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DERIVE:	The following is a simplified derivation showing that the probability density function (pdf) for the normalized sample variance, , is the 2-distribution with  = n – 1 degrees of freedom where n is the number of normally distributed samples, 2 is the variance of each sample, and sample variance s2 is defined in the standard way:

 	(1)

where the Xi are the samples, and  is the sample variance defined in the standard way:

.	(2)
To improve clarity and focus attention on key ideas in the derivation, we assume the samples are drawn from a standard normal distribution with mean  = 0 and variance 2 = 1:

.	(3)
Note that the samples are also taken to be independent.
Based on rules for linear combinations of random variables, the sample mean is normally distributed with variance 2/n = 1/n since we are assuming 2 = 1.

 	(4)
The pdf for all the samples is an n-dimensional normal distribution [ref?].

 	(5)
With some manipulation of summations [ref Myers text], we may show that the summation of the squared xi's may be written in terms of the sample variance and sample mean:

.	(6)
Using this relationship, we rewrite the n-dimensional normal distribution:

 	(7)
In the following derivation, we find the pdf of x = (n – 1)s2 by taking the derivative of the cumulative distribution function.

 	(8)
Given (7) and (8), our goal will be to express P(S ≤ s) in terms of s, but our starting point is to find the cumulative probability by integrating the pdf of (x1, ..., xn) over all the (x1, ..., xn) that would give a sample variance that is less than or equal to s2.

	(9)
or

[bookmark: _GoBack]	(10)











We observe that the pdf  is spherically symmetric, which suggests that we might be able to use spherical coordinates for our integral.  However, the spherical symmetry of  is with respect to the origin, whereas we want to integrate over the (x1, ..., xn) that are within a distance s of  since the summation of the (xi – )2 is equivalent to a calculation of the squared distance of (x1, ..., xn) from (, ..., ).  Thus, these (x1, ..., xn) lie inside an n‑dimensional sphere centered at .  For a given , however, these
(x1, ..., xn) must also lie on the hyper-plane of points such that  since the average of the xi is .  Thus, for a given , we are integrating over the intersection of an n-dimensional sphere and a hyper-plane in n dimensions that is perpendicular to the (1,1,1) direction.  The resulting intersection is an
(n–1)-dimensional sphere.  As shown in Fig. 1(a), we get a line of points in the
2-dimensional case (n = 2), and as shown in Fig. 1(b), we get a circle of points in the 3-dimensional case (n = 3).
[image: ][image: ]
	(a)	(b)

Fig. 1.  Points to integrate in the s direction for calculation of P(S2 ≤ s2) at a given value of : (a) 2-dimensional case, (b) 3-dimensional case.

As we vary , we get an extruded (n–1)-dimensional sphere as the region of integration.  As shown in Fig. 2(a), the region of integration is an infinite band in the (1,1) direction for the 2-dimensional case (n = 2), and as shown in Fig. 2(b), the region of integration is an infinite cylinder in the (1,1,1) direction for the
3-dimensional case (n = 3).
[image: ][image: ]
	(a)	(b)

Fig. 2.  Region of integration for calculation of P(S2 ≤ s2) in coordinates of  and s: (a) 2‑dimensional case is infinite band parallel to (1,1) direction, (b) 3-dimensional case is infinite cylinder parallel to (1,1,1) direction.
For the change of variables in n ≥ 2 dimensions, we have the following change of variables:

 	(11)
where An–1(s) is the surface area of an (n–1)-dimensional sphere.
From [wikipedia https://en.wikipedia.org/wiki/Volume_of_an_n-ball] we have the following formulas for sphere volumes and surface areas:

 is the volume of an n-dimensional sphere	(12)

 is the surface area of an n-dimensional sphere	(13)
The gamma function has the following properties [wikipedia https://en.wikipedia.org/wiki/Gamma_function]:


 for n > 0 a positive integer

 for all complex z except integers ≤ 0

 
Using the recursive formula for (z) and cancelling a factor of s top and bottom, we have:

.	(14)
We now have the following integral for P(S2 ≤ s2), which equals P(S ≤ s) since S and s are always non-negative:

	(15)
Note the use of a non-italics s to distinguish between the variable of integration and the limit of integration.
We separate variables, and perform the inner integration first (after ensuring that the inner integration is of a normal density function, thus yielding a value of unity).

	(16)
The value inside the square brackets is unity.

	(17)
We use  = n – 1 as the "degrees of freedom" to simplify the expression and reflect the idea that the pdf is analogous to one for n – 1 variables.

	(18)
Fortunately, we will take the derivative of the cumulative distribution, so computing the integral is unnecessary.  However, we do have to deal with a change of variables for the derivative.
As a preliminary to using the chain rule, we have the following calculations:

 	(20)
so

 	(21)
and

 	(22)
Using the chain rule, we have the following result:

	(23)
The final derivative is the derivative of an integral, so the last derivative is just the integrand from (18).

	(24)
or

	(25)
or


or
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