
Tutorial: Working with Verilog  
and the Xilinx FPGA in ISE 9.2i 

 
 
This tutorial will show you how to:  

• Use Verilog to specify a design 
• Simulate that Verilog design 
• Define pin constraints for the FPGA (.ucf file) 
• synthesize the design for the FPGA 
• Generate a bit file 
• Load that bit file onto the FPGA in your lab kit 

 
I assume that you’re using a DSL lab machine, or that you’ve installed Xilinx ISE 
9.2i on your own machine. This tutorial will use ONLY the XSA-50 board which is 
the small board with the FPGA, NOT the larger XST board that has the 
prototyping area that was used in Lab1. You will also need to load the XSTOOLs 
from the Xess company. More details about that later.  
 
Setting up a New Project and specifying a circuit 
in Verilog 
 

1. Create a new project like you did for Lab1. Make sure that you use the 
Spartan2 Device Family, xc2s50 Device, tq144 Package, -6 Speed 
Grade. This time you can specify HDL as the Top-Level Source Type with 
XST as the Synthesis Tool, ISE as the Simulator, and Verilog as the 
language.    



 
 

2. Now you want to open a new source file, but this time you want a Verilog 
Module as your source. I’m calling my example mynand.  
 

 
 

3. When you press Next you’ll get a dialog box that lets you define the inputs 
and outputs of your new module. I’m adding two inputs (A and B), and one 
output named Y. Remember that Verilog is case sensitive!  
 



 
 

4. When you Finish, you’ll have a template for a Verilog module that you can 
fill in with your Verilog code. It looks like this (note that you can also fill in 
the spots in the comment header with more information):  
 



 
 

5. Now you can fill in the rest of the Verilog module to implement some 
Boolean function. I’ll implement a NAND for this example. You can use 
any of the Verilog techniques shown in Section 2.10 of your text. I’ll use a 
continuous assignment statement: assign Y = ~(A & B); as shown below, 
then I’ll save the file.   
 

 



 
 

 

Simulating your Circuit:  
 
• Now that you have a saved Verilog source file, you can simulate its behavior. 

We’ll use the ISE simulator with a testbench just like in Lab1.  
 
To simulate the (Verilog) circuit:  
 

1. Go to the top left pane and change the Sources For: field to be 
Behavioral Simulation.  
 

2. This changes the options in the bottom left pane to the simulator options. 
In that pane select Create New Source. This will bring up the New 
Source Wizard. In that dialog type in the name of your testbench file, and 
make sure to select Verilog Test Fixture in the list on the left. I will name 
my testbench mynand_tb (where the tb stands for testbench). The box 
looks like:  
 

 
 

3. The Next dialog asks you which source you want the testbench 
constructed from. I’ll choose mynand, of course. The code that gets 
generated looks a lot like the code from the previous tutorial, but it is 
actually a little nicer. Note that it already has an initial block with the inputs 
(A and B in this case) already initialized to 0.  
 



 
 
 

I’m going to add some slightly more interesting testbench code for this example. 
I’m going to test all four possible values of the inputs, but I’m also going to use a 
$display statement to display information about the simulation, and use an if 
statement to have the testbench check if I’m getting the right answers for me. 
This is known as a self-checking testbench and is by far the best way to test 
things! It’s much easier to have the testbench alert you when things are failing 
than to have to stare at the timing diagram to see if it’s behaving properly.  
 
The $display statement works very much like a C printf statement. It simply 
prints data to the simulation console. The %b says to print the Verilog variable as 
binary data. You could also use %d for decimal, %h for hex, etc.The portion of 
the testbench with my new testbench code looks like:  
 



 
As an alternative, you could have Verilog generate the expected answer for you. 
For example, your check statements could be:  
 
if (Y != ~(A & B)) $display(“ERROR – Y is %b, should be %b”, Y, ~(A & B)); 
 

Another type of testbench that is very useful uses loops to generate the data. 
Here’s another testbench that uses for loops to generate all possible inputs to the 
circuit. Note that the loop variables have to be type integer. There is an 
interesting question of what happens when you assign an integer (which by 
default is a 32-bit integer) to a single-bit Verilog variable. What happens is that 
Verilog casts the integer into the single-bit type. Essentially it takes the low-order 
bit of the integer and puts that into the Verilog variable. Here’s the code. Note 
that the integers for the loop variables need to be defined outside of the initial 
block, and that there needs to be a delay inside the loop too so that the changes 
you make to the inputs have time to propagate to the outputs of the circuit.  The 
delay before the inner loop’s $display statement allows the inputs to propagate 
through the circuit before you display their values.  
 
 



integer i,j; 
initial begin 
 
// Initialize Inputs 
A = 0; 
B = 0; 
 
// Wait 100 ns for global reset to finish 
#100; 
       
// Add stimulus here 
  
for (i=0; i<2; i=i+1) 
 for (j=0; j<2; j=j+1) 
 begin 
 A = i; 
 B = j; 
 #20 $display("AB = %b%b, Y = %b", A, B, Y); 
 if (Y != ~(A & B)) 
  $display("ERROR - Y is %b, should be %b", Y, ~(A&B)); 
 end 
   
end  
 
 
 

4. You can Check Syntax on the code (whichever version you use) to make 
sure things are correct Veriog. Once you have something that passes the 
syntax check you can double-click the Simulate Behavioral Model to fire 
up the simulator. The output will be displayed as waveforms, and the 
$display data will show up in the console as shown (after zooming out to 
see all the waveforms). You can see that not only do the waveforms show 
the results of the simulation, but the $display statements have printed 
data, and because the circuit is correctly functioning, no error statements 
were printed.  
 
 



 
 
  



 
Synthesizing your circuit to the Xilinx FPGA 
 
Now that you have a correctly simulating Verilog module, you will have the ISE 
(webPACK) tool synthesize your Verilog to something that can be mapped to the 
Xilinx FPGA. That is, the Verilog code will be converted by ISE to some gates 
that are on the FPGA. To be even more specific, ISE will convert the Verilog 
description into a set of configuration bits that are used to program the Xilinx part 
to behave just like the Verilog code. Those configuration bits are in a .bit file and 
are downloaded to the Xilinx part in this next section of the tutorial.  
 
You will use your XSA-50 board for this part of the tutorial. This is the small 
board with the parallel port and the FPGA chip, NOT the extender board you 
used for Lab1.  For this tutorial we’ll connect the A and B inputs of the mynand 
circuit to two switches on the blue DIP (Dual In-line Package) switch, and send 
the output Y to the decimal point (DP) on the 7-segment display. That way you 
can switch the DIP switches to provide inputs and see the output as the dot on 
the display.  
 

 
 
In order to do this we need to:  
 
• Synthesize the Verilog code into FPGA configuration 
• Assign A, B, and Y to the correct pins on the FPGA that connect to the 

switches and LED 
• Generate a programming file with all this information (.bit file) 
• Use the tools from Xess (the company who makes the XSA board) to use the 

.bit file to configure the FPGA.  
 
 



 
1. Back in the Source pane, return to the Synthesis/Implementation view 

and select your mynand.v verilog module. Now in the bottom 
(Processes) pane you will see some new options including Synthesize – 
XST.  Double click on this to synthesize your circuit. After a while you will 
(hopefully) get the “Process ‘Synthesize’ completed successfully” 
message in the console. If you’ve already simulated your Verilog and 
found it to do what you want, there’s every chance that this will synthesize 
correctly without problems.   
 
In any case, there is lots of interesting information in the synthesis report 
(the data in the console window).  It’s worth looking at, although for this 
amazingly simple example there isn’t anything that fascinating.  
 
Make sure that you end the process with a green check for this process. If 
you get something else, especially a red X, you’ll need to fix errors and re-
synthesize.  
 

 
 
 

2. Now, because we’re headed towards putting this on the Xilinx FPGA on 
the XSA board, we need to set some constraints. In particular, we need to 
tell ISE which pins on the Xilinx chip we want A, B, and Y assigned to so 
that we can access those from switches and LEDs on the XSA board.  
 
Create a New Source, but this time choose Implementation Constraints 
File as the type.  I’m calling mine mynand_pins.  
 



 
 

3. After you Next and Finish (make sure it’s associated with the mynand.v 
Verilog file), the mynand_pins.ucf file should show up nested under the 
mynand.v file in the Sources pane.  The ucf stands for Universal 
Constraints File.  
 

 
 
 

4. Select the ucf file. This changes the available processes in the Processes 
tab.  There are all sorts of constraints (timing, placement, pins, etc.) that 
can be specified here. For now, we’re just going to bind the A, B, and Y 
signals to specific pins on the Xilinx part. Expand the User Constraints 
tab and double click Assign Package Pins.  
 



 
 
 

5. This will open up the Xilinx PACE tool which will let you assign which pins 
on the Xilinx FPGA each of your I/O signals should be connected to. But 
which pins? For that you need to look at the XSA board documentation on 
the class web site, or the XSA pin spreadsheet also on the class web site. 
There are four DIP switches, one pushbutton switch, and a 7-segment 
LED on the XSA-50 board that we can use for inputs and outputs .For 
now, I’ll tell you that the pins we’re interested in are:  
 

a. DIPSW 1A: Pin 54 on the Xilinx part (DIP switch #1) 
b. DIPSW 1B: Pin 64 on the Xilinx part (DIP switch #2) 
c. LED-DP (decimal point on the 7-segment display): Pin 44 on Xilinx 

 
 
 

6. In the PACE editor, enter P54, P64, and P44 in the Loc field for the I/O 
signals as shown. This will tell the implementation process to make sure 
that those signals are connected to those pins. The XSA-50 
documentation tells us that those pins are switches and LEDs. Save the 
ucf file in PACE using the XST default convention for bus signaling (if 
that dialog box comes up). Then exit and go back to the ISE window.  



 

 
 

7. With your source file selected (mynand.v in this case), double click the 
Implement Design process in the Processes tab. This will translate the 
design to something that can physically be mapped to the particular FPGA 
that’s on our board (the xc2S50-6tq144). You should see a green check 
mark if this step finishes without issues. If there are issues, you need to 
read them for clues about what went wrong and what you should look at to 
fix things.  
 
If you expand this Implement Design tab (which is not necessary) you will 
see that the Implement Design process actually consists of three parts:  
 

a. Translate: Translate is the first step in the implementation process. 
The Translate process merges all of the input netlists and design 
constraint information and outputs a Xilinx NGD (Native Generic 
Database) file. The output NGD file can then be mapped to the 
targeted FPGA device. 
 

b. Map: Mapping is the process of assigning a design’s logic elements 
to the specific physical elements that actually implement logic 
functions in a device. The Map process creates an NCD (Native 
Circuit Description) file. The NCD file will be used by the PAR 
process.  
 

c. Place and Route (PAR): PAR uses the NCD file created by the 
Map process to place and route your design. PAR outputs an NCD 
file that is used by the bitstream generator (BitGen) to create a (.bit) 
file. The Bit file (see the next step) is what’s used to actually 



program the FPGA.  
 

 
 
 

8. At this point you can look at the Design Summary to find out all sorts of 
things about your circuit. One thing that you might want to check is to click 
on the Pinout Report and check that your signals were correctly assigned 
to the pins you wanted them to be assigned to.  
 

9. Now double click the final process: Generate Programming File. This will 
generate the actual configuration bits into a .bit file that you can use to 
program your XSA-50 board to behave like your circuit (in this case a 
simple 2-input NAND).  
 

 
 

10.  If everything has worked and shows green checks to this point, you can 
quit ISE. You now have a .bit file (mynand.bit in this case) in your lab 
folder that you can use to program your XSA-50. But, in order to program 
the board you need to use tools from Xess, the maker of the board.  
 



 

Configuring the XSA-50 Board 
 
To configure the XSA-50 board with your .bit file you need the XSTOOLs 
software from Xess loaded on your computer (it’s already loaded on the DSL 
computers). You can get the software from the Xess web site. The direct link is:  
 
http://www.xess.com/downloads/setup-XSTOOLs-5_1_0.exe 
 
The XSTOOLs package contains the following tools:  
 

 GXSTEST: This utility lets you test an XSA Board for proper functioning. 
 GXSSETCLK: This utility lets you set the clock frequency of the 

programmable oscillator on an XSA Board. 
 GXSLOAD: This utility lets you download FPGA and CPLD configuration 

files and upload/download data files to the RAM and/or Flash on an XSA 
Board. 
 GXSPORT: This utility lets you send logic inputs to an XSA Board by 

toggling the data pins of the PC parallel port.  
 
To program your circuit to the XSA-50 board take the following steps:  
 

1. First run GXSTEST to make sure your board is working. After installing the 
GXSTOOLs, start the GXSTEST program. Make sure to select the  
XSA-50 as your board type. Also make sure your board is connected to 
the PC through the parallel cable, and that you have connected power to 
your board using the power supply in your lab kit. Make sure that you don’t 
set your board down on a conductive surface when you plug in the power. 
You don’t want to short out any of the pins on the bottom.  
 

 
 

2. After running this program (it takes a minute or so as it downloads the test 
configuration to the board), you should see a 0 on the 7-segment display 
and a message that the board has passed the test. If your board doesn’t 
pass the test, please check with Travis in the DSL and have him run 
further tests.  
 

http://www.xess.com/downloads/setup-XSTOOLs-5_1_0.exe


 
 

3. Once you’ve verified that your board is working, you can load your .bit file 
to the XSA-50 board that will configure the FPGA to behave as your 
circuit. Use the GXSLOAD program. Once the window opens, click and 
drag your .bit file (mynand.bit in this case) to the FPGA/CPLD window as 
shown, and press Load to upload your .bit file to the XSA-50 board.  
 

 
 

4. Assuming you don’t get any errors in the Load process, your XSA-50 
board is now configured according to your .bit file. In this example we 
used a simple NAND function with the A and B inputs assigned to DIP 
switches 1 and 2. The output Y was assigned to the decimal point (DP) on 
the 7 segment display. So, if everything is working properly, the DP should 
be lit when either or both of switches 1 and 2 are ON, and should be off 
only when both switch 1 and 2 are OFF. This is, of course, just the truth 
table for a 2-input NAND:  
 
A B  Y 
0  0  1 
0  1  1 
1  0  1 
1  1  0 
 

 



 

Overview of the Procedure 
 

1. Design the circuit that you would like to map to the Xilinx part on the 
FPGA. You can use schematics, or Verilog, or a mixture of both (we’ll see 
details of that later).  
 

2. Simulate your circuit using the ISE Simulator and a Verilog testbench to 
provide inputs to the circuit. Use “if” statements in your testbench to make 
it self-checking.  
 

3. Generate a UCF file to hold constraints such as pin assignments (later 
we’ll use the UCF file for other constraints like timing and speed).  
 

4. Assign the I/O pins in your design to the pins on the FPGA that you want 
them connected to.  
 

5. Synthesize the design for the FPGA using the XST synthesis tool.  
 

6. Implement the design to map it to the specific FPGA on the XSA-50 
board 
 

7. Generate the programming .bit file that has the bitstream that configures 
the FPGA.  
 

8. Test your XSA-50 board using GXSTEST.  
 

9. Upload your .bit file to the XSA-50 board using GXSLOAD.  
 

 
 


