatically create a UCF and add it to the project at this

If you select "No" you will need to create or add an existing UCF to the project
before running this process,

[J |

Yes

No

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Pin Assignment: We need to edit the initial UCF for the details of connections between the ports
and pins in the design, so as Plan Ahead opens (it looks a lot like ISE), take a look at the
horizontal bottom pane. After expanding the Scalar Ports drop-down you should see all of you
1/0 pins. The first thing to do is to set all of the pins to LVCMOS33 right away, if you don’t do
this, things might not work correctly on the board. Click on the name of the pin (A, B, C, ...) and
then look at the properties table line listed in front of it. The only two properties that we want to
change are the 1/0 Std and Site. Remember, the 1/0 standard is always and should be set to
LVCMOS33 (3.3 V Low-Voltage-Complimentary-Metal-Oxide-Semiconductor) for the Nexys 3
board. The Site is the Pin# (FPGA board Pin Identifier). You can find all sorts of the information
including the module schematics and the Pin #s for all of the Nexys 3 Peripherals by studying the
Nexys 3 manual found at http://www.digilentinc.com/Data/Products/NEXY S3/Nexys3_rm.pdf.

In order to change a property for any port, click on the rectangular space in the correct column
and the correct row for the respective port. This click causes a drop-down menu to appear and
then you can select the right choice. You can either type or select the correct choice. If there is a
choice already selected then clicking on the text will allow you to change it, the hit enter. I
looked up the three switches and the three LEDs, you can also look closely at the actual switch
or LED on the board and you will see an identifier in parentheses (i.e. T10 for SWO referring to
Pin #T10 connecting to Switch 0, the first toggle switch from the right). Set the correct identifier
to the correct port in your design in Plan Ahead as follows:

] ol Projct - (CXilmExample Projectplanvesd i barmple Pec o) - Panivesd 144 SN~
File Edit Tools Window Layout View Help

Bloo2h X # 5 Q X (@ [Syopanng HeN ®

Elaborated Design 3

RTL Netlist P s [T L 4 [Package X | Device X |#RTL Schematic X

= H|E { 2003 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!jﬁ simple_verilog
® Nets (7
0 Primitives (4

I/O Port Properties e] 1 2R
€« %R
A

Name: A

Direction: ~ Input

Site: V9 (V] Fixed

Site type: 10_L32N_GCLK28_2

Package pin:

Net:

-
e

Clock region:

General | Attributes | Configure

=) Properties | @ Clock Regions

Direction Neg Diff Pair 1/0 std Vref Drive Stre... Slew Type Pull Type Off-Chip T... IN_TERM OUT_TERM

2 LVCMOS33* NONE NONE NONE

Input

-
=
=

Eh,

o .

H <4 F_behavioral Qutput

Input 2LvcMos33* NONE NONE NONE
Input 2LVeMos33* NONE NONE NONE
2LvcMos33® 3,300 125100 NONE FPVIT_S0 NONE
<3 F_functional Output 2 LvCMos33* 3,300 125,00 NONE FPVTT S0 NONE

|5 Td Console | 53 Package Pins | [I/0 Ports

1/0 Port: F_structural

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf

Attention: It is important that you never use Plan Ahead to edit an existing UCF file as it will not
override old values but concatenate the new values. Always go to the project folder and
edit the .UCF file with a text editor. You can also do this in ISE but don’t double click
on the UCF file that is now in the hierarchy of your design in the upper left pane of ISE,
single click it and then choose Edit Constraints (Text) from the User Constraints
expander in the lower left pane. Make sure to hit save after you’re done.

And your resulting UCF file should look something like the following:

| ISE Project Navig;t—or (P.49d) --E:&i%;;—{aéfnph_Prqed\Example_Project.xise - [simple_verilog.ucf] -__
- ’ . Y & SA 7 - 5 o e - ¢ = O
DB3EHF| %] % Xwa| » 2PARARIA ®AT SR> LD
Design «+08& X < 1 -
Ei View: @ ﬁl}lmplementaﬁon @Simulatjon = 2 7 Eggfiinead Generated IO constralX
= Hierarch = =
.] | Hierarchy . 4 #NET "S" IOSTANDARD = LVCMOS33;
& &) Exampl “ NET "C" IOSTANDAZRD = LVCMOS33;
—| & x16-3csg324) NET "F behavioral” IOSTANDARD = LVCMOS33;
+ simple_logic (simple_logic.sch) NET ' IOSTANDERD = LVCMOS33;
P = [¥]d% simple_verilog (simple_verilog.v) NET "F structural” IOSTANDARD = LVCMOS33;
;J simple_verilog.ucf — NET "A" IOSTANDARD = LVCMOS33;
Ao
L“ ‘l/.) allsalicaQ eelicIatlc
= %
/‘)
P | T No es Running —
?t Pygfcesses: simple_verilog.ucf \
=il 2 % User Constraints
— Edit Constraints (Text) ;

After you’re done changing every port to LVCMOS33 and putting the right Pin # for all the ports
in the design, click the SAVE button from the top menu in the page and close down Plan Ahead.

4. Synthesize: Now the design is ready for more processing and the next in line is to synthesize.
This process will create a structural representation of the design (similar to compiling C code
into assembly code). Do this by first ensuring that the top module is selected and highlighted in
the top left pane of ISE and then simply double clicking Synthesize — XST in the lower left
pane. After the process is done, you will either get a green check mark (everything is peachy), a
yellow attention mark (there are warnings!), or a red x mark (there are errors!), and orange
question mark just means “out of date”. In the case of errors you need to investigate them by
looking at the Errors tab on the bottom pane and fix, and then rerun synthesis. In the case or
warnings make sure to review them and validate they are safe, or in the case of green you’re
ready for the next step.

The synthesis process also creates a couple of more useful things that you should explore and
study. One is the synthesis report full of information about timing, resource usage details, and
etc. The other is generated RTL schematic; sometimes it is very useful to see what the XST made
out of your Verilog description, or even your version of schematic. You can view these (highly
recommended) by expanding Synthesize — XST for the schematic and the Design Summary
page in the main pane for the report.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

S Projct Novigair (5 T e E P GReBaE DS Sirmar Syihesiced] e eee————
\g File Edit View Project Source Process Tools Window Layout Help
02 E&| X|©o o "R TE O LRI PELT
Design . +08 X 3 =] Desn (Z\l/:rr‘\rr;eavr«y Ry ject Status (02/05/2013 - 10:4
[|View: © {8} implementation ©) [Simulation 6 [Project File: Example_Project.xise Parser Errors:
& Hie’i]‘hy ® zation Module Name: simple_verilog Implementation State
L 5] Example_Project Aot = =
&l - €1 xcbohlb 3cog32 o Target Device: Xc6slx 16-3cs9324 «Errors:
simple_logic (simple_logic.sch) Product Version: ISE 14.4 + Warnings:
| = [dk simple verilog (simple verilog.) = ng Design Goak: Balanced * Routing Results
&l [simple_verilog.ucf = | & Errors and Warnings
i [B) Parser Messages Design Strategy: Xilinx Defauit (unlocked) + Timing Constra
= 04 @ Synthesis Messages Environment: System Settings * Final Timing Sct
@ o) [n Messages
Device values)
[Logic Utilization Used Available
[Alllmplementation Messages Number of Slice LUTs 1
P | #) NoProcesses Running - Detailed Reports
> B Syrahes Regit Number of fully used LUT-FF pairs 0
P | Processes: simple_verilog oT R Number of bonded I0Bs 6
9¢| L Design Summary/Reports
—| @ Design Utilities t
Hle User Constraints eport, B Detailed Reports
-— 5 Create Timing Constraints . Report Name \ Status Generated Errors
/O Pin Planning (PlanAhead) - Pre-Synthesis [
donbreetemmingu(plan/head) - Post-Synthesis £ Secondary Reports Synthesis Report) Current Tue Feb 5 10:47:48 2013 0
Floorplan Area/10/LogMglanAhead) [A) 18IM Simulator Log Translation Report /
Synthesize - XST INGRRER0L e
View RTL Schematic
View Technolog b Place and Route Report
Cagod 7
- = Design Properties Power Report
PETIYE DT gn -
A implement Design [] Enable Message Filtering Post-PAR Static Timing Report
o Translate Optional Design Summary Contents Bitgen Report
S Map [7] Show Clock Report
& Place & Route [7] Show Failing Constraints
a Show Warnings
[3) e] 9 Secondary Reports
@ G Configure Target Device [T Show Errors
@4 Analyze Design Using ChipScope LI |status
ISIM Simulator Log |outof pate
Date Generated: 02/05/2013 - 10:47:43
| & start | =3 Design [) Fies [[D) Libraries £ (¢ Design Summary (SVD I simple_verlog.uc
Console \ /

Minimum period: No path found

Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 5.456ns

e —————
@he::ﬂe - XST" completed successfully
‘ < | 11,

(B console |@ errors | A\ Warnings | 12§ Findin Files Results |

Implement: Next step is to define the hardware configuration. With your top module source file
selected (simple_verilog.v in this case), double click the Implement Design process in the
Processes tab. This will translate the design to something that can physically be mapped to the
particular FPGA that’s on our board (the xc6sIx16-3csg324). You should see a green check mark
if this step finishes without issues. If there are issues, you need to read them for clues about what
went wrong and what you should look at to fix things. If you expand this Implement Design tab
(which is not necessary) you will see that the Implement Design process actually consists of
three parts:

a. Translate: Translate is the first step in the implementation process. The Translate process
merges all of the input netlists and design constraint information and outputs a Xilinx NGD
(Native Generic Database) file. The output NGD file can then be mapped to the targeted

C.

FPGA device.

Map: Mapping is the process of assigning a design’s logic elements to the specific physical
elements that actually implement logic functions in a device. The Map process creates an
NCD (Native Circuit Description) file. The NCD file will be used by the PAR process.

Place and Route (PAR): PAR uses the NCD file created by the Map process to place and
route your design. PAR outputs an NCD file that is used by the bitstream generator (BitGen)
to create a (.bit) file. The Bit file (see the next step) is what’s used to actually program the
FPGA. In this part the actual transistor configuration and wire routing is decided.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

6. Generate: In this step all information resulting from the previous steps are gathered and put into
a Bit format that the USB programmer on the FPGA board (in our case Nexys3) understands.
Simply double-click the Generate Programming File to generate a .bit file which will be used
in the final step to program the board. Now the design is ready to be put on the board so we can
physically see its functionality.

€2 No Processes Running

Processes: simple_verilog
= Design Summary/Reports
& Design Utilities
& User Constraints
Create Timing Constraints
I/O Pin Planning (PlanAhead) - Pre-Synthesis
I/0 Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/10/Logic (PlanAhead)
¢ Synthesize - XST
3 View RTL Schematic
View Technology Schematic
Check Syntax
Generate Post-Synthesis Simulation Model

H[F | E| v

(&)
Q
=] (} Implement Design
& 8@ Translate
£ C) Map

& BQE) Place & Route
2@ Generate Programming File
() ‘:é Configure Target Device
€4 Analyze Design Using ChipScope

Attention: Before proceeding to the next step connect the board via the USB cable to the PC you’re
using, and turn on the power, the next step ensure proper connection to the board. Also note
that you do not have to do steps 4, 5, and 6 individually. These processes are dependent on
each other, if one needs a preceding process to be updated then it will automatically run that
process before it runs itself. So you can just proceed to step 7 and watch ISE do everything.

7. Program: You can start the programming process by double clicking Configure Target Device
and ISE will launch yet another Xilinx tool called iMpact. A warning box appears complaining

b

about “No iMpact project file exists...’
automatically read your existing project.

, so just click OK to launch iMpact as it will

-) 17 NET "F
) Running: Configure Device — 18 NET "F_

Processes: simple_verilog
= Design Summary/Reports

3 Design Utilities

5@ _ User Constraints
23 Create Timing Constraints "

1/0 Pin Planning (PlanAhead) - Pre-Synthesis & Wamning &

1/0 Pin Planning (PlanAhead) - Post-Synthesis |

Floorplan Area/I0/Logic (PlanAhead)

1| £3 |£F +5| V

No iMPACT project file exists. Click OK to open iMPACT. You will then need to

- PAE) Synthesize - XST !) define a configuration chain, designate which device in that chain is the target
View RTL Schematic device, and then save the IMPACT project file. Once this step is completed,
View Technology Schematic subsequent runs of the 'Configure Target Device' process can program the target
Check Syntax device without needing to open the iMPACT GUL
Generate Post-Synthesis Simulation Model

= 8@ Implement Design

@ EA@ Translate
& 0@ Map
& P Place & Route
2@ Generate Programming File
7% Configure Target Device
€% Analyze Design Using ChipScope

» Start ‘ B3 Design |U] Files I @) vibraries | = Design Summary (Programming File Generated) B simple_verilog.ucf

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

a.

In the ISE iMpact window which again looks a lot like ISE, double click Boundary Scan in
the top left pane. In the boundary scan windows in the main pane, where it says “Right click
to Add Device or Initialize chain” right-click in the middle of the page and select Initialize
Chain or just press Ctrl + 1. This will ensure there is a good connection to your board and it

{3 ISE iMPACT (P.49d) - [Boundary Scan] [E=R)
[@ File Edit View Operations Output Debug Window Help NEE
BOEIFN
08 X
'ROM File Format.
Right click to Add Device or Initialize JTAG chain
IMPACT Processes ~08x
Available Operations are:
Add Xilinx Device... Ctrl+D
TS Device:
Initialize Chain
Cable Setup...
Output File Type
3 Boundary Scan
Console <08 X
< —
[El console |@ Errors | A\ Warnings ‘
No Cable Connection |No File Open |

After iMpact verifies that the cable is connected it will prompt you to load your .bit file that
you generated in step 6. Note that this file selection window doesn’t always default to your
existing project so you may need to navigate to your project folder and locate the .bit file.
This file is always named to your top module so in our case it is simple_verilog.bit. Double-

click or select the bit file and click open, again make sure it is the right file.

_6, 1% ISE iMPACT (P.49d) - [Boundary Scan] =8 =
“ 8 T_:é o X
— 9 = = = = - =
4 10 U}H aa.‘\.wx::‘;:l; = T | e—
% 11 iMPACT Flows 08 X
S 12 [22 Boundary Scan SPERL
74 13 [£] SystemACE £=efasd
zad | [Z) Create PROM File (PROM File Format...
| 15 || &[5 webTalk Data ™
= 16
) 17
= is8 xcBsix16
19 bypass
TDO.
5 Assign NeyweiMGuration File (-2]
Lookin: C: \iinx\Example_Project) Fle oo B8]
A My ComPeadle 0 ™
- _XMsgs.
& Paymon Tocore:dir
oG
xinx_auto_0_xdb
xst
simple_verilog.bit
Identify Succeeded |
e
File name: | simple_verilog.bit
08X
Bypass i
Fies of type: |All Design Files (*.bit *.rbt *.nky .isc *bsd
les of type: | Al Design Files (*.bit *.rbt *.nky .isc *.bsd) [+] a

[2] console [@ Errors

Warnings

launched successful}

Configuration |Nexys3 |1600000

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

c. After the bit file is read in, iMpact prompts you to attach a PROM controller, just click NO to
skip this step since we’re not putting anything in the Flash memory.

@ Attach SPI or BPI PROM @

This device supports attached Flash PROMs.
Do you want to attach an SPI or BPI PROM to this device?

[Y |[Mo

d. In the next dialog box you would be verifying which device on the board you’re targeting but

in our case we only have the FPGA chip to program, so click Ok and the preparation for
programming the board is complete

-
1% Device Programming Properties - Device 1 Programming Properties ﬂ

Category

dary-Scan
evice 1 (FPGA xcbshd 6) Property Name Value

Verify

o) o)) e)

e. All that is left is to right click on the green chip icon with the Xilinx logo in the main pane

and click Program. After the communication bar finishes, your design is programmed to the
Nexys 3 FPGA board.

13 ISE iMPACT (P.49d) - [Boundary Scan]

3

x| |

DoE & [RTF,R
IMPACT Flows 08 x
G 25 Boundary Scan
[2) SystemACE
[E] Create PROM File (PROM File Format...
@ [£] WebTalk Data

1% Configuration Operation Status

iMPACT Processes =R

Available Operations are: Exeolthg commend:.
& Program

& Get Device ID =

= Get Device Signature/Usercode
@ Read Device Status

@b One Step SVF

= One Step XSVF

= Read Device DNA

3 Boundary Scan

Console
Validating chain...

Boundary-scan chain validated successfully.
'1': Programming device...

08 x

G
[E] Consdle |@ Erors [\ Warmings

Configuration [Nexys3 [1600000

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

	ISE_Tutorial_Nexys3_14.7_Paymon
	add_utk
	ISE_Tutorial_Nexys3_14.7_Paymon

