

Jointly Distributed Random Variables

def: X and Y are jointly distributed random variables
 = when we perform two experiments with outcomes X and Y , we can describe the probability density (of having $X=x$ and $Y=y$ as the pair of outcomes) by using a function of x and y :

$p(x, y)$ = probability density for outcome
 $X = x$ and $Y = y$

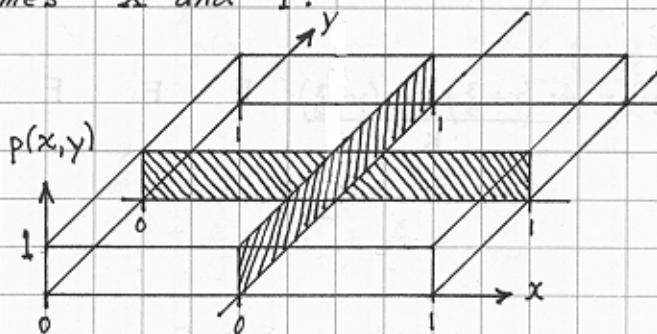
def: joint cumulative probability function = $F(x, y)$
 $F(x, y) = P\{x \leq X \text{ and } y \leq Y\}$

tool: $p(x, y) = \frac{d}{dx} \frac{d}{dy} F(x, y) = \frac{d}{dy} \frac{d}{dx} F(x, y)$

and $F(x, y) = \int_{-\infty}^x \int_{-\infty}^y p(x, y) dy dx = \int_{-\infty}^y \int_{-\infty}^x p(x, y) dx dy$

ex: Suppose we perform two experiments that have no dependency on one another but are both uniformly distributed: $X \sim U(0, 1)$, $Y \sim U(0, 1)$.

Then $p(x, y)$ describes the probability of the pair of outcomes X and Y :



$p(x, y)$ is a unit cube, and its cross sections have the same shape as the distributions for X and Y . This is a result of X and Y being independent.

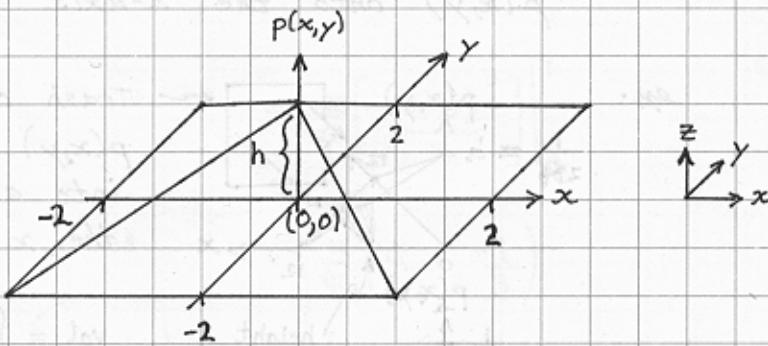
tool: The volume of $p(x,y)$ equals one for a valid probability density function:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x,y) dy dx = 1$$

Note: This corresponds to $\int_{-\infty}^{\infty} p(x) dx = 1$ for single random variable.

tool: $F(\infty, \infty) = 1$ (Since $P\{x \leq \infty \text{ and } y \leq \infty\} = 1$)

ex: Suppose $p(x,y)$ is pyramid-shaped. Find its height, h .



$1 = \text{vol } p(x,y) = \int_0^h \text{area of square slice taken horizontally } dz$

$$1 = \int_0^h \left(4 \left(\frac{h-z}{h}\right)^2\right) dz \quad \text{Change var to } l = \frac{h-z}{h}$$

$$1 = - \int_1^0 4 l^2 \frac{dl}{h} \quad \text{Then } \frac{dl}{dz} = -\frac{1}{h} \quad dz = -\frac{dl}{h}$$

$$z=0 \Rightarrow l=1$$

$$z=h \Rightarrow l=0$$

$$1 = \frac{4}{h} \int_0^1 l^2 dl$$

$$1 = \frac{4}{h} \frac{l^3}{3} \Big|_0^1 = \frac{4}{3h}$$

$$\therefore h = \frac{4}{3}$$

def: marginal probability density function, $p_X(x) =$

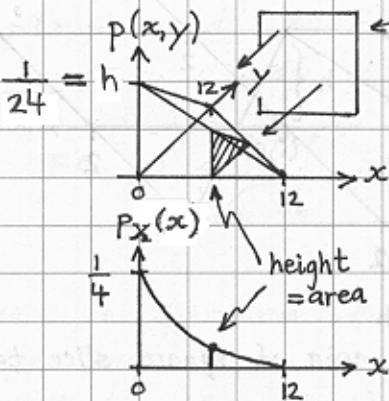
$$p_X(x) = \int_{-\infty}^{\infty} p(x, y) dy$$

Note: $p_X(x)$ is the probability density for X

when we don't know the value of Y .

Note: $p_X(x)$ may be thought of as the density of matter we would get if we compacted $p(x, y)$ onto the x -axis.

ex:



Trash compactor squashes $p(x, y)$ in y direction into a pane sitting on the x axis.

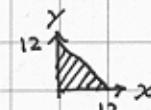
$$\text{vol} = \int_0^h \frac{1}{2} (144) \left(\frac{z}{h}\right)^2 dz = \frac{72}{h^2} \frac{z^3}{3} \Big|_0^h$$

$$\text{vol} = \frac{72}{3} h \Rightarrow h = \frac{1}{24}$$

$p_X(x)$ is quadratic

Height of pane on x axis is mass of slice in y direction for that value of x .

$$\text{Here, } p(x, y) = \begin{cases} \frac{1}{24} \frac{12-(x+y)}{12} & \text{on } y = 12-x \\ 0 & \text{otherwise} \end{cases}$$



$$p_X(x) = \int_{-\infty}^{\infty} p(x, y) dy = \int_0^{12-x} \frac{1}{24} \frac{12-(x+y)}{12} dy$$

$$= \frac{1}{24} \int_0^{12-x} \frac{12-x}{12} - \frac{y}{12} dy = \frac{1}{24} \left[\left(\frac{12-x}{12} \right)^2 - \frac{y^2}{24} \right]_0^{12-x}$$

$$= \frac{(12-x)^2}{24^2} = \frac{1}{4} (1-x/12)^2 \text{ for } x \text{ in } [0, 12]$$

uu

ECE 5960-1

11 Mar 03

Neil E Götter

tool: $\int_{-\infty}^{\infty} p_X(x) dx = 1$ since $\int_{-\infty}^{\infty} p_X(x) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x,y) dy dx = 1$

This means $p_X(x)$ is a valid probability density function, and we don't have to scale $p_X(x)$ up or down to make $p_X(x)$ valid.

ex: Check previous example.

$$\int_{-\infty}^{\infty} p_X(x) dx = \int_0^{12} \frac{1}{4} \left(1 - \frac{x}{12}\right)^2 dx$$

$$= \frac{1}{4} \int_0^1 (1-y)^2 12 dy \quad y = \frac{x}{12}$$

$$= \frac{12}{4} \left[-\frac{(1-y)^3}{3} \right] \Big|_0^1$$

$$= \frac{12}{4} \left(0 - -\frac{1}{3} \right)$$

$$\int_{-\infty}^{\infty} p_X(x) dx = 1 \quad \checkmark$$

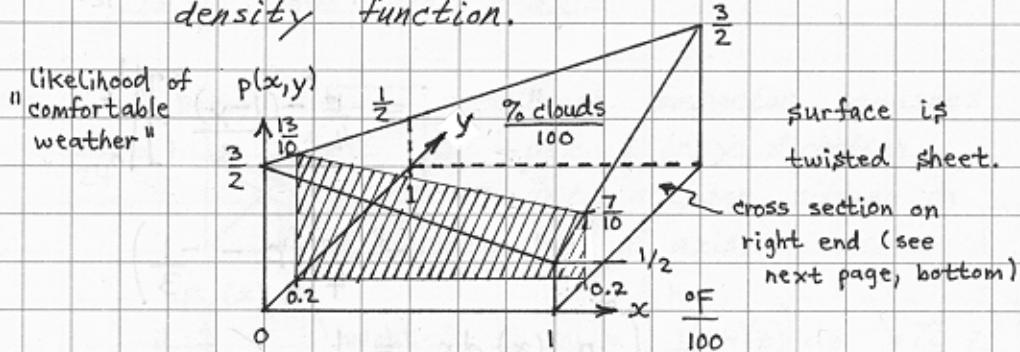
def: conditional probability density function, $p_{X|Y=y}(x)$

$p_{X|Y=y}(x) = \frac{p(x, y)}{p_Y(y)}$ = probability density for x given a particular value of $Y = y$

plug in particular value of y , e.g. $y = \frac{1}{2}$

Note: The denominator, $p_Y(y)$, is a constant that normalizes the conditional density function so the area under the conditional density function equals one. This is necessary for a valid probability density function.

ex:



What is the probability density of "comfortable weather" versus temperature given the cloud cover is 20%?

$$p_{X|Y=0.2}(x) = \frac{p(x, y=0.2)}{p_Y(y=0.2)} = \frac{p(x, y=0.2)}{\int_{-\infty}^{\infty} p(x, y=0.2) dx}$$

Note that $p(x, y=0.2)$ is the cross-hatched area in the above plot of $p(x, y)$.

We normalize the probability density function for $p_{X|Y=0.2}(x)$ by dividing by the area

of the cross section: $\int_{-\infty}^{\infty} p(x, y=0.2) dx = p_Y(y=0.2)$

ex: (cont.) The following equation describes the cross section of $p(x, y)$ at $y=0.2$:

$$p(x, y=0.2) = \begin{cases} \frac{13}{10} - \frac{6}{10}x & x \text{ in } [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Then } p_x(y=0.2) = \int_0^1 \frac{13}{10} - \frac{6}{10}x \, dx$$

$$= \frac{13}{10}x \Big|_0^1 - \frac{6}{10} \frac{x^2}{2} \Big|_0^1$$

$$= \frac{13}{10} - \frac{6}{10} \frac{1}{2}$$

$$= 1$$

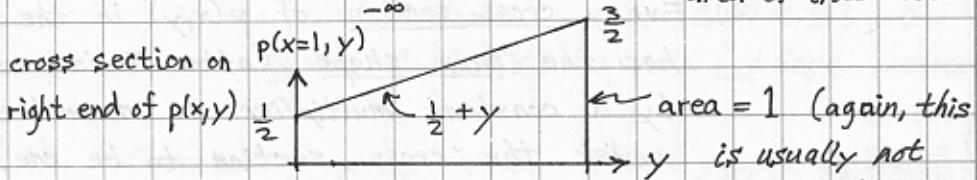
So, by serendipity, our normalizing factor is just 1. This is not usually the case.

$$\text{def: } p_{Y|X=x}(y) \equiv \frac{p(x, y)}{p_x(x)} = \frac{p(x, y)}{\int_{-\infty}^{\infty} p(x, y) \, dy}$$

Note: definition just reverses roles of x and y compared with definition of $p_{X|Y=y}(x)$.

ex: Find $p_{Y|X=1}(y)$ for "comfortable weather" $p(x, y)$, above.

$$\text{sol'n: } p_{Y|X=1}(y) = \frac{p(x=1, y)}{\int_{-\infty}^{\infty} p(x=1, y) \, dy} = \frac{\text{cross section on right end of } p(x, y)}{\text{area of cross section}}$$



$$p_{Y|X=1}(y) = \begin{cases} \frac{1}{2} + y & = \frac{1}{2} + y \quad y \text{ in } [0, 1] \\ 0 & \text{otherwise} \end{cases}$$