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Ex:
Given joint probability density function f(x, y) = 1 on the area of the x,y-plane shown below, find the marginal probability density functions, fX(x) and fY(y).
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Sol'n:

The illustration below shows a 3-dimensional view of f(x, y).


[image: image3.wmf]
The value of fX(x) at a given value of x is the area of the cross section of f(x, y) in the y direction.  In the illustration below, the value of fX(x = 3/2) is shown to be equal to 1/3 · 1 (i.e., width · height) = 1/3.
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Since the cross-sectional area has a width that grows linearly as x increases from 0 to 3, we can write down a formula for fX(x) directly:
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Mathematically, we get the same answer by integrating f(x, y) in the y direction.  We must, however, correctly determine the limits of integration.  We do so by considering a top view of the support (or footprint) of f(x, y) on the xy-plane:

[image: image6.wmf]
For a given value of x between 0 and 3, y has values between y = 0 and y = 
[image: image7.wmf].  Thus, the upper limit of the integral for fX(x) depends on x:
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Completing the calculation, we get our answer, (which is the same as before):
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Similar arguments apply for the calculation of fY(y).  The graphical approach relies on calculation of areas of cross sections in the x direction.  In contrast to cross sections in the y direction, the area of the cross sections in the x direction decrease in area as y increases.  The diagram below shows that the cross section for y = 1/3 has area equal to 3/2 · 1 (i.e., width · height) = 3/2.
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Since the cross-sectional area has a width that decreases linearly as y increases from 0 to 2/3, we can write down a formula for fY(y) directly:


[image: image11.wmf]
Mathematically, we get the same answer by integrating f(x, y) in the x direction.  As before, we must correctly determine the limits of integration.  From the top view of the support (or footprint) of f(x, y) on the xy-plane we see that, for a given value of y between 0 and 2/3, x has values between x = 
[image: image12.wmf] and x = 3.
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This time, the lower limit of the integral for fY(y) depends on y:
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Completing the calculation, we get our answer, (which is the same as before):
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