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Ex:
A sample-and-hold circuit is used in an A/D converter to store a voltage on a capacitor while it is being translated into a binary number.  As with any capacitor, the stored charge on the capacitor leaks away over time.  The loss of voltage is modeled by a capacitor discharge equation:
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where


V 
voltage on capacitor when A/D conversion is complete (volts)


v0 
initial voltage on capacitor = 1 V for this problem


T 
time required for A/D conversion = gaussian distributed random variable with
mean 20 ns and variance (2 ns)2

RC 
time constant for leakage = 6 s
a)
Find the probability density function, fV(v), of the voltage on the capacitor at the end of the A/D conversion.

b)
Find the probability that the voltage on the capacitor droops enough for a 1-bit error in an 8-bit value.  In other words, find P(V ≤ v0·255/256).  Hint:  translate the problem into that of finding a probability for a gaussian random variable and use Table A.3 in the course text to find that probability.

Sol'n:
a)
Because T is gaussian (or normal) and appears in the exponent, the form of V is almost a lognormal distribution.  The form of the lognormal probability density function (pdf), [1], requires that the entire exponent be gaussian:
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where Y is gaussian distributed has lognormal pdf, fX(x), as follows
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where
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In the present problem, we have 
[image: image7.wmf] and V replaces X.  This is a linear transformation of a gaussian distribution, which is again a gaussian distribution.  The mean and variance of this gaussian are as follows:
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and
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Replacing X with V in the lognormal pdf, we have our final expression for fV(v).
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b)
We find P(V ≤ v0·255/256) by substituting for V in terms of T and using the cumulative distribution for T:
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or
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Now we convert T to is equivalent value for a standard gaussian (or normal) distribution:
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This means we use the value of t to find the value of z in the cumulative distribution, FZ(z):
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Using a table for the cumulative distribution of the standard gaussian, [1], we lookup the value of the probability:
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Thus, we have the following final result:
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Ref:
[1]
Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, Probability and Statistics for Engineers and Scientists, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.
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