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Galois Fields

A Galois Field is a set Fq, satisfying all the following
properties:

Abelian Group: w.r.t. addition “+”, and 0 element

Commutative ring with unity: (+,×, 0, 1)

Associativity, Commutativity, Distributivity

Inverse: ∀a ∈ Fq − {0}, ∃a−1 ∈ Fq such that a · a−1 = 1.

q = pm, where p is prime. In our case, p = 2.

Multiplicative cyclic group structure: aq = a.

(Z (mod p)), where p = prime is a field.
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Extension Fields

If D is a Euclidean domain, and p is a prime in D, then D (mod p) is a
field.

(Z (mod p)), where p = prime is a field. We call it Zp ≡ Fp ≡ GF (p).

D = R[x], p = x2 + 1, we have R[x] (mod x2 + 1) = C[x], the field of
complex numbers.

D = Zp and we take an irreducible polynomial f(x) of degree m,
irreducible in Zp, then Zp (mod f(x)) = Fpm or GF (pm).

Consider GF (pm) as an m-dimensional vector space over GF (p).

Example: GF (2) (mod x3 + x + 1) is GF (23).

Note x3 + x + 1 is irreducible over GF(2); but it has roots in GF (23).

Galois Fields are unique up to the labeling of elements.
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Field Elements

Consider: GF (23) with irreducible polynomial p(x) = x3 + x + 1. Let
A ∈ F2[x] and compute A (mod p(x)) = a2x

2 + a1x + a0, where
a2, a1, a0 ∈ {0, 1}. Let p(α) = 0, i.e. α is a root of p(x):

〈a2, a1, a0〉 = 〈0, 0, 0〉 = 0

〈a2, a1, a0〉 = 〈0, 0, 1〉 = 1

〈a2, a1, a0〉 = 〈0, 1, 0〉 = α

〈a2, a1, a0〉 = 〈0, 1, 1〉 = α + 1

〈a2, a1, a0〉 = 〈1, 0, 0〉 = α2

〈a2, a1, a0〉 = 〈1, 0, 1〉 = α2 + 1

〈a2, a1, a0〉 = 〈1, 1, 0〉 = α2 + α

〈a2, a1, a0〉 = 〈1, 1, 1〉 = α2 + α + 1
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Add and Multiply field elements

Multiply two elements: (α2 + 1)(α2 + α) modulo p(x) = α3 + α + 1:

(α2 + 1)(α2 + α)

= α4 + α3 + α2 + α

= α(α3) + α3 + α2 + α

= α(α + 1) + (α + 1) + α2 + α

= α2 + α + α + 1 + α2 + α

= α + 1

Addition is componentwise and modulo p (p = 2 in this case):
(α2 + 1) + (α2 + α) = α + 1 as 2 · α2 = 0
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Prove that D (modp) = Field

To prove that D (mod p) = field, just prove that every non-zero element in
D (mod p) has an inverse. Use Euclidean algorithm.

Since p is prime, and a 6= 0, GCD(a, p) = 1.

If d = 1 = GCD(a, p) then d = 1 = t1a + t2p, for t1, t2 ∈ D (remember
Euclidean algorithm?). Computing D (mod p):

1 = t1a + t2p (mod p)

1 = t1a (mod p)

So we have that a and t1 are inverses of each other. Note this also
gives an algorithm to compute inverses!

Characteristic of a field is prime (1 + 1 + . . . p-times = 0).
Corresponds to Zp. [Proof given in notes pp 35]

For any GF (q), q = pm. [Proof: m-dimensional vector space over p].
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Irreducible Polynomials

Given any GF(p), and integer m, there always exists an irreducible
polynomial p(x) for field construction.

Irreducble polynomial p(x) has coefficients in GF(p), and has degree
m.

It is irreducible in GF(p) (no roots in GF(p)) but has roots in GF(pm).

p(x) of degree 2: 1 + x + x2

p(x) of degree 3: 1 + x2 + x3, 1 + x + x3

p(x) of degree 4: 1 + x + x4, 1 + x3 + x4, 1 + x + x2 + x3 + x4

Any irreducible polynomials over GF(2) of degree m divides
X2m

−1 + 1. [See notes pp. 41]

Exercise: See notes pp. 47, Table 2.8: GF(16) constructed using
p(x) = 1 + x + x4. Construct GF(16) using p(x) = 1 + x + x2 + x3 + x4.
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Order of elements

Order of a: smallest n s.t., an = 1.

Exercise: Take GF(16) from Table 2.8, from notes. Let element a = α.
Find smallest n s.t. an = 1.

Repeat the above experiment for GF(16) constructed by
p(x) = 1 + x + x2 + x3 + x4.

Let a be a non-zero element of GF (q): aq−1 = 1.

Order n may or may not equal q − 1. But if n = q − 1, then a =
primitive element of the field. Then we can use primitive elements to
generate the entire field: {0, 1, a, a2, . . . , an−1}

Order divides q − 1: i.e. n | (q − 1). [see notes pp. 35-37]
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More on Orders of elements

If order(α) = t, then order(αi) = t
gcd(i,t) .

Let φ(t) denote the number of integers in the set {0, 1, . . . , t − 1} that
are relatively prime to t. Note, φ(p) = p − 1.

Given Fq, and t ∈ N . If t | (q − 1), there are φ(t) elements of order t.
Otherwise, there are no elements of order t.

There always exists at least one element (actually, exactly φ(q − 1)

elements) of order q − 1. [Primitive root!]

Let q = 8. How many elements in F8 have order = 1? How many have
order = 2, or 4 or 8? [Note: how much info you already know about
field elements without any knowledge of how it was constructed?]
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Primitive Polynomials

Irreducible polynomials of degree m ≥ 1 always exist.

An irreducible p(x) of degree m is primitive if smallest n for
which p(x) | (Xn + 1) is n = 2m − 1.

Root of primitive polynomial is called a primitive root.
Primitive root is also a primitive element and can
generate the entire field.

Examples of primitive polynomials.... Table 2.7 in the
notes.
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Roots of Irreducible Polynomials

For the following slides: see notes pp 47-54.

Irreducible Poly, no roots in GF(2); but may have roots in extension
fields.

Example: Take GF(16) given in Table 2.8, let f(x) = x4 + x3 + 1 be a
polynomial over GF(16).

It has Roots: a7, a11, a13, a14.

Factorization into roots works... see pp 47-48 in the notes

f(x) over GF(2). Let β be an element in an extension field of GF(2). If
β is a root of f(x), then β2l

is also a root of f(x).

β2l

is called conjugate of β. [Use the example above and find all the
conjugates of a7]
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Roots of polynomials contd....

Order of β: βq−1 = 1

In GF(2m): β2m
−1 = 1

Or β2m
−1 + 1 = 0, or β is a root of X2m

−1 + 1.

This implies: All non-zero elements form the roots of
X2m

−1 + 1

This also implies: ALL elements of GF (2m) form the roots
of X2m

+ X.

Example: Take elements from GF(16).... and
demonstrate the correctness of the above result.
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Minimal Polynomials

β ∈ GF (2m) is a root of X2m

+ X. But β may (or may not)
be a root of a polynomial of degree less than 2m.

Let φ(x) be the polynomial over GF(2) of smallest degree

s.t. φ(β) = 0. Then φ(x) = unique, minimal polynomial of
β.

Minimal polynomial of a field element β is irreducible.

Let f(x) ∈ GF (2), and φ(x) be minimal polynomial of β. If
β is a root of f(x) then φ(x) | f(x).

Minimal poly φ(x) | X2m

+ X.
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Continuing....

From above: All roots of φ(x) are from GF (2m). So what
are the roots of φ(x)?

Let f(x) be an irreducible polynomial over GF(2). Let β

be an element of GF(2m). Let φ(x) be minimal polynomial
of β. If f(β) = 0 then φ(x) = f(x).

Meaning: If an irreducible polynomial has β as a root,
then it is the minimal polynomial of β. [Example?]

Then β and its conjugates [β, β2, β22

, . . . , β2e−1

] are roots
of φ(x).

Note: Let e be the smallest integer s.t. β2e

= β. Then
β2m

= β, e ≤ m, and e|m.
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Irreducible & Minimal Poly Creation

Let β be an element in GF(2m), and e be smallest integer
such that β2e

= β. Then: f(x) =
∏e−1

i=0 (X + β2i

) is an
irreducible polynomial over GF(2).

Let φ(x) = minimal polynomial of β ∈ GF (2m). Let e be
smallest integer such that β2e

= β. Then:
φ(x) =

∏e−1
i=0 (X + β2i

).

Let φ(x) be the minimal polynomial of an element β in
GF(2m), and e be the degree of φ(x). Then e is the
smallest integer s.t. β2e

= β; e ≤ m.

If β is a primitive element of GF (2m), then all its
conjugates are also primitive elements, and they all have
the same order. – p.15/23



Another view of minimal polynomials

We covered this in class, so also refer to your class notes. Given
Fq, q = pm, we view the field as m-dimensional vector space over Fp. Let
α ∈ Fq. Consider m + 1 elements: {1, α, α2, . . . αm}. Since Fq has
dimension m over Fp, these m + 1 elements must be linearly independent
over Fp. Therefore, there exist m + 1 elements, not all zero, A0, . . . , Am

such that:

A0 + A1α + A2α
2 + · · · + Amαm = 0

IOW, If A(x) = A0 + A1x + A2x
2 + · · · + Amxm, then α satisfies the

polynomial equation A(x) = 0. Now α may also be a root of other
polynomials. So we define S(α) to be the set of all such polynomials:

S(α) = {f(x) ∈ Fp(x) : f(α) = 0}

Clearly, S(α) is non-empty set and contains at least one polynomial of
degree ≤ m.
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Continuing....

Let p(x) be a non-zero polynomial of least degree in S(α), and let f(x) be
any other polynomial in S(α). By division:

f(x) = q(x)p(x) + r(x), deg(r(x)) < deg(p(x))

Since f(α) = p(α) = 0 then r(α) = 0 as well, but this contradicts the fact
that deg(p(x)) is minimal, unless r(x) = 0. So, we conclude that
p(x) | f(x). [This is what Thm 2.13, 2.14, 2.16 in the notes are all about.]

Moreover p(x) is irreducible. Otherwise p(x) = a(x) · b(x). Since p(α) = 0

we would have a(α) = 0 or b(α) = 0; which would again contradict the
minimality of the degree of p(x).

This polynomial p(x) is called the minimal polynomial of element α w.r.t.
the field Fq. If we make p(x) monic (leading coefficient = 1) then p(x) is
unique.
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Minimal Polynomial theorem

Theorem 1 Suppose Fq is a field with q = pm elements. Associated with
each α ∈ Fq, there is a unique, monic irreducible polynomial p(x) ∈ Fp(x)

with the following properties:

p(α) = 0

deg(p) ≤ m

If f(x) is another polynomial in Fp(x) with f(α) = 0, then p(x) | f(x).

Now you can understand that a minimal polynomial of a primitive root
(primitive element) of the field is the primitive polynomial.

The above results, take together with conjugates of the roots, is what Sec-
tion 2.5 pp. 47-54 in the notes is all about.
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Discussions on Algorithms in GF

Does there exist an algorithm to find irreducible
polynomials in GF(2) of degree m?

Yes, but this is a very difficult problem.
Polynomial-time Probabilistic algorithms are known.
See: Victor Shoup, “Fast construction of irreducible

polynomials over finite fields”, Journal of Symbolic
Computation 17:371-391, 1994.

Given an irreducible polynomial, is it also a primitive
polynomial? Algorithms exist.

Porto, Guida, Montolivo, Fast Algorithm for finding primitive

polynomials over GF(q), Electronic Letters, 1992, vol 28,
no. 2.
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Algorithmic Computations in GF

In general: Irreducible and primitive polynomials are
known and precomputed for sufficiently large m (say,
m = 1024).

In most applications, we pick a primitive polynomial, and
construct the field using the primitive element.

Given a field GF(2m), Find primitive roots: Gauss’
algorithm.

Given α ∈ GF (2m), find (α)−1: Extended Euclidean
Algorithm.

Given a polynomial in GF (2m), find its roots: Again,
algorithms exist, but not super-efficient.
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Gauss’ Algorithm: Primitive Root

If order(α) = t, then order(αi) = t
gcd(i,t)

.

Let φ(t) denote the number of integers in the set
{0, 1, . . . , t − 1} that are relatively prime to t. Note,
φ(p) = p − 1.

Given Fq, and t ∈ N . If t | (q − 1), there are φ(t) elements
of order t. Otherwise, there are no elements of order t.

There always exists at least one element (actually, exactly
φ(q − 1) elements) of order q − 1. [Primitive root!]
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Gauss’ algorithm

G1: Set i = 1. Let α1 be a non-zero element of F . Let
ord(α1) = t1.

G2: If ti = q − 1, αi is primitive root.

G3: Otherwise, choose non-zero β which is not a power
of αi. Let ord(β) = s. If s = q − 1, set αi+1 = β, and stop.

G4: Otherwise, find: d|ti, e|s with gcd(d, e) = 1 AND
d · e = lcm(ti, s). Let αi+1 = αti/d · βs/e, and
ti+1 = lcm(ti, s). Increment i and go to G2.
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Gauss’ continued..

Order s of β will not divide ti. So, lcm(ti, s) will be greater
than ti.

The decomp. step (d, e) is always possible. [E.g.:
t1 = 12, s = 18, then d = 4, e = 9 works!

Element αti/d has order d and βs/e has order e. So order
αti/d · βs/e = lcm(ti, s).

Result: If ord(α) = m and ord(β) = n, with gcd(m,n) = 1,
then order(α · β) = m · n.
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