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THM:	For any probability density function and any real number k > 0


  or  
NOTE:		This theorem gives an upper bound on how much of the probability density can lie farther than k from the mean value.  Thus, the probability density is constrained in how far its tails can lie from the mean value on a scale measured by standard deviations.
NOTE:		This theorem is only useful for values of k > 1, since probability is always less than or equal to unity, and the theorem is most useful for larger values of k.  For example, all but one-ninth of the probability lies within three standard deviations of the mean, regardless of what the probability density function happens to be.
PROOF:		We start with the definition of standard deviation:

.
The figure below shows a generic probability density function, f(x).
[image: ]




For the calculation of 2, we will multiply  by the quadratic function added to the graph below.
[image: ]


The product  is shown below, and the area under this curve, (i.e., the integral of ), shown in brown, is the value of 2.
[image: ]
We split the integral for 2 into regions within k of the mean (center region) and without k of the mean (gray regions) giving us the following result.

.


Since the quantities being integrated are all non-negative, if we were to delete the middle integral (i.e., the integral for values within k of the mean) we would have the following result:

.

In other words, the areas under the side portions are less than the entire area.  We obtain an even smaller area on the sides if we replace (x – )2 with a smaller multiplier, namely k22.  That is, for the integrals in the above equation we have , so we can write the following inequality:

.
The figure below shows the right-hand side of this equation as red areas that are clearly smaller than the original side areas.
[image: ]
At this point, we factor out the k22 from the integrals to obtain


or, if we divide both sides by ,

.
The value in parentheses is now a probability, and we have


or, if we divide both sides by k2,

.
This result is equivalent to the theorem statement, and our proof is finished.

One might wonder the bound is achievable, and the answer for k > 1 is yes.  The distribution shown below achieves the bound by putting as much of the probability as possible (i.e., 1/2k2) at points masses located at distance k from .  Thus, we have a discrete distribution:

.
[image: ]
We verify that the calculated variance is indeed 2:

,
[bookmark: _GoBack]which simplifies to 2 = 2, as required.
REF:	Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, Probability and Statistics for Engineers and Scientists, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.
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  (x −µ)2 ≥ k2σ2
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