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Ex:
Are the bounds given by Chebyshev's inequality more accurate when f(x) is a uniform distribution or when f(x) is a gaussian distribution?  Justify your answer.

Sol'n:

Chebyshev's inequality is more helpful when a distribution has long tails.  The probability density for a uniform distribution drops to zero for x more than a certain number of 's from the mean, .  For a uniform distribution from 0 to 1, for example, 2 = 1/12, and  = 1/
[image: image2.wmf].  The probability density drops to zero for values farther than 1/2 from  = 1/2.  Solving c = 1/2, we find that c = 
[image: image3.wmf].  Thus, for a uniform distribution, we have


[image: image4.wmf] for c ≥ 
[image: image5.wmf].

In this case, Chebyshev's inequality only guarantees a probability of


[image: image6.wmf] = 
[image: image7.wmf] for c = 
[image: image8.wmf].

Thus, Chebyshev's inequality is of little use for a uniform density function.

If we consider a standard gaussian (with  = 0 and  = 1), the probability never drops to zero as we move away from the mean.  If, for example, we consider c = 
[image: image9.wmf], we can use a table for the area under a standard gaussian to find P(X ≤ + c) = P(X ≤ 
[image: image10.wmf]) ≈ P(X ≤ 1.73) = 0.9582.  We subtract from this P(X ≤ – c) = 0.0418 to obtain 


[image: image11.wmf] for c = 
[image: image12.wmf].

In this case, Chebyshev's inequality guarantees a probability of


[image: image13.wmf] = 
[image: image14.wmf] = 0.6667 for c = 
[image: image15.wmf].

This is better than the approximation for the uniform density function, although it still seems rather conservative.
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