
Constructing Composite Field Representations
for Efficient Conversion

Berk Sunar, Member, IEEE, Erkay Savas, Member, IEEE, and Çetin K. Koç, Senior Member, IEEE

Abstract—This paper describes a method of construction of a composite field representation from a given binary field representation.

We derive the conversion (change of basis) matrix. The special case of when the degree of the ground field is relatively prime to the

extension degree, where the irreducible polynomial generating the composite field has its coefficients from the binary prime field rather

than the ground field, is also treated. Furthermore, certain generalizations of the proposed construction method, e.g., the use of

nonprimitive elements and the construction of composite fields with special irreducible polynomials, are also discussed. Finally, we

give storage-efficient conversion algorithms between the binary and composite fields when the degree of the ground field is relatively

prime to the extension degree.

Index Terms—Composite and binary fields, primitive element, change of basis, AES.
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1 INTRODUCTION

THERE has been a growing interest to develop hardware
and software methods for implementing the finite field

arithmetic operations particularly for cryptographic appli-
cations [13], [15], [11], [14], [16], [17], [18]. In order to obtain
efficient implementations, the computations are often
performed in bases other than the standard polynomial
basis for the field GF ð2kÞ. Thus, we are often faced with the
basis conversion problems between two different imple-
mentations of the same field such that the conversion
between the two bases is efficient. For example, two such
conversion problems were addressed recently [4], [3], [2]. In
this paper, we are interested in the efficient conversion
between the composite and binary representations.

A particularly interesting case occurs when the field

GF ð2kÞ is a composite field, i.e., k is not a prime and can be

written as k ¼ nm. It has been observed that efficient

hardware and software implementations can be obtained

for such fields [15], [11], [12], [19]. Thus, instead of

performing the computations in the binary field, it is more

efficient to implement the composite field to perform the

computations. This methodology requires that we construct

the composite field by suitably selecting n and m and also

by finding an irreducible polynomial to generate the field

GF ðð2nÞmÞ. Furthermore, efficient methods are needed for

conversion of elements between the binary and composite

fields. The general methodology for constructing composite

fields is well established [1]. The conversion problem

between the composite and binary fields and the selection

of a suitable primitive element was addressed [10]. In this
work, Paar derives the conversion matrix between the fields
GF ð2kÞ and GF ðð2nÞmÞ which are already known (fixed) by
their generating polynomials [10].

In this paper, we examine a slightly different problem:
We construct a composite field GF ðð2nÞmÞ given the binary
field GF ð2kÞ, assuming the generating polynomial of the
composite field was not fixed or given a priori. We
introduce practical algorithms for constructing the field
GF ðð2nÞmÞ and for obtaining the conversion matrix given
the binary field GF ð2kÞ. We also give efficient conversion
algorithms for the case gcdðn;mÞ ¼ 1, which do not require
the storage of the conversion matrix. Our approach requires
the use of a primitive element in GF ð2kÞ in order to
construct the composite field GF ðð2nÞmÞ. However, varia-
tions are possible, for example, a nonprimitive element can
also be used. Furthermore, we show how to construct the
composite field with a special irreducible generating
polynomial, e.g., a trinomial, a pentanomial, or an
equally-spaced-polynomial.

2 FUNDAMENTALS

LetGF ð2kÞdenote the binary extension field defined over the
prime fieldGF ð2Þ. In order to constructGF ð2kÞ and represent
its elements, we need an irreducible polynomial pðxÞ of
degree kwhose coefficients are inGF ð2Þ. If � is a root of pðxÞ,
then the setB1 ¼ f1; �; �2; . . . ; �k�1g formsabasis for the field
GF ð2kÞ. An element A of GF ð2kÞ can be expressed as
A ¼

Pk�1
i¼0 ai�

i, where ai 2 GF ð2Þ for i ¼ 0; 1; . . . ; k� 1.
The row vector ða0; a1; . . . ; ak�1Þ is called the representation
of the element A in the basis B1. Once the basis is selected,
the rules for the field operations, e.g., addition, multi-
plication, and inversion, can be derived.

There are various ways to represent the elements of
GF ð2kÞ, depending on the choice of the basis or the
particular construction method. If k is the product of two
integers as k ¼ mn, then it is possible to derive a different
representation method by defining GF ð2kÞ over the field
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GF ð2nÞ. The field GF ð2nÞ over which the composite field is
defined is called the ground field. An extension field
defined over a subfield of GF ð2kÞ other than the prime field
GF ð2Þ is known as a composite field. We will use
GF ðð2nÞmÞ to denote the composite field. Since there is
only one field with 2k elements, both the binary and the
composite fields refer to this same field. However, their
representation methods are different and it is possible to
obtain one representation from the other.

Since the composite field is defined overGF ð2nÞ, we need
an irreducible polynomial of degreemwith coefficients in the
ground fieldGF ð2nÞ. Let qðxÞ be an irreducible polynomial of
degreemdefinedoverGF ð2nÞ. If� is a rootof qðxÞ, then the set
B2 ¼ f1; �; �2; . . . ; �m�1g forms a basis for GF ðð2nÞmÞ.1 An
element A 2 GF ðð2nÞmÞ can be written as A ¼

Pm�1
i¼0 a0i�

i,
where a0i 2 GF ð2nÞ. The row vector ða00; a01; . . . ; a0m�1Þ is the
composite field representation of A in the basis B2. The
coefficients in the composite field representation are in the
ground fieldGF ð2nÞ and, thus, we need to be able to perform
field operations in GF ð2nÞ in order to perform field
operations in GF ðð2nÞmÞ. Therefore, we need an irreducible
polynomial vðxÞ of degree n overGF ð2Þ in order to construct
the ground field GF ð2nÞ. If � is a root of vðxÞ, then the set
B3 ¼ f1; �; �2; . . . ; �n�1g is a basis for GF ð2nÞ, thus, an
element a 2 GF ð2nÞ can be written as a ¼

Pn�1
i¼0 �aai�

i, where
�aai 2 GF ð2Þ. The row vector ð�aa0; �aa1; . . . ; �aan�1Þ represents the
element a 2 GF ð2nÞ in the basis B3.

3 CONSTRUCTION OF THE COMPOSITE FIELD

The proposed construction method depends on the avail-
ability of a primitive element � in GF ð2kÞ. If available, B2

and B3 are constructed so that � and � are expressed in
terms of � explicitly, as powers of �. This will facilitate
conversion. Before we explain the details of the construc-
tion, we introduce the following theorem.

Theorem 1. For � 2 GF ðð2nÞmÞ and � ¼ �r, where
r ¼ ð2nm � 1Þ=ð2n � 1Þ:

1. �r 2 GF ð2nÞ,
2. If � is a primitive element, then � is primitive in

GF ð2nÞ.
Proof. Result 1 is shown in [6]. For result 2, suppose � is

primitive but � is not, then �t ¼ 1 for some t < 2n � 1, so
�u ¼ 1 for u ¼ rt < 2nm � 1, which means that � is not
primitive, a contradiction. Hence, � must also be
primitive. tu

Let GF ðð2nÞmÞ be an extension field of GF ð2nÞ and
� 2 GF ðð2nÞmÞ. The set of the elements

C ¼ f�; �2n ; �22n ; . . . ; �2ðm�1Þng

is called the conjugates of � with respect to GF ð2nÞ. The
conjugates of � are not necessarily distinct elements of
GF ðð2nÞmÞ. Every element � 2 GF ðð2nÞmÞ is associated with
a monic irreducible polynomial whose coefficients are in

one of the subfields of GF ðð2nÞmÞ. This polynomial is called
the minimal polynomial of � and will be denoted by m�ðxÞ.
Since � is a primitive element, its conjugates in GF ðð2nÞmÞ
are distinct and its minimal polynomial over GF ð2nÞ is of
degree m. The minimal polynomial of � is given as:

m�ðxÞ ¼ ðxþ �Þðxþ �2nÞðxþ �22nÞ � � � ðxþ �2ðm�1ÞnÞ:

The polynomialm�ðxÞ is an irreducible polynomial of degree
m with coefficients in Gð2nÞ. These definitions of the
conjugates and the minimal polynomial of an element of the
composite field are given with respect to a subfield of the
composite field. Similarly, if the prime fieldGF ð2Þ is taken as
the subfield, then we obtain the definitions of the conjugates
and minimal polynomial of an element in the binary field
GF ð2kÞ. For example, let GF ð2kÞ be the binary field with k ¼
nm and � be a primitive element in GF ð2kÞ, then the
conjugates of � and its minimal polynomial can be given as:

C0 ¼ �; �2; �22 ; . . . ; �2ðk�1Þ
� �

;

m0
�ðxÞ ¼ ðxþ �Þðxþ �2Þðxþ �22Þ � � � ðxþ �2ðk�1Þ Þ:

The polynomials m�ðxÞ and m0
�ðxÞ are the minimal

polynomials of the same element � with respect to the
subfields GF ð2nÞ and GF ð2Þ, respectively.

The arithmetic operations in GF ðð2nÞmÞ can be imple-
mented much faster in software [15] or using fewer gates in
hardware [11] if the degree-m irreducible polynomial is
selected such that its coefficients are in GF ð2Þ instead of
GF ð2nÞ. For this, it is necessary to construct a primitive
polynomial over GF ð2nÞ with coefficients from GF ð2Þ. We
define � ¼ �s such that

s ¼ 2nm � 1

2m � 1
¼ 1þ 2m þ 22m þ 23m þ . . .þ 2ðn�1Þm: ð1Þ

Note that the element � ¼ �s is the constant term of the
minimal polynomial of � with respect to GF ð2mÞ and, thus,
it also belongs to GF ð2mÞ. We then construct the minimal
polynomial of � with respect to GF ð2nÞ as:

m�ðxÞ ¼ ðxþ �Þ xþ �2n
� �

xþ �22n
� �

� � � xþ �2ðm�1Þn
� �

: ð2Þ

We have the following theorem regarding the reduction of
m�ðxÞ given above.

Theorem 2. If gcdðm;nÞ ¼ 1, the minimal polynomial m�ðxÞ
given by (2) is equivalent to

m�ðxÞ ¼ ðxþ �Þ xþ �2
� �

xþ �22
� �

� � � xþ �2ðm�1Þ
� �

: ð3Þ

Proof. It is sufficient to show that the following identity
holds:

1; 2n; 22n; . . . ; 2ðm�1Þn
n o

¼ 1; 2; 22; . . . ; 2ðm�1Þ
n o

mod 2m � 1ð Þ:

ð4Þ

Hence, we need to show that the exponents satisfy the
following set equality:

f0; n; 2n; . . . ; ðm� 1Þng ¼ f0; 1; 2; . . . ; ðm� 1Þg ðmod mÞ:
ð5Þ
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The LHS may be viewed as the result of the mapping
x 7! nx ðmod mÞ applied to the elements of the set on the
RHS. Since gcdðm;nÞ ¼ 1, the inverse n�1 modm exists
and the map is invertible. Hence, there is a one-to-one
correspondence between the two sets. It follows that the
identities (5) and (4) hold. tu
The polynomial qðxÞ ¼ m�ðxÞ given by (2) is of exactly

the same form as the minimal polynomial of � with respect
to the field GF ð2Þ and, therefore, its coefficients belong to
GF ð2Þ. Hence, qðxÞ ¼ m�ðxÞ may be used to construct
extensions of GF ð2nÞ whenever gcdðn;mÞ ¼ 1 and, at the
same time, yield efficient arithmetic since its coefficients are
in GF ð2Þ.

4 DERIVATION OF THE CONVERSION MATRIX

In this section, we show the derivation of the general
conversion matrix from the composite field to the binary
field representation. Let pðxÞ be a degree-k primitive
polynomial defined over GF ð2Þ. We construct the field
GF ð2kÞ using pðxÞ, where � is a primitive element used to
obtain the basis

B1 ¼ 1; �; �2; . . . ; �k�1
� �

:

Here, pðxÞ is the minimal polynomial of � with respect to
GF ð2Þ. To obtain the composite field representation, we will
obtain the minimal polynomial of � with respect to GF ð2nÞ.
We denote this polynomial by qðxÞ, which is given as:

qðxÞ ¼ ðxþ �Þ xþ �2n
� �

xþ �22n
� �

� � � xþ �2ðm�1Þn
� �

: ð6Þ

We use qðxÞ to construct the field GF ðð2nÞmÞ defined over
GF ð2nÞ, where the basis is

B2 ¼ 1; �; �2; . . . ; �m�1
� �

:

Using the bases B1 and B2, we obtain two different
representations of the element A as:

Basis B1 : A ¼
Pk�1

i¼0 ai�
i; ai 2 GF ð2Þ:

Basis B2 : A ¼
Pm�1

j¼0 a0j�
j; a0j 2 GF ð2nÞ:

To obtain the conversion rule between these two representa-
tions of the field, we construct the basis of representation of
the ground fieldGF ð2nÞ in a specialway.Toobtain abasis,we
select the constant coefficient � of the minimal polynomial
qðxÞ with respect to the field GF ð2nÞ. � is a coefficient of the
minimal polynomial and, therefore, belongs toGF ð2nÞ. Since
it is also primitive, �’s powers will generate a polynomial
basis forGF ð2nÞ, B3 ¼ f1; �; �2; . . . ; �n�1g. Therefore, the a0js
are represented using the basis B3 as:

Basis B3 : a0j ¼
Pn�1

i¼0 �aaji�
i; �aaji 2 GF ð2Þ:

Furthermore, the irreducible polynomial for GF ð2nÞ is the
minimal polynomial of � with respect to GF ð2Þ, which is
given as:

uðxÞ ¼ ðxþ �Þ xþ �2
� �

xþ �2
2

� �
� � � xþ �2

n�1
� �

:

In order to obtain the conversion matrix from the composite
field GF ðð2nÞmÞ to the binary field GF ð2kÞ, we write

A ¼
Xm�1

j¼0

Xn�1

i¼0

�aaji�
i�j ¼

Xm�1

j¼0

Xn�1

i¼0

�aaji�
riþj: ð7Þ

Here, the terms �riþj are reduced using the generating
polynomial pðxÞ and their representations in B1 are
obtained as:

�riþj ¼
Xk�1

h¼0

tjih�
h; ð8Þ

where tjih 2 GF ð2Þ are the elements of the conversion
matrix. By substituting (8) into (7), we derive the binary
representation of A from its composite representation as

A ¼
Xk�1

h¼0

Xm�1

j¼0

Xn�1

i¼0

�aaji tjih �h: ð9Þ

This sum determines the conversion matrix between two
representations, as follows:

where

Each one of the Ti;j submatrices is an n� n matrix whose
entries are from the field GF ð2Þ. The entire T matrix is a
k� k matrix with entries from GF ð2Þ. Once the T matrix is
obtained, the conversion matrix from the binary field to the
composite field can be obtained by computing T�1. Both of
these matrices need to be precomputed and saved.

We presented a method to construct a composite field
representation such that the conversion matrix is easily
derived. The construction generates the irreducible poly-
nomial used for the ground field. Alternatively, one can use
a slightly modified version of our construction to generate
the conversion matrix when the polynomial for the ground
field GF ð2nÞ representation is prespecified. In this case, the
construction proceeds as before until � ¼ �r and its
associated minimal polynomial is found. Then, using the
exhaustive search method introduced in [10], a mapping
between � and a primitive element in the prespecified
representation is obtained. Combining the two mappings,
the final conversion matrix is obtained.

4.1 Special Case of gcdðn;mÞ ¼ 1

In Section 3, a method for constructing degree-m poly-
nomials irreducible over GF ð2nÞ with coefficients from
GF ð2Þ was introduced. This requires that gcdðn;mÞ ¼ 1 and
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� ¼ �s. We use m�ðxÞ to construct the composite represen-
tation for GF ðð2nÞmÞ. An element of GF ðð2nÞmÞ can be
written as:

A ¼
Xm�1

j¼0

a0j�
j; ð11Þ

where a0j 2 GF ð2nÞ. To represent the subfield GF ð2nÞ,
similar to the previous construction, we choose the basis
generated by � ¼ �r, where r ¼ 2nm�1

2n�1 , and obtain the
representation of a0j as:

a0j ¼
Xn�1

i¼0

�aaji�
i; ð12Þ

where �aaji 2 GF ð2Þ. By combining these two representations,
we obtain

A ¼
Xm�1

j¼0

Xn�1

i¼0

�aaji�
i�j ¼

Xm�1

j¼0

Xn�1

i¼0

�aaji�
ðriþsjÞ; ð13Þ

where �aaji 2 GF ð2Þ. We reduce the terms �ðriþsjÞ using the
generating polynomial pðxÞ and obtain their representation
the basis f1; �; �2; . . . ; �k�1g as:

�riþsj ¼
Xk�1

h¼0

tjih�
h; ð14Þ

where tjih 2 GF ð2Þ are the elements of the conversion
matrix. By substitution, we derive the binary representation
of A from its composite representation

A ¼
Xk�1

h¼0

Xm�1

j¼0

Xn�1

i¼0

�aaji tjih �h: ð15Þ

This sum gives the conversion matrix T between two
representations, similar to (9).

4.2 An Example

Weshowthe constructionof the conversionmatrixT from the
composite field GF ðð23Þ4Þ to the binary field GF ð212Þ. Let
GF ð212Þ be constructed using the primitive polynomial
pðxÞ ¼ x12 þ x7 þ x4 þ x3 þ 1 and � be a root of pðxÞ, thus �
is a primitive element inGF ð212Þ. As we have shown, � ¼ �r

is a primitive element in the ground field GF ð23Þ, where
r ¼ ð212 � 1Þ=ð23 � 1Þ ¼ 585. We construct the composite
field GF ðð23Þ4Þ over the field GF ð23Þ using the irreducible
polynomial qðxÞ which is constructed according to (1). The
irreducible polynomial qðxÞ is of degree 4 and its
coefficients are from the ground field GF ð23Þ, which is
given as follows:

qðxÞ ¼ ðxþ �Þ xþ �23
� �

xþ �26
� �

xþ �29
� �

¼ x4 þ �1755x3 þ �2340x2 þ �585:
ð16Þ

Note that � is in GF ð212Þ, however, �r ¼ �585 is an element
of GF ð23Þ and so are �1755 ¼ ð�585Þ3 and �2340 ¼ ð�585Þ4.
Furthermore, we have ð�585Þ7 ¼ ð�1755Þ7 ¼ ð�2340Þ7 ¼ 1. In
order to represent the elements of the ground field GF ð23Þ,
we use the constant term in qðxÞ as the basis element, which
is � ¼ �585. An element A is expressed in basis B2 as

A ¼ a00 þ a01�þ a02�
2 þ a03�

3; ð17Þ

where a0j 2 GF ð23Þ. We can express a0j in GF ð23Þ using � ¼
�585 as the basis element

a0j ¼ �aaj0 þ �aaj1� þ �aaj2�
2 ¼ �aaj0 þ �aaj1�

585 þ �aaj2�
1170; ð18Þ

where �aaji 2 GF ð2Þ for j ¼ 0; 1; 2; 3 and i ¼ 0; 1; 2. Therefore,

the representation of A in the composite field is found as:

A ¼ �aa00 þ �aa01�
585 þ �aa02�

1170 þ �aa10�þ �aa11�
586þ

�aa12�
1171 þ �aa20�

2 þ �aa21�
587 þ �aa22�

1172 þ �aa30�
3þ

�aa31�
588 þ �aa32�

1173:

ð19Þ

The next step is to reduce the terms �585iþj for j ¼
0; 1; 2; 3 and i ¼ 0; 1; 2 using the generating polynomial

pðxÞ ¼ x12 þ x7 þ x4 þ x3 þ 1. This will give us � terms in

the above expression with exponents between 0 and 11. A

term of the form �585iþj is reduced modulo pðxÞ by

successively using the relation �12 ¼ �7 þ �4 þ �3 þ 1. We

obtain the representation of A in the binary field GF ð212Þ
using the basis B1 ¼ f1; �; �2; . . . ; �11g as:

A ¼ a0 þ a1�þ a2�
2 þ a3�

3 þ a4�
4 þ a5�

5 þ a6�
6þ

a7�
7 þ a8�

8 þ a9�
9 þ a10�

10 þ a11�
11:

The relationship between the terms ah for h ¼ 0; 1; . . . ; 11

and �aaji for j ¼ 0; 1; 2; 3 and i ¼ 0; 1; 2 determines the

elements tjih of the conversion matrix T . For example, the

first row of the matrix T is obtained by gathering the

constant terms in the right-hand side of (19) after the

substitution, which gives the constant coefficient in the left

hand side, i.e., the term a0. A simple inspection shows that:

a0 ¼ �aa00 þ �aa01 þ �aa02 þ �aa11 þ �aa21 þ �aa22 þ �aa32;

which determines the first row of T . Similarly, a1 is

obtained by summing the coefficients of � as:

a1 ¼ �aa02 þ �aa10 þ �aa11 þ �aa12 þ �aa21 þ �aa31 þ �aa32;

which determines the next row of T . The remaining terms ai

for i ¼ 2; 3; . . . ; 11 are obtained similarly, i.e., by gathering

the coefficients of �i for i ¼ 2; 3; . . . ; 11, respectively. There-

fore, we obtain the 12� 12 matrix T as follows:

where
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This matrix gives the representation of an element in the

binary field GF ð212Þ given its representation in the

composite field GF ðð23Þ4Þ. The inverse transformation, i.e.,

the conversion from GF ð212Þ to GF ðð23Þ4Þ, requires the

computation of T�1.

5 COMPARISON OF THE TWO METHODS FOR

DERIVING CONVERSION MATRICES

In this section, we compare the complexity of our method
against that of the method proposed in [10]. We will refer to
the second method as the “exhaustive search method” since
it requires an exhaustive search in GF ð2kÞ in order to
construct the conversion matrix between the binary and
composite fields. The construction is based on finding the
relation between the two primitive elements � and �ð¼ �tÞ
of the two representations such that the condition

Rð�tÞ ¼ 0 ðmod QðyÞ; P ðxÞÞ

is satisfied. Here, RðzÞ, QðyÞ, and P ðxÞ are generating
polynomials for the fields GF ð2kÞ, GF ð2nÞ, and GF ðð2nÞmÞ,
respectively. The lack of an explicit mathematical connec-
tion between � and � makes it difficult to compute the
discrete logarithm t ¼ log�ð�Þ by direct means. Hence, an
exhaustive search is performed. The method utilizes a table
with 2k � 1 entries in order to reduce the complexity by k.
The table keeps track of the conjugacy classes that are
already checked. Although this method reduces the com-
plexity of the algorithm by a factor of k, its time complexity
is still exponential and can be given as:

O �ð2k � 1Þ
k

� �
;

where � denotes the Euler totient function. This prohibits
the applicability of the reduction method for even
moderate values of k because of the size of the table.
For a detailed explanation of the method and its
complexity, see [10, pp. 9-12].

For small k ¼ n �m, this algorithm provides a general
solution to the conversion problem. However, when k gets
larger, it becomes impossible to apply this algorithm to
construct the conversion matrix because of its exponential
time complexity. Therefore, the algorithm might become
inapplicable to this case even for the moderate values of k.
Note also that the method requires primitive polynomials to
construct the finite fields, GF ð2nÞ, GF ðð2nÞmÞ, and GF ð2kÞ.
The case in which the field polynomials are nonprimitive
irreducible polynomials is not covered in the algorithm.

Thenewmethodprovides apolynomial timealgorithmfor
the same purpose. We start with analyzing the complexity of

the general case studied in Section 4 and then give the
complexity of special case when gcdðn;mÞ ¼ 1. Constructing
the conversion matrix in the general case involves the
computationof thepowersof theprimitive element inGF ð2kÞ

�riþj i ¼ 0; 1; . . . ; n� 1 and j ¼ 0; 1; . . . ;m� 1:

We need to perform field multiplications in GF ð2kÞ in
order to calculate these powers of the primitive element.
In the following, we present a complexity of the method
for the general case in terms of the number of multi-
plication in GF ð2kÞ.

The first m powers of the primitive elements,
�0; �1; . . . ; �m�1, come for free without any field multi-
plication operation since these powers do not exceed the
degreeof the irreduciblepolynomial ofGF ð2kÞ. The ðmþ 1Þst
power of the primitive element to compute is �r and it
involves an exponentiation operation in GF ð2kÞ. We can
easily calculate the exact number of field multiplications
needed to calculate the exponentiation since the exponent r
has a special form as r ¼ 1þ 2n þ 22n þ . . .þ 2ðm�1Þn.
Namely, the exponent, r has m nonzero bits in its binary
expansion and, thus,mþ k� n� 1multiplication operations
are required to perform the exponentiation treating squaring
operations in GF ð2kÞ as field multiplications. Then, we need
to compute the powers of the primitive elements
�2r; �3r; . . .�ðn�1Þr, which requires ðn� 2Þ field multiplica-
tions. And, finally, we can compute the rest of the exponents,

�riþj i ¼ 1; 2; . . . ; n� 1 and j ¼ 1; 2; . . . ;m� 1

by performing ðn� 1Þ � ðm� 1Þ multiplications, thus the
total number of field multiplications to compute all the
powers can be given as 2k� n� 2.

The complexity in terms of the number of field multi-
plications for the special case of gcdðn;mÞ ¼ 1, studied in
Section 5, can be computed in a similar manner. For this
case, we need to calculate the following powers of the
primitive element in GF ð2kÞ:

�riþsj i ¼ 0; 1; . . . ; n� 1 and j ¼ 0; 1; . . . ;m� 1:

These elements can be written as:

�0 �s �2s . . . �ðm�1Þs

�r �rþs �rþ2s . . . �rþðm�1Þs

. . . . . . . . . . . . . . .
�ðn�1Þr �ðn�1Þrþs �ðn�1Þrþ2s . . . �ðn�1Þrþðm�1Þs:

First, we calculate �r and �s, which require k� nþm� 1
and kþ n�m� 1 field multiplications, respectively. The
powers of� in the first row, f�0; �s; . . . ; �ðm�1Þsg, requirem�
2 fieldmultiplications. Similarly, the remainingpowers in the
first column requiren� 2 fieldmultiplications. For the rest of
the powers of the primitive element, we need to perform ðn�
1Þ � ðm� 1Þ field multiplications. Thus, we find that the total
number of multiplications to obtain the conversion matrix in
the special case gcdðn;mÞ ¼ 1 is equal to 3k� 5.

6 USE OF NONPRIMITIVE ELEMENTS

The proposed method of construction of the composite field
GF ðð2nÞmÞ depends on the availability of a primitive element
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� in GF ð2kÞ, which is the root of a degree-k primitive
polynomial pðxÞ defined over GF ð2Þ. We then derive the
transformation (change of basis) matrix T from GF ð2kÞ to
GF ðð2nÞmÞusing theminimal polynomial of�with respect to
GF ð2nÞ as qðxÞ ¼ m�ðxÞ. A question arises about the deriva-
tion of the transformation matrix in the case when a
nonprimitive polynomial hðxÞ is used to construct the field
GF ð2kÞ. In this case, we cannot construct the composite field
GF ðð2nÞmÞ properly and obtain the transformation matrix T .
Fortunately, we do not need a specific primitive element, any
primitive element would work. The primitive elements in a
finite field are abundant and it is easy to find one given a
representation of the fieldGF ð2kÞ. Let hðxÞ be a nonprimitive
irreducible polynomial used to construct the binary field
GF ð2kÞ and also let � be a root of hðxÞ. The set

B0 ¼ 1; �; �2; . . . ; �k�1
� �

ð20Þ

forms a basis for the field GF ð2kÞ. Let � be a primitive
element in the field GF ð2kÞ. We can use the primitive
element � to construct the composite field GF ðð2nÞmÞ
properly, as in Section 4 (or, as in Section 4.1 if
gcdðn;mÞ ¼ 1). According to Section 4, we have the bases
B1, B2, and B3 as:

B1 ¼ 1; �; �2; . . . ; �k�1
� �

; B2 ¼ 1; �; �2; . . . ; �m�1
� �

;

B3 ¼ 1; �; �2; . . . ; �n�1
� �

;

where � is a primitive element in GF ð2kÞ and � ¼ �r with
r ¼ ð2nm � 1Þ=ð2n � 1Þ. We represent an element of the
binary field GF ð2kÞ using the basis B1. On the other hand,
we represent an element of GF ðð2nÞmÞ using the basis B2,
where the coefficients in this representation are represented
using the basis B3. However, since an element of GF ð2kÞ is
initially given in B0, we need to embed the change of basis
matrix from B0 to B1 to the final transformation matrix.
According to (7) in Section 4, we have

A ¼
Xm�1

j¼0

Xn�1

i¼0

�aaji�
i�j ¼

Xm�1

j¼0

Xn�1

i¼0

�aaji�
riþj:

Assuming the representation of theprimitive element� in the
basis B0 is given, we obtain the representations of the terms
�riþj in B0 for i ¼ 0; 1; . . . ; n� 1 and j ¼ 0; 1; . . . ;m� 1, as:

�riþj ¼
Xk�1

h¼0

�ttijh�
h: ð21Þ

This gives the modified transformation matrix based on the
equation

A ¼
Xk�1

h¼0

Xm�1

j¼0

Xn�1

i¼0

�aaji �ttjih �h; ð22Þ

which is analogous to (9).

7 COMPOSITE FIELDS WITH SPECIAL IRREDUCIBLE
POLYNOMIALS

In Section 4.1, we constructed the composite field
GF ðð2nÞmÞ for gcdðn;mÞ ¼ 1 in such a way that the
degree-m irreducible polynomial qðxÞ has its coefficients

from GF ð2Þ rather than GF ð2nÞ. This selection yields
efficient composite field arithmetic, as was demonstrated
in [15]. This particular polynomial can be further specia-
lized in the sense that it could be an irreducible trinomial or
pentanomial or equally-spaced-polynomial (ESP) or all-one-
polynomial (AOP). Here, we describe two methods by
which we can select the degree-m irreducible polynomial
generating the field GF ðð2nÞmÞ. Let q�ðxÞ be the irreducible
degree-m polynomial of the desired form, e.g., trinomial,
pentanomial, ESP, AOP, etc.

. The first method is to find a primitive element in � in
GF ð2kÞ such that qðxÞ ¼ q�ðxÞ where

s ¼ 2nm � 1

2m � 1

¼ 1þ 2m þ 22m þ 23m þ . . .þ 2ðn�1Þm;

� ¼ �s;

qðxÞ ¼ ðxþ �Þðxþ �2Þðxþ �22Þ � � � ðxþ �2ðm�1Þ Þ:

However, this method requires that we exhaustively
try primitive elements � 2 GF ð2kÞ, which becomes
prohibitive as k grows since it requires exponential
time.

. The second method is simpler and more efficient:
We go ahead with the original construction method
by selecting an arbitrary primitive element � from
GF ð2kÞ and, in the end, obtain qðxÞ, which is an
arbitrary irreducible polynomial of degree m over
the field GF ð2Þ to construct the field GF ðð2nÞmÞ. We
then take the desired irreducible polynomial q�ðxÞ
and construct the change of basis matrix from the
field GF ðð2nÞmÞ generated by qðxÞ to the field
GF ðð2nÞmÞ generated by q�ðxÞ. The arithmetic is
performed in the latter field more efficiently due to
the special structure of q�ðxÞ and then mapped back
to the former field if and when necessary.

8 STORAGE-EFFICIENT CONVERSION

The proposed conversion methods between the binary and
composite fields involve matrix multiplication. It also
requires storing two matrices, each of which has ðnmÞ2
entries. In low-cost hardware implementations, we may not
have sufficient amount of memory for these matrices.
Fortunately, there are other approaches which do not
require the conversion matrices be stored. For example,
Kaliski and Yin proposed storage-efficient conversion
methods for the binary fields with different bases [4], [3].
Here, we take a similar approach and introduce storage-
efficient conversion algorithms between the binary and
composite fields. Here, we address only the case
gcdðn;mÞ ¼ 1 since this is the most practical case for the
existing applications.

According to the setup, we have two communicating
parties: The first party uses the binary field and can
compute only in this field, while the second one uses the
composite field and can compute only in the composite
field. To each party, its own basis and arithmetic are
considered to be internal, while those of the other party
are external. Thus, the first party should be able to
convert an element given in the second party’s basis (i.e.,
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external basis) to the first party’s basis (i.e., internal basis)
using only the arithmetic which is available to the first
party (i.e., internal arithmetic). Similar conditions hold for
the second party. In addition, conversion algorithms may
also be required in the reverse directions in case only one
of the parties is able to implement the necessary
conversion routines. Following the terminology intro-
duced in [4], [3], we will use the term import to denote
conversion of a finite field element from the external basis
to the internal basis using only internal arithmetic.
Similarly, export is used to denote the conversion from
the internal basis to the external basis.

We represent an element �AA of the composite field using

�AA ¼ ð�aa00; �aa01; . . . ; �aa0;n�1; �aa10; �aa11; . . . ; �aa1;n�1;

. . . ; �aam�1;0; �aam�1;1; . . . ; �aam�1;n�1Þ;

where �aaji 2 GF ð2Þ for 0 � i � n� 1 and 0 � j � m� 1. This
representation can also be interpreted as:

�AA ¼ ða00; a01; . . . ; a0m�1Þ;

where a0i ¼ ðai;0; ai;1; . . . ; ai;n�1Þ 2 GF ð2nÞ for 0 � i � m� 1.
On the other hand, an element A of the binary field is
represented using the binary string A ¼ ða0; a1; . . . ; amn�1Þ,
where ai 2 GF ð2Þ for 0 � i � mn� 1.

In order to obtain the binary representation A of �AA, we
need to know the integers r and s. The primitive element �
is basically the string ð0; 1; 0; . . . 0Þ, which is a convenient
feature in our construction. We precompute X ¼ �r and
Y ¼ �s and save these values. This computation is
performed using binary field arithmetic.

Algorithm A—Importing from Composite to Binary

Inputs: �AA ¼ ð�aa00; �aa01; . . . ; �aam�1;n�1Þ
r, s, �, X ¼ �r, and Y ¼ �s

Output: A ¼ ða0; a1; . . . ; amn�1Þ
Step 1: A :¼ 0

Step 2: for j ¼ 0 to m� 1

Step 3: for i ¼ 0 to n� 1

Step 4: if (�aaji ¼ 1) then A ¼ AþXiY j

Step 5: return A

Algorithm A provides a general framework for the
conversion and it is obviously not the most computationally
efficient algorithm. Depending on the amount of additional
memory available, one can precompute some intermediate
values and use them in the multiplication process of Xi and
Y j. For instance, the values Xi for 0 � i � n� 1 and Y j for
0 � j � m� 1 can be precomputed and saved, then multi-
plied as needed. This method requires less storage
(OðnþmÞ elements instead of OðnmÞ) and improves the
computational efficiency by reducing the number of the
multiplications. One can also use the conversion algorithms
proposed in [3, Section 3.1] for improved efficiency.

Exporting from a binary to a composite field representa-
tion can be done using the algorithm proposed in [3,
Section 3.5], which is adapted to our construction as
Algorithm B, shown below.

Algorithm B—Exporting from Binary to Composite

Inputs: A ¼ ða0; a1; . . . ; amn�1Þ, r, s, �, X, Y , V00

where X ¼ ��r, Y ¼ �rn�s, and

ðA� V00Þ0 ¼ �aa00

Output: �AA ¼ ð�aa00; �aa01; . . . ; �aam�1;n�1Þ
Step 1: A :¼ A� V00

Step 2: for i ¼ 0 to m� 1

Step 3: for j ¼ 0 to n� 1

Step 4: �aaij :¼ a0
Step 5: A :¼ A� �aaij � V00

Step 6: A :¼ A�X

Step 7: A :¼ A� Y

Step 8: return �AA

For details of the derivation of V00, one can refer to [4], [3].
To import from binary to the composite field representa-

tion, a party needs to precompute and store the primitive
element � in the composite basis f1; �; �2; . . . ; �m�1g using
the conversion matrix. We assume the primitive element �
is expressed as:

Z ¼ � ¼ �0
0 þ �0

1� þ . . .þ �0
m�1�

m�1:

Algorithm C—Importing from Binary to Composite

Inputs: A ¼ ða0; a1; . . . ; amn�1Þ
Z ¼ ð�0

0; �
0
1; . . . ; �

0
m�1Þ

Output: �AA ¼ ða00; a01; . . . ; a0m�1Þ
Step 1: �AA :¼ 0

Step 2: if(a0 ¼ 1) then a00 :¼ 1

Step 3: for i ¼ 1 to mn� 1

Step 4: if (ai ¼ 1) then �AA ¼ �AAþ Zi

Step 5: return �AA

Just as in the case of Algorithm A, Algorithm C provides a
framework for the conversion and optimizations via
precomputation are possible.

Exporting from composite to binary representations can
be accomplished using Algorithm D which is a direct
adaptation of the algorithm in [3, Section 2.3]. The
derivation of V0 is explained in this reference in detail.

Algorithm D—Exporting from Composite to Binary

Inputs: �AA ¼ ða00; a01; . . . ; a0m�1Þ, Z�1, V0 where

Z ¼ ð�0
0; �

0
1; . . . ; �

0
m�1Þ, ð �AA� V0Þ0 ¼ a0

Output: A ¼ ða0; a1; . . . ; amn�1Þ
Step 1: �AA :¼ �AA� V0

Step 2: for i ¼ 1 to mn� 1

Step 3: ai :¼ �aa00
Step 4: �AA :¼ �AA� ai � V0

Step 5: �AA :¼ �AA� Z�1

Step 5: return A

9 CONCLUSIONS

We addressed a particular conversion problem in finite
fields. We construct a composite field GF ðð2nÞmÞ given the
binary field GF ð2kÞ and the integers n and m such that
k ¼ nm and obtain the conversion matrices between these
two representations of the same field. A variation of this
idea is explored in [10], in which, given both of these fields
and their field polynomials, the method searches for a
suitable primitive element to obtain the conversion matrix.
We are motivated by the fact that, while the setup of [10] is
more general, it requires exponential time since a suitable
primitive element needs to be obtained. For many practical
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implementations, any composite field can do the job of

minimizing the time or hardware complexity.
Our conversion techniques will benefit computations in

finite fields of large composite extensions. Applications may

vary from implementations of simple operations such as

finite field inversion, as in the implementation of Rijndael

[12], to more complex operations, as in the scalar-point

multiplication operation used in elliptic curve cryptosys-

tems [13].2 The ANSI X9.62 standard [20] specifies elliptic

curve cryptosystems built over the composite extensions

GF ð2176Þ, GF ð2208Þ, GF ð2272Þ, GF ð2304Þ, and GF ð2368Þ,
which are known to be resistant to the attack in [7]. These

applications are particularly suited for our construction

method since the exhaustive search method is not feasible

for such large extensions.
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2. Note an attack based on Weil descent was shown [7] to be effective on
elliptic curve discrete logarithm problems built over certain composite
extensions. Hence, curve parameters should be carefully selected, to avoid
potential security weaknesses.
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