


Apr 1990
Neil E. Cotter

Gradient Descent - Local Minima

If gradient descent step size, η , is small, w will be trapped in the bowl it starts in. Thus, w approaches a local minimum instead of the global minimum.

If η is too large, w will jump over the global min. Even worse, large η may make the algorithm unstable, $w \rightarrow \infty$.

There is no magical formula for choosing η .

Q. How do we avoid local minima?

A. Add noise to w ; i.e. perturb w by adding random numbers to it.

Advantages: Guarantees that we have a chance of finding global min regardless of starting value of w .

Disadvantages: If we found the global min we might jump out of it!

In general we cannot tell when we have reached a global min. Hence, we should not turn off noise and stop exploring. Conversely, exploration may be fruitless.