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Linear Multiuser Recelvers: Effective Interference,
Effective Bandwidth and User Capacity

David N. C. Tse,Member, IEEE and Stephen V. Hanlyember, IEEE

Abstract—Multiuser receivers improve the performance of of the interference from other users when demodulating a
spread-spectrum and antenna-array systems by exploiting the yser. Another important line of work is the development
structure of the multiaccess |nterfe_rence when demodulating the of processing techniques in systems with antenna arrays.
signal of a user. Much of the previous work on the performance Both d t techni d ant id
analysis of multiuser receivers has focused on their ability to 0 __sprea -Spectrum techniques an gn enna arra_ys prOVI e
reject worst case interference. Their performance in a power- additionaldegrees of freedorthrough which communication
controlled network and the resulting user capacity are less well- can take place, and multiuser techniques aim to better exploit
understood. In this paper, we show that in a large system those degrees of freedom.
with each user using random spreading sequences, the limit-  pagpite significant work done in the area, there is still much

ing interference effects under several linear multiuser receivers debat bout th 't}/ f th . h
can be decoupled such that each interferer can be ascribed ebate abou @iser capacity o € various approaches

a level of effective interferencethat it provides to the user to deal with multiuser interference. (See, for example, [23].)
to be demodulated. Applying these results to the uplink of a One reason is that the performance of multiuser receivers in
single power-controlled cell, we derive aneffective bandwidth conjunction with networking-level techniques of power control
characterization of the user capacity: the signal-to-interference 5 resource allocation are less well understood than for more
requirements of all the users can be met if and only if the " . .
sum of the effective bandwidths of the users is less than the traditional multiaccess schemes. Indeed, much of the previous
total number of degrees of freedom in the System_ The effective WOI’k on performance eVaIUation Of multiuser receivers fOCUSES
bandwidth of a user depends only on its own SIR requirement, on their ability to reject worst case interferenceegr—far

and simple expressions are derived for three linear receivers: resistance[11]) rather than on their performance in a power-
the qonventlonal matched flltgr, the decorrelator, and the MMSE controlled system. The main goal of this paper is to make
receiver. The effective bandwidths under the three receivers serve . .

as a basis for performance comparison. progress.tqwards, addressing these issues.

One difficulty in understanding the performance of mul-
tiuser receivers in power-controlled environments stems from
the intertwining of the effects odll of the interferers in the
system. For example, the MMSE receiver depends on the
signature sequences and received powers of all interferers,
. INTRODUCTION and hence at the output of the filter, it is hard to separate

O meet the growing demand of untethered applicatior@yt the effect of individual interferers. The main result of

there have been intense efforts in recent years to develb$ paper shows, somewhat surprisingly, that in a large
more sophisticated physical-layer communication techniqu&gstem with many degrees of freedom and many users, a
to increase the spectral efficiency of wireless systems. A sigrifecoupling of the interfering effects is indeed possible for
icant thrust of work has been on developimgltiuserreceiver Several important linear receivers: each interferer can be
structures which mitigate the interference between usersdgcribed a level okffective interferencehat it provides to
spread-spectrum systems. These receivers include the optinilfhuser to be demodulated. The effective interference of an
multiuser detector [24], the linear decorrelator [11], [12]nterferer depends only on the received power of the interferer,
and the linear minimum mean-square error (MMSE) receivéite received power of the user being demodulated, and the
[29], [13], [16], [17]. Unlike the conventional matched-filterachieved signal-to-interference ratio (SIR) at the output of the
receiver, these techniques take into account the structi€eiver.
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of the users is less than the total number of degrees of freedwitl, we show that similar ideas carry through for systems
in the system. These degrees of freedom can be provideith antenna diversity. Section IX contains our conclusions.
by the processing gain in a spread-spectrum system or the
number of antenna elements in a system with an antenna
array. These capacity characterizations are simple in that the
effective bandwidth of a user depends only on its own SIR
requirement and nothing else. While this approach yields anln & spread-spectrum system, each of the user’s information
interference-limited characterization of the user capacity, v coded symbols is spread onto a much larger bandwidth
will also quantify the reduction in user capacity when therd@ modulation by its owrsignatureor spreading sequence
are additional power constraints on the users. We observe thBg following is a chip-sampled discrete-time model for a
the SIR is a reasonable performance measure for the clas§¥hbol-synchronous multiaccess spread-spectrum system:
linear multiuser receivers we are concerned with. I
The effective bandwidth of a user depends on the muItlgser Y = ZXisi W 1)
receiver employed. Results for three receivers are obtained:
the linear MMSE receiver, the decorrelator, and the conven-
tional matched-filter receiver. We will show that the effectivevhere X; € R and s; € R are the transmitted symbol
bandwidths are, respectively, and signature spreading sequence of useespectively, and
W is N(0,0%I) background Gaussian noise. The length of
the signature sequences A, which one can also think of
as the number of degrees of freedom. The received vector
isY € RY. We assume the{;’s are independent and that
where 3 is the SIR requirement of the user. These effectivB[X;] = 0 and E[X?] = P;, whereP; is the received power
bandwidth expressions also provide a succinct basis for pef-useri. There areK users in the system.
formance comparison between different receiver structures. IfRather than looking at multiuser detection, which involves
particular, the MMSE receiver occupies a special place ashard decisions on a symbol-by-symbol basis, we are more
can be shown to lead to the minimum effective bandwidtRterested in the problem of extracting good estimates of the
among all linear receivers. Moreover, its performance is tffeoded) symbols of each user as soft decisions to be used
least understood of the three receivers, and its analysis is fethe channel decoder. For this reason, we prefer the term
main thrust of this paper. “multiuser receiver” rather than “multiuser detector,” although
To obtain these results, we assume that the users’ sigrifile latter is more common in the literature. In this case,
arrive from random directions In the context of a spread-the relevant performance measure is the signal-to-interference
spectrum system, this means that each of the users empi@ijo (SIR) of the estimates.
random spreading sequences. In the context of an antenn¥/e shall now focus on the demodulation of user 1, assuming
array system, this translates into independent fading frdftat the receiver has already acquired the knowledge of the
each of the users to each of the receiving antenna elemeffeading sequences. In this paper, we shall confine ourselves
We will also restrict our analysis to synchronous systems i the study oflinear demodulators, such that the estimates
this paper. Extensions of these results to symbol-asynchronéi@ linear functions of the received vectbr. For user 1,
spread-spectrum systems can be found in [9]. the optimal demodulatoe; that generates a soft decision
Related results on the performance of multiuser receivela = ¢{Y maximizing the signal-to-interference ratio (SIR)
under random spreading sequences were obtained indepen- 5
dently in [26], presented simultaneously as a conference ver- 8 = (‘3531) !
sion [19] of this work. They considered exclusively the single . o K., \2h,
class case where every user has the same received power (clcl)a +i§2 (clsl) L
and the same rate requirement, and derived Shannon theoretic
performance. In the present paper, our main results are forthe MMSE receiver[13], [16], [17].
situations where users have different received powers andds a comparison, note that the conventional code-division
possibly different SIR requirements. multiple access (CDMA) approach simply matches the re-
The outline of the paper is as follows. In Section liceived vector tos;, the signature sequence of user 1. This
we will introduce the basic model of a multiaccess spreaid indeed the optimal receiver when the interference from
spectrum system and the structure of the MMSE receiver. dther users is white. However, in general the multiaccess
Section Ill, we will present our main result, that in a largénterference is not white and has structure as defined by
system with each user using random spreading sequencessthes, - --, 8, assumed to be known to the receiver. The
limiting interference effects under the MMSE receiver can HAMSE receiver exploits the structure in this interference in
decoupled into a sum of effective interference terms, one framaximizing the SIR of user 1.
each of the interferers. In Sections V and VI, we apply this
result to study the performance under power control and obtaif{More precisely, this should be termed thisear least square (LLSE)
. . . . . receiver, since it is only optimal within the class of linear receivers if the
a notion of effective bandwidthin Section VII, we obtain X,’s are not Gaussian. In deference to the standard practice in the multiuser
analogous results for the decorrelating receiver. In Sectiogtection literature, however, we will call this the MMSE receiver.

Il. BASIC SPREAD-SPECTRUM
MODEL AND THE MMSE RECEIVER

=1

3
Cmmse(ﬁ) = %ﬁ edec(ﬁ) = 17 Cmf(ﬁ) = /3
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While there are well-known formulas for the MMSE re- < It has been shown [22] that any vertex of the Shannon
ceiver and its performance, we will describe a simple deriva- capacity region of the CDMA channel (1) can be achieved
tion, which provides some geometric insights to the operation by a combination of successive cancellation and MMSE
of this receiver. Let demodulation. Each vertex corresponds to a particular

K choice of decoding order. The information-theoretic rate
Z = ZXiSi + W achieved for theth user in a given decoding order is
i=2 1 5
be the total interference for user 1 from other users and §1Og(1+SIR¢)
background noise. Then

YIX181 +Z

where SIR; is the SIR at the output of the MMSE
demodulator for theth user, with the signals from the

first 4 — 1 users already canceled off.
If Z were white, then ' y

t
X Y = s1Y Ill. PERFORMANCE UNDER RANDOM SPREADING SEQUENCES
mmse( )

 sts

Equation (3) is a formula for the performance of the
which is a projection onta®,, i.e., the conventional matchedMMSE receiver, which one can compute for specific choices
filter. In general, then, we should whiten the interfereite of signature sequences. However, it is not easy to obtain
and then follow that by a projection. The covariance matrigqualitative insights directly from the formula. For example,

of Z is the effect of an individual interferer on the SIR for user 1
cannot be seen directly from this formula. In practice, it is
often reasonable to assume that the spreading sequences are
whereS; is aN-by-K —1 matrix whose columns are the signa¥andomly and independently chosen. (See, e.g., [14], [3].)

K.=5D,S +0%I

ture sequences of the other users, 8nd= diag (P», - - -, Px)
is the covariance matrix ¢fX,, - - -, X )t. K is positive def-
inite. FactorizeK., = Q*'AQ, whereA = diag {1, -, An}
is the diagonal matrix of (nonnegative) eigenvalue&of and
the columns ofy are the orthonormal eigenvectorsf. The

For example, they may be pseudorandom sequences, or the
users choose their sequences from a large set of available
sequences as they are admitted into the network, or the
transmitted sequences may be distorted by random multipath
fading channels. In this case, the performance of the optimal
demodulator can be modeled as a random variable, since it is

whitening filter is simpIyA—%Q. Applying this toY, we get:
1 1 1 a function of the spreading sequences. In this section, we will
ATEQY = X1ATE Qs +ATEQZ show that, unlike the deterministic case, there is a great deal

and we note that the interference is now white. We can th€h analytical information one can obtain about this random

project it along the direction—%Qsl to get a scalar sufficient perfor_mance in a large network. In the development below,
statistic for the estimation problem we will assume that although the sequences are randomly

P P P chosen, they are known to the receiver once they are picked.
R=sK_'Y = (81K '81) X1 + 8] K" Z. In practice, this assumes that the change in the spreading
sequences occurs at a much slower timescale than the time

Thus the MMSE demodulator is [13] ) ! _
required to acquire the sequences. (There are known adaptive

Py

KXimse(Y) = — algorithms for which acquisition can be done blindly; see [6].)
1+ Pt (5.D15% +021) "8 However, theperformanceof the MMSE receiver depends on
% Sfi(lelS{ + O_QI)*lY @) the initial choice of the sequences aqd hence is random.
The model for random sequences is as follows: let
and the signal-to-interference ratio for user 1 is 1 \
_ 8 =—Vir, -, Vin)', i1=1,---K.
SIR, = Pis!(S,D1S! +0°T) sy 3) VAl V)

While the SIR is taken as the basic measure of performantae random variable’;’s are independent and identically
in this paper, we would like to mention some connections fistributed (1'-'-d-)' Z€ro mean, ar12d variante The normal-
information-theoretic quantities. ization byW ensures that[||s;||“] = 1. In practice, it is

« If the linear receiver is followed by single-user decoderg,Ommon that the entries of the spreading sequences are
—dl, but we want to keep the model general so that we can later

one for each user, then the mutual information achieve | Its t bl ith oth d ¢ di it
for each user under an independent Gaussian input Ply our Tesults o problems with other modes of dIverstty.
L : or technical reasons, we will also make the mild assumption
tribution is precisely i
that E[V}] < oo.

Our results are asymptotic in nature, for a large network.
Thus we consider the limiting regime where the number of
bits per symbol time. There is, therefore, a one-to-onesers is large, i.e. KX — oo. To support a large number of
monotonic relationship between the information-theoretigsers, it is reasonable to scale B as well, keeping the
rate and the achieved SIR. In particular, meeting a targaitmber of users per degree of freedom (equivalently, per unit
SIR is equivalent to meeting a target rate. bandwidth),« = £, fixed. We also assume that as we scale up

% log(1 + SIR;)
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the system, the empirical distribution of the powers of the users Proof: Define the function

converges to a fixed distribution, s@(P). The following is 1 1K
our main result, giving the asymptotic information about the flz)= = <02x + = ZxI(B, Pl,a:)>
SIR for user 1. The proof is given in Section IV. 15! N i=2
et g™ 1 1 PP
Theorem 3.1:Let 3,/ be the (random) SIR of the MMSE S P . Z 1T
receiver for user 1 when the spreading lengtiVisThens{"" Py N&& P+ P
converges tg7} in probability asV — oo, wherej] is the \hich we note to be a continuous, strictly increasing function.
unique solution to the equation To see that a fixed point* exists to (7), we note that
P, f(0) = 0 and f(c0) = oo so it follows that there must exist
Bl == p (4) avaluez* satisfying f(z*) = 1. But this implies that:* is a
7%+ aBp[I(P 1y, 57)] unique fixed point of (7). By monotonicity of
and ¥ >ze flz)<1
P,
PP, L
I(P, P f) = 5 5) < K ze =
P+ P3y o2+ AL S I(P;, Py, z)
1=2

Here,Ep[] denotes taking the expectation with respect to the . ,
limiting empirical distribution 7" of the received powers of It follows then that to check if the target for user 1's SIR,

the interferers. Br, can be met for a given system of users, it suffices to
Heuristically, this means that in a large system, the 8jR check the following condition:
is deterministic and approximately satisfies Py > By
K - :
P, o2+ % > I(P, Py,
[31 ~ = 1 (6) N i; ( 1 T)
o2+ % Y I(P, P, p) Based on this interpretation, it seems justified to term
=2 I(P;, Py, pr) as theeffective interferencef useri on user 1,

where, as beford?; is the received power of usérThis result at a target SIR .OtB.T' . . .

yields an interesting interpretation of the effect of each of the To gain more insights into this cqncept of gffectlve interfer-
interfering users on the SIR of user 1: for a large systerﬁf‘ce’ it _|s helpful to compare_the situation with that whe_n the
the total interference can be decoupled into a sum of th@nventional matched filtes; is used for the demodulation.
background noise and an interference term from each of fi@r that case, we have the following proposition, in parallel
other users. (The factot results from the processing gain ofvith Theorem 3.1:

user 1.) The interference term depends only on the receivebroposition 3.3: Let /39{% be the (random) SIR of the
phower of thg interferigg user, ”(‘je rece(;ved p;])werhof user? agdnventional matched filter receiver for user 1 when the
the attained SIR. It does not depend on the other interferi ; ; K
users except through the attained SIR This decoupling is SBreading length isV. Then asN, K — oo with
rather surprising since the effect of an interferer depends on
MMSE receivere;, which in turn is a function of the signature B e = P

sequences and received powers of all the users in the system. ~ 02+ aEp[P]

One must be cautioned not to think that this result impliaghere, as before, the expectation is taken with respect to the
that the interfering effect of the other users on a particuléimiting empirical distribution 7' of the received powers of
user is additive across users. It is not, since the interferenge interferers.
term I(P;, P1, 1) from interfereri depends on the attained Proof: See Appendix B. O
SIR which in turn is a function of the entire system. Due to .
the following proposition, on the other hand, one can make aHence, for largeV, the performance of the matched receiver

— «,

{(N,%F converges in probability to

related statement. is approximately
Proposition 3.2: The equation BiMF = # (8)
x = okl (7) N igpi
1B Comparing this expression with (6), we see that the interfer-
oty EQ 5, By, ) ence due to useris simply P; in place of[(P;, P, 3;). Since

the matched receiver filter is independent of the signature

has a unique fixed point*. For anyz, +* > z if and only if sequences of the other users, it is not surprising that the
P interference is linear in the received powers of the interferers.

L > . In the case of the MMSE receiver, the filter does depend on

K . . . .
o2 4 L i I(P;, Py, z) Fhe signature sequences pf the mterferers, thus regultlng in the
i=2 interference being a nonlinear function of the received power
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) ‘ Fig. 2. Randomly generated MMSE SIR’s across users for one realization of
Fig. 1. Randomly generated MMSE SIR'’s for user 1 compared to asymptofite spreading sequences. Here, spreading leNgth 128, number of users
limit (9) in the equal-power regime, fo¥ = 32, 64,128. Here,Z; =20dB. g = 80, and £, = 20 dB.

(o4

Pf the mtttar;ere_r. Alstoh, Okﬁ:ﬂg‘;thatp?’f)l’ﬁl) < R WT;]Ch S ymptotic limit becomes more narrow, to about 1 or 2 dB
IS expected since the receiver maximizes the en N = 128. Note, however, that for a fixed processing
among all linear receivers. But more importantly, while fof, _.

X . . n, the spread does not get smaller as the number of users
the conventional receiver, the interference grows unboun

. i : reases, which means that ttegative spread is large when
as the received power of the interferer increases, we see t

@ SIR is low. Fig. 2 plots the SIR’s attained across users
for the MMSE receiver, the effective interference (5) fro IS 'OW. 71g. < P : N

. e or a single realization of the random spreading sequences.
useri is bounded and approach% as P; goes to infinity. g P g sed

. BT ) The processing gaiV = 128 and the number of users is 80.
Thus while the SIR of the matched filter receiver goes to zerg P 99

: ~~Again, there is a spread of about 1 dB around the asymptotic
for large interferers’ powers, the SIR of the MMSE receiv fr?ﬂt P ymp
does not. This is the well-knownear—far resistanceroperty : ; T

. TR Theorem 3.1 gives only the asymptotic limit but does not
of the MMSE receiver [13]. The intuition is that as the poweg gwv y ymprotc Amit bu

f an interf to infinity. the MMSE i il null escribe the fluctuation of the SIR around this limit for finite-
0 ?r: inter e:e(/\?rzfl)w?ho infini ¥ eh ¢ recelve;wr: nub sized system. A sequel [20] to this paper is devoted to the
out1ts signal. lie the near—iar resistance property nas be lysis of such fluctuations, via Central-Limit theorems. It

reporte;d by p_revious authors,_ Theorem 3.1 goes beyond thﬁf’r%s out that even the computation of the variance of the
works in that it not only quantifies the worst case performan ctuations is nontrivial. See also [7] and [8] for a related
(i.e., large interferer's power) but also the performance for

- . . udy.
finite values of the interference. This is useful, for example, Two performance measures commonly used in the literature

in situations when power control is exercised, as will be thf‘(a)r multiuser receivers are thegfficiencyand theirasymptotic

case in the next section. - . . efficiency{25]. In the context of linear receivers, the efficiency
In general, we have no explicit solution for the SiR in

of all users are the same, the equation is quadratje}iand
a simple solution is obtained (independently obtained in [26
l1—-a)P 1 1—a)2pP? 1 P 1
%_#( P (1+a)P |1
20 2

or the MMSE receiver with random spreading sequences and
ual received power for all users, this is given by

404 202 4’ &

©) o

We see that the3; is positive for all values ofe, and Wherefi is given by (9). The asymptotic efficienay is the

approache$ asc, the number of users per degree of freedonfimiting efficiency as the background noise goes to zero. If

Br =

goes to infinity. a < 1, this is given by
To get a sense of the convergence of the random SIR % 52
to the asymptotic limit in the equal received power case, N = lilrb L~ —1-a.
ag—

Fig. 1 compares the actually realized SIR’'s from randomly

generated spreading sequences to the asymptotic limit (Bpr « > 1, the limiting SIR is positive but bounded

For different spreading lengths and for each valueapf 1

100 samples of realized SIR’s for user 1 are obtained from lim g7 = (20)
randomly generatedt 1 and—1 spreading sequences. One sees 70 a-1

that as the processing gain increases, the spread aroundati so the asymptotic efficiency (s
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IV. PROOF OF MAIN THEOREM neither intuition is correct and the aggregate interference has
We will now prove our main result, Theorem 3.1. It hinge& colored spectrum in the limit. As a consequence, the MMSE
on a result about the limiting eigenvalue distribution of largEeCeiver outperforms the conventional matched filter, even in

matrices whose elements are random variables X;ete an the limit. . o .
infinite array of i.i.d. complex-valued random variables with The€orem 4.1 gives the asymptotic distribution of the eigen-

variances1, and U; be a sequence of real-valued randon‘{alues of the covariance matriK_Z._ However, this is in
variables. LetA, , be ann-by-m matrix, whose(i, j)th general not enough for characterizing the SIR performance
entry is X2, Let e be anm-by-m diagon,al matrix \’/vhose for user 1, as that depends on the positios-ofelative to the

. . o -
diagonal ‘entries aré/,. - - U, we assume that as — oo, eigenvector®f K. This can be seen by writing, = U*AU

the empirical distribution of these entries converges almovélpereA is diagonal and is orthogonal, so that the SIR for

surely to a nonrandom limit". Moreover,T;,, is independent user 1 is given by
of An,rn- /31 = P131KZ_131 = Pl(Usl)tA_l(Usl).
The matrix A, T A (A" is the complex conjugate

n,m 1 1 1 1
transpose ofd) is n-by-n Hermitian and has real nonnegativeHowever' the following lemma shows that the distribution of

eigenvalues\i"),---,)\ﬁf). Let G,.(\) be the empirical distri- the eigenvectors is asymptotically irrelevant since for large

. : . . reading len looks “white” in an rdin m
bution of the eigenvalues; since the eigenvalues are randomsg eading lengths 00KS te any coordinate system,
" the sense of containing about the same amount of energy

is G,,. (The empirical distribution of the eigenvalues depen 1S each direction
on the realization of the random entries4f ,,, andZ},,.) The )

following theorem due to Silverstein and Bai [18], which is Lemma 4.2:Let @ be a randomm-by-n matrix (m < n)

a strengthening of an earlier result by Marcenko and Passiuch that every realization consists of orthonormal rows. Let

[15], gives the asymptotic behavior 6f, asn andm grows. X = (Vq,---,V,)" where theV;’s are i.i.d. random variables
The solution is in terms of the Stieltjes transform, which fandependent of), E[V;] = 0, E[V;?] = 1, and E[V}*] < cc.
any distribution is defined as Then for anye > 0
1 [eX|* _m ¢
po 112 ] €
mea(2) /)\—sz()\) r{ - e <
for € ¢t = {z € C: Imz > O}. for some constant’ which depends only oaand the statistics
of V;.

almost surely,, converges in distribution to a nonrandom i o _
limit G*. The Stieltjes transform(z) of the limit G* satisfies ~_1hiS lemma allows us to express the limiting SIR in terms

the following equation: of only the eigenvalue distribution ok .
1 Lemma4.3:As N,K — o, £ — ¢, the SIR /3§N)
m(z) = 11) i il N
—ztal TdF(7) converges in probability to
z @ l—I—‘rrn(z) 0o P
* 1 *
for all z € C*. p —/0 o2 W

The above theorem says that the empirical distribution wafhereG* is the limiting eigenvalue distribution of the random
the eigenvalues for large random matrices looks the same foatrix S; D S}.
almost all realizations of the entries. Equation (11) gives a Proof: See Appendix B. O
functional equation for the Stieltjes transform of the limit.

We can apply this result to the covariance matix =
51D, St+a%1 of the interference; note that in this caSés the ) - -

e : X . Consider the Stielties transform of the limiting spectrum
distribution function of the received power. It follows that in_, . " 5

. ) of the matrix §1.D,5} + o1
a large system with random signature sequences, the spectrum
of the interference is essentially deterministic, since it con- /°° 1 X +
P . ma-(2) = dG*(N), zeC(CT.

verges to the nonrandom limiting distribution described in the 6(%) 0 A—=% ()
Fheorem. Moreover_, since the limiting eigen_vglu_e distributiogy Theorem 4.1, this satisfies
is not degenerate, it follows that the deterministic spectrum is 1
colored and not white. This is perhaps a little counterintuitive. mag-(2) = (12)

For, if the number of interferers were fixed and the number of —z+af %

degrees of freedom increased, then each interferer would B. e 1~ is the limiting distribution of the received powers
more or less orthogonal to user 1 and the overall mterferengpthe USErs.

would be white. On the other hand, if the number of degrees OfSince the support af*
freedom were fixed and the number of interferers increased, }L:ue(-:
aggregate interference would also become increasingly white - .
because of averaging. Theorem 4.1 tells us, however, that lim m(z) :/ ! dG*(\) = ﬂ
when there are many interfereaad many degrees of freedom, z——0o? 0o Ato? Py

We shall now complete the proof of the Theorem 3.1 by
evaluating this limit3*.

is on the nonnegative real axigg+
ontinuous in the neighborhood af= —o?. It follows that
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By the continuity of the right-hand side of (12) as a functiotv — <o, for the conventional receiver is given by
of mg-(z), it follows from Lemma 4.3 that

Bro?
* -Pm 3*) = ——. 13
B _ 1 () =T (13)
- oo PAF(P) ° . i . .
Aot tals B For a given constrainP on the received power, the maximum

number of users supportable is then
Hence the limiting SIR for user 1 satisfies . )
P, 7 % users/degree of freedom
pL = S D PAF(D)
¢ 0 " Pi+Ps] The user capacity of the conventional receiver wits ~o
is then

which completes the proof of the theorem.

While the above provides a rigorous proof, it provides Crar(87) = ﬁi* users/degree of freedom. (14)
little intuition as why Theorem 3.1 is true. In particular, a
better understanding of the decoupling phenomenon betwdant it another way, asr — Bi the system saturates and the
interferers is desired. Based on some new results obtainedéquired power level goes to infinity. A similar result is given
[27], we provide a heuristic but more intuitive derivation of (4)n [5].
in Appendix A, bypassing the mysterious Stieltjes transform Now let us turn to the MMSE receiver. To satisfy given
characterization of the limiting eigenvalue distribution ofarget SIR requirements which are feasible, [10], [21], [2]
random matrices in (11) and only basing ourselves on Lemralaowed that there is an optimal solution for which the received
4.3. power of every useris minimized; moreover, they gave an
iterative algorithm to compute it. However, here we can give
an explicit solution and characterize the resulting user capacity.
. } ) ) _ To begin, we fix the number of users per degree of freedom

We observed in Section IIl that in the conventional receivef . As in the conventional receiver case, it turns out that the
case, the interfer_ence of a user is proportional to its power, aﬂggtem saturates if is too high, so we first obtain a necessary
hence a strong interferer can completely overcome a weakgy sufficient condition for feasibility. The following theorem
signal. This is the so-called near—far problem, and a wellnows that in the limit of a large number of degrees of freedom,

known consequence is that the conventional receiver can of{¥ system is feasible if and only if the SIR can be met with
avoid this via tight power control. We also observed that thgyyal received powers for all users.

MMSE receiver does not suffer arbitrarily poorly from the

near—far problem, and indeed this is one of the key motivationsTheorem 5.1:1f

for the original work on multiuser detection [24]. Nevertheless, 14 g

an MMSE receiver still suffers interference from other users, az B

and it follows that user capacity can be increased and power ) S )

consumption reduced, if power control is employed. then there is no distributio#” of received powers such that
In the present section we consider the case in which ¢ SIR requirements of all users are satisfied, i.e.,

users require an SIR of exactly*, given a processing gain Q

of N degrees of freedom_ per symbol. For a given number oh | afooo 1(P,Q, p*) dF (P)

users we compute the minimum power consumption required for all  in the support of”  (15)

to achieves* for all users, and then look at the maximum

number of users per degree of freedom supportable for a givR the other hand, ifr < ljg‘* the SIR requirements of

power constraint under power control. Of particular intereg ysers can be satisfied and the minimum power solution is
is the maximum number without power constraint, which Wgaying the received powers of all users to be

refer to as thaiser capacityof the system (in terms of number
of users per degree of freedom). This is the point at which Promse(3%) = pro® ' (16)
saturation occurs as we put in so many users that we drive 1-— al_fa
the required power level to infinity. We will show that this '
user capacity is different but finite for both the conventional ~Proof: Suppose that there is a power distributirsuch
and the MMSE receivers, showing that both are interferendgat all users gep”, i.e.,
limited systems. As before, our results are asymptotic as the Q
the processing gaitv goes to infinity. e "

Let us focus first on the conventional receiver. Under the ot oy I(PQ.5)dF (D) .
matched filter, Proposition 3.3 tells us that, asymptotically, for all @ in the support off"
users receive the same level of interference, and hence mustet p+ pe the power of the weakest user in this distribution,
be received at the same power level to get the same3SIR ie..
is easy to compute that with a processing gaimvoind N«
users, the common received power required, asymptotically as P* =inf{P: F(P) > 0}

V. USER CAPACITY UNDER POWER CONTROL

> g,

> B,
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and note thatvP > P*, I(P*,P*,3*) < I(P,P*,3"). other hand, the relative gain of the MMSE is not so large for

Focusing on the user with received pow@t, since small values ofg*.
J 5 The above user capacity results are derived in the context
= > p* of random spreading sequences. A natural question to ask is
o? +a Jo" I(P. P, 5r) dF(P) whether onepcan getgpengormance gain if we gne optimizes the
therefore, choice of the sequences. In [27], it is shown that even with the
pr optimal choice of sequences, the user capacity (without power
> g constraint) under the MMSE receiver is still+ 2= users

2 B B * ;
o +al(Pr, P, ) per degree of freedom. However, somewhat surprisingly, the

Using the explicit expression for the effective interference tergapacity gap between the MMSE and conventional receiver
and rearranging terms, the last statement is equivalent to disappears under optimal sequences.

P*<1—a p >> 3* g2,

1+p6%) — VI. MULTIPLE CLASSES AND EFFECTIVE BANDWIDTHS
Hence It is straightforward to generalize our results to the case in
148 which we haveJ classes, with clasg users requiring a SIR

I of 3;. We denote the number of users of cladsy «; N, and
again consider the limiting regim& T oc.
This proves the first part of the proposition. The conventional matched-filter results generalize very eas-
Conversely, ifa < 2= then it can be easily checked thaily to
Pomse (%) Is positive'and satisfies

. 302
-Pmmse(ﬁ*) _ /3* -me(j) = /34
02 + OCI(-Pmmse(ﬁ*), -Pmmse(ﬁ*)7 /3*) B ) 1— Zl Oéjﬁj
Jj=

By Theorem 3.1, this implies that by assigning all users
the same received powét,,,...(5*), they will all achieve the where P,,;(j) denotes the common received power level
SIR requiremen3*. To see that this is the minimal solution,0f all users of classj (see [5]). Thus the user-capacity
suppose thaf is another power distribution such that the SIRonstraint on feasible values df,---, ;) is the linear
requirements of all users are satisfied, andietoe the power constraintz;'=1 a;3; < 1. Furthermore, if clasg users have
of the weakest user of this distribution. By exactly the same maximum power constraint thdt,¢(j) < P;, for eachy,
argument as the proof of the first half of this proposition, wthen the tighter user-capacity constraint
conclude that

/3*0_2

J
. /32‘0'2
P* 2 ﬁ = anse(ﬁ*)' (16) Za‘]ﬁ-] S 1I§n7;1£‘] |:1 o E
13 i=1

This shows that indeed the solution with equal received powesmerges [4]. It seems very reasonable to gallhe bandwidth
at Pumse(7) is the minimal solution. U of class; users, in degrees of freedom per classser. Let

Hence, the user capacity of the system under MMSE rdS denote this bandwidth by
Celver 1s emi(3;) = ; degrees of freedom per clagsiser.

1
C 3*) =1+ — users/degree of freedom (17 ) o
mmse(7) 3* 9 (47 We now show that the MMSE filter results generalize in a
Moreover, for a given received power constralfitthe maxi- similar manner. It is clear in this case also that the minimal
mum number of users that can be supported is to assign eB|8MVe_f lsoluﬂon con§|sts| of t{)‘e same rgcelved power r:or each
user the same received power, and that number is given b ass; let all users in classbe receive at poweF;. Then
) he power control equations become

1 o

1489 — - = .

(1+p )</3* P) users/degree of freedom ! P;
Contrasting (13) and (14) with (16) and (17), we note o2 + 3~ a;l(F;, P}, ;)

that if « is feasible for both types of receiver, then the =1

MMSE power consumption is less than the matched filter . _ pp
: ; h Th (P, P;,3;,) = —2—. But (1
power consumption, and the MMSE has potentially mucﬁ\/ ere, as in Theorem 3.1(F, I, f;) P+ 8; ut (18)

. 8. - . . .
greater user capacity. Indeed, df < 1 then we can take implies thatﬁ is a constant, which allows us to simplify (18)
B* arbitrarily high without saturating the MMSE receiverdown to

whereas the conventional receiver saturategas % For Bio?

fixed 3%, we also note that the MMSE saturates at a higher Pumse(i) = - ; i=1,2,-- .1 (19)
value of«, yielding a user capacity of precisely one more user 1-3 aj%

per degree of freedom than the conventional receiver. On the i=1 -



TSE AND HANLY: LINEAR MULTIUSER RECEIVERS 649
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,,,,,,,,,,,,,,,,,,,,, Capacity region for L = 64
,,,,,,,,, Asymptotic results of capacity region
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User 1 of SIR requirement 10dB —————————— >

Fig. 3. User-capacity region for two classes of users, V\flgf\ = 29 dB, f—g = 20 dB.

The user-capacity constraint for the MMSE receiver with the boundary of the region, under the MMSE receiver. The

classes is therefore given by simulation curve gives the average number of class 2 users
7 admissible as a function of the number of class 1 users in the
3; : |
ZO‘" B <1 (20) System, for a spreading length 64. The average number is
= Y1455 obtained by averaging over 100 realizations of the spreading

sequences. The actual number of class 2 users depends on

which is linear inay, - -, vy _ o the realization of the spreading sequences, and will fluctuate
As above, maximum power constraints provide tighter caround this average, as was seen in Fig. 1.

pacity constraints, and in this context we note that (19) implies one interesting observation is that no matter how high

that is, the MMSE effective bandwidth of a user is upper-bounded
EJ: B; . Bio? Ly ; by unity. We will gain further insight into why this is so in
o =1-5——-= = eyl the next section.
=1 / 1 + [31 anse(l)7 T ’
Thus if Pymee(?) < P; is a maximum power constraint on VIl. THE DECORRELATOR
class:, then the linear constraint To this point we have contrasted the performance of the
7 ) MMSE receiver with that of the conventional matched-filter
Z%ﬁ_f < min [1 — ﬁi} receiver. It is also illuminating to compare its performance
o LA s T s B with that of the decorrelator.

The decorrelator was in fact the first linear multiuser de-

defines the restricted user-capacity region (_)f the SySt_em'téEtor, introduced by Lupas and Veérd1l]. This receiver
seems very reasonable to define the effective bandwidth ikanown to be optimal in the worst case scenario in which

class;j users 10 becummse(f;) degrees of freedom per useriniarterers' powers tend to infinity: its near—far resistance is

where optimal [12]. Its main shortcoming, as we will see, is that each
B (8;) = Bi user has an effective bandwidth of one degree of freedom,
SN T L+ 8y which can be wasteful when the SIR of the user is small. On

Linearity in the matched-filter case is a straightforward cor%rJe other h"”Td’ itis hardly Wastefql When_the SIR Is large.
We can write the channel equation (1) in matrix form

sequence of the fact that powers of interferers add. However,

our MMSE effective bandwidth results are rather surprising, Y=8SX1W
and it is a consequence of the asymptotic decoupling of the
interference due to other users. For more discussions abdfiere X = (Xi,---, Xx)', and 5 = [s;, -, 8] is the
the linearity of the user-capacity region under MMSE, pleadgatrix of signature sequences. It is well known [11] that the
consult Appendix A. matched-filter outputs

Fig. 3 gives an example of a user-capacity region for two R=S'SX + S'W

classes of users, one with SIR requirement 1 dB and the
other 10 dB. The upper line gives the asymptotic limit foare sufficient statistics to recover the inpufs
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Consider now a further linear transformation applied to the the optimal linear receiver overall. Hence, the following
matched-filter outputs, to obtain inequalities must hold:
U= (StS)_lR =X —+ (StS)_IStW_ S|R§"1) < SIRg”Ul) < SIRllnmse'

The overall filter (5t5)~1S* is called the decorrelating re-But it is shown in [11] that the decorrelator has the optimal
ceiver. If the inverse does not exist, then the pseudoinverséfymptotic efficiency in the class of linear receivers, i.e.,

used in its place. Observe that in the absence of external noise lim SIR(TI)OQ _ hm SIRmmse ;2
the decorrelator output would be the vec®r and as such it 2—0 250
represents the optimal zero-forcing linear filter. At this poingg hence
it is useful to provide an expression for the covariance matrix L o\2 L2
¥ of the “noise” (StS)~LS'W, namely, P, (risi) - P (vis1)
riry viv,
¥ =(5'9)" 1ok

It follows thatr; must lie in the directiorv;. Further, since
The decorrelator for the usémreturnsl/; as an estimate of 1 — 81 iS then orthogonal te;, we have that

X;. Thus the channel for uséris given by ris =1l (s, +7, — 51)

X; - X; + N —rip,

where N; is a zero-mean, Gaussian random variable of va@nd hence that Sliﬁ‘) Liptr,. 0
anceX;;. The SIR for uset is given by P;/>;;. An important

point about the decorrelator detector is that the correlatuin
between the noise variablésV;)Y ; is not exploited, which

We can therefore think of the decorrelator receiver for user
as the orthogonal projection of the received signal onto the
orthogonal complement to the interferers’ signals. In this way,
explains why.|t is suboptimal to th? MMF? receiver. interfering signals are effectively “nulled out” in an optimal

We can think of each row of5"5)7"5" as a separate way. We can think of the overall matri$5*$)~1S* as a bank
decqrrelatmg filter for each user. For example, if we d.en%q decorrelating receivers, one given by each row of the matrix.
the first row of(S'S) 5" by 71, thep the d.ecorrelatmg f|!ter We now study the performance of the decorrelator in the
for user 1 is to applyr; to the received signdY” to obtain asymptotic regime in which the processing gétends to

the decorrelator estimate of user 1's symbol. It is insightful f finity, the number of users isN. The following result was
look for a geometric interpretation. It turns out that each row %iso obtained independently in [.26]

(StS)~1St is the orthogonal projection of the corresponding .
1, onto the subspacgspan {(s;) 2« })*. For exampler; is Theorem 7.2:Let /39) be the (random) SIR of the decor-
the orthogonal projection of; onto (span{(s;);.1})*. To relating receiver for user 1 when the spreading lengttVis
see why this is so, we prove the following proposition. Then/ﬁN) converges tgd; in probability asN — oo, where

Proposition 7.1: The vector #; is the orthogonal pro- pi is given by

jection of s; onto the subspacd’, defined by V. = Br = w, a<l
(span ({s2, 83,---,8x}))*, and the SIR for user 1 is given — o, a>1.
by

Proof: As in Proposition 7.1, let us denote the subspace
orthogonal to the span dfs;. 83 ---,8x } by V. We note that
V has dimension equal taax { N —rank (S;),0}, whereS; is
the matrix with columns consisting of the signature sequences
of users2,3,.---, K. We also note that since the signature
sequences are selected randonify,is a random subspace,
independent of the choice ef. Finally, as in Proposition 7.1,

we denote the decorrelating vector for user lrhy
dim (V )

P
SlRl = —27{7‘1.
g

Proof: Let us begin by denoting the orthogonal projec
tion of 8; onto V' by »;. Sincew; lies in V, the effect of
applyingv; to Y nulls out the interference of usegs. - -, K,
and the SIR undee, which we denote by Slifél), satisfies

P, (,vtlsl)Q The simplest case i& > 1. In this case, — 0,

and sincer; is the orthogonal projection & ontoV (Propo-
sition 7.1), it follows thatpl'rl'rl — 0. Proposition 7.1 implies
The same applies to the decorrelatgr since it also lies in that the SIR of user 1 tends to zero in this case.

SIRM™ =

a2 vy

V', which has corresponding SIR given by Now consider the case < 1. In this case, Bai and Yin [1]
show that the smallest eigenvalue of the random mafi%;
SIR(") Py ("‘131) converges almost surely to a strictly positive nhumber; hence
o2 ripy S, is almost surely of full rank — 1 when L is large. Thus
Now let SIR™*¢(5?) be the SIR of user 1 under the MMSE dim (V) 1—a
N

linear receiver. Sinces; is the projection ofs; onto V, it
can be seen that; achieves the best SIR among all lineaas N T ~o. But by Proposition 7.1y; is the orthogonal
receivers constrained to be ¥ On the other hand, the MMSE projection ofs; onto V, and we note thag; is independent of
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V. It follows from Lemma 4.2 thatir; — 1—«in probability. noise powers? goes to zero. Since the asymptotic efficiency
The theorem then follows from Proposition 7.1. O only measures theate at which the SIR goes to infinity ag®
We observe that as — 1, i.e., the number of users pergoes to zero, they are the same (zc_aro) for bo_th receivers. On the
other hand, the user-capacity region quantifies the number of
degree of freedom approachésthe SIR goes to zero. Geo- e . . i
) . ) . users withfixedSIR requirements a receiver can accommodate;
metrically, as the dimensionality of the orthogonal complemen )
: nce the difference between the decorrelator and the MMSE
to the span of the interference decreases to zero, the len e ; . .
. : . : %cewer is captured when we compare their user-capacity
of the projection of the desired signal onto this orthogonal " : .
. . 2~ regions. In practice, users have target SIR requirements and
complement tends to zero, and so in the limit the pl’OjeCt(-F] ; . o
. - . . o ) “hence the user-capacity region characterization seems to be
signal is lost in the background noise. This is the high price )

. . . : more natural performance measure than the asymptotic
paid for ignoring the background noise. In contrast, the MMSE,. . . . )

. e |F|ency. In this context, the decorrelator remains suboptimal
receiver can support more users than the number of degreeg\;) nass? — 0. whena > 1
freedom as it takes both the interference and the backgrounc? ' '
noise into account.

By comparing Theorem 7.2 and Theorem 3.1, it can be seen
that the effective interference for an interferer on user 1 underin spread-spectrum systems, diversity gain is obtained by
the decorrelator is%, which does not depend on the powespreading over a wider bandwidth. However, there are other
of the interferer. The theorem states that the user-capacitglys to obtain diversity benefits in a wireless system. A
constraint on the system is < 1. technique, particularly effective for combating multipath fad-

We also observe that if all users require a SIRfAoand ing, is the use of amdaptive antenna arrawat the receiver.
employ power control then it is sufficient for each user to blultipath fading can be very detrimental as the received signal
received with power at Ieasff‘_’—i. Thus for a given received power can drop dramatically due to destructive interference
power constraint?, the maximum number of users with SIRPetween different paths of the transmitted signal. By placing

requirement3 supportable i — 8%2 Similarly, for multiple the antenna elements greater than half the carrier wavelength

classes of users with SIR requiremghtand power constraint @Part, one can ensure that the received signal fades more
P; for each class, then the system can suppgrusers (per ©F less independently at the different antenna elements. By

VIIl. A NTENNA DIVERSITY

degree of freedom) from each class if appropriately weighting, delaying, and combining the received
; signals at the different antenna elements, one can obtain a
. Bio? much more reliable estimate of the transmitted signal than
2210@' S pun, [1 2 } with a single antenna. Such antenna arrays are said to be
=

adaptiveas the combining depends on the strengths of the
Thus the user-capacity region under the decorrelator is givasteived signals at the various antenna elements. This in turn

by depends on the locations of the users. Moreover, the combining
J weights will be different for different users, allowing the array
Z“i <1 (21) to focus on specific users while mitigating.the ir)terference
= from other users. This is so-calldieam-forming Using our

previous results, it turns out that the user capacity of such

when there are no power constraints, or equivalently, Whepsenna-array systems can again be characterized by effective
the background noise power goes to zero. Thus each Usephandwidths.

occupies an effective bandwidth of one degree of freedom, 1,4 following is a model for a synchronous multiaccess

independent of the value ¢f. antenna-array system
From Theorem 7.2, it can be immediately inferred that the

efficiency of a decorrelator in a large system with random
spreading sequences Is— « if «, the number of users per Y= Z Xhy +W.
degree of freedom, is less thdanand zero otherwise. Since m=1
this does not depend on the background noise pewethis Here, X, is the transmitted symbol of theth user, and’ is
is also the asymptotic efficiency. an N-dimensional vector of received symbols at fi@ntenna

It is well known [13] that the MMSE receiver has theelements of the array. The vecthy,, represents the fading
same asymptotic efficiency as the decorrelator, and hence dfighe mth user at each of the antenna array elements. The
decorrelator is optimal in this sense among all linear receiveentries are complex to incorporate both phase and magnitude
However, comparing (20) and (21), it can be seen that the us@formation. The vectoW is complex-valued, background
capacity region under the MMSE receiver is strictly largeBaussian noise.
than that under the decorrelator, even as the backgroundhe fading is time-varying, as the mobile users move.
noise goes to zero. In particular, the MMSE receiver can However, this is usually at a much slower time scale than
general accommodate more users than the available degreab®isymbol rate of the system. Assuming then that the channel
freedom, while the decorrelator cannot. This apparent paradaxing of the users can be measured and tracked perfectly
can be resolved by noting that wharr> 1, the attained SIR by at the receiver, we would like to combine the vector of
the decorrelator is zero (Theorem 7.2) while the attained StBceived symbols appropriately to maximize the SIR of the
by the MMSE receiver is strictly positive but bounded, as thestimates of the transmitted symbols of the users. The optimal

K
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22 _effective
interference
1 o
" Tug(P) = P,
A i /’/
| L7
i 16 /,
| “1.[_1;?_(1?{)_?__% ..............
114 e PP
3 ,/, Immse(l)i) = —P:T".?
S12p
@
5 received power of interferer P;
S10F
< Fig. 5. Effective interference for the three receivers as a function of inter-
8l ferer's received poweP;. Here, P is the received power of the user to be
demodulated, ang is the SIR achieved.
L | Asymptotic Result
Realised SIR
4 : : : : ‘ = effective L
0 0.2 0.4 06 08 1 1.2 . ,
number of users/degree of freedom ————————— > bandwidth /,’ emf(,B) =0
Fig. 4. Random SIR’s for user 1 in Rayleigh fading environment, compared //
to asymptotic limit equation (8). Her%’f’—2 = 20 dB. L7
. . . . . edec(ﬁ)zl """'/" """"""""""""""
linear receiver is clearly the MMSE. Assuming that the fading L’ enmse(8) = L=
of each user at each antenna element is independent and P mmee 46

identically distributed, we are essentially in the same setup as desired SIR 4

for spread-spectrum systems. Thus for a system with a largg 6. Effective bandwidths for three receivers as a function of SIR.
number of antenna elements and large number of users, we can

treat each of the interfering users as contributing an additiye ¢ the user to be demodulated as well as the achieved SIR

effective interferenceUnder perfect power control, the usely The effective interference under the conventional matched
capacity is characterized by sharing tNedegrees of freedom e s simply 2, the received power of the interferer. Under

among the users according to theffective bandwidthgiven o gecorrelator, the effective interferenceljs independent

by the previous expressions for the different receivers. Thehe actual power of the interferer. The intuition here is that
only difference here is that thé/ degrees of freedom areihe gecorrelator completely nulls out the interferer, no matter

obtained by spatial rather than frequency diversity. how strong or weak it is. The MMSE receiver, on the other
These results should be compared with that of WINe@rs 54 s sensitive to the received power of the interferer.

al. [28], which showed that for a flat Rayleigh fading channel, Assuming perfect power control, we can define effective

a combiner which attempts to null out all the interferers will, qvidths which characterize the amount of network re-
cost one degree of freedom per interferer. This combinerd§ice 5 user consumes for a given target SIR. The effective

of course the suboptimal decorrelator, which we have showg,qidths under the conventional, MMSE, and decorrelating
earlier to be very wasteful of degrees of freedom if mterferep‘gceiverS ares B and1 respectively. We note that the

. . y 7@7 i .
are weak. It should be noted that while Winters’ result holds, \entional receiver is more efficient than the decorrelator

for the Rayleigh model and any number of antennas, our resylf§en, 3 is small, and far less efficient whed is large.
hold for any fading distribution, but are asymptotic in thejny,iively, at high SIR requirements, a user has to transmit

”“”.‘ber Qf antennas. . at high power, thus causing a lot of interference to other users
Fig. 4 illustrates the performance of MMSE receiver undefnqer the conventional receiver. Not surprisingly, since it is by

a Rayleigh fading environment. It compares the asymptoiigsinition optimal, the MMSE filter is the most efficient in all
limit of the SIR for user 1 given by (9), as a function of thgses Wheps is small, it operates more like the conventional

number of users per antenna element, with actual SIR achieygdaiyer, allowing many users per degree of freedom, but when
depending on realizations of the Rayleigh fading. The numbBr-

- - ' is large, each user is decorrelated from the rest, much as in
of antenna elements is 128. The similarity between Figsgs decorrelator receiver, and therefore the interferers can still

and 1 further emphasizes the fact that the asymptotic limjt.cy,ny no more than one degree of freedom per interferer. The
does not depend on the interpretation of 8 as spreading performance gain afforded by the MMSE receiver over the
sequences or as channel fading. conventional receiver depends on the SIR at which the system
is to be operated, and this in turn depends on the data rate,
amount of coding and symbol constellation size. However, due
It is illuminating to compare the effective interferenceo the superior performance of the MMSE receiver over a wide
and effective bandwidths of the users in the three caseange of SIR’s, it can be seen that it is particularly suitable in
the conventional matched filter, the MMSE filter, and tha heterogeneous network with multiple traffic types.
decorrelating filter (Figs. 5 and 6.). The effective interference In the present paper, we have focused our attention on the
under MMSE is nonlinear, and depends on the received poveamplest possible multiaccess CDMA model. There are many

IX. SUMMARY OF RESULTS AND CONCLUSIONS
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possible extensions of this work to study various physicatharacterization of the limiting eigenvalue distribution (11).
layer and networking-layer issues. At the physical layer, arhe goal is to shed more light into the form of the expression
important problem is to understand the performance of m@nd to provide some intuition about the decoupling of the
tiuser receivers in more realistic scenarios with asynchrorigterference from different users and the consequent linearity
multipath fading, and channel uncertainty. Under these chanirelthe effective bandwidth characterization of the capacity
imperfections, one can expect an even larger performanegion. The derivation given here makes use of some ideas
gap between the MMSE receiver and the decorrelator. Thisveloped in [27] but is self-contained.

is because while signals of an interferer arrive fronsia- We first give a formula for the MMSE receiver and the
gle direction in a synchronous system with perfect channaksociated SIR under the MMSE receiver, alternative but
knowledge, the channel imperfections typically spread tleguivalent to (2) and (3). First recall the channel model in
interferer’'s energy into multiple directions, so that nulling outatrix form
all the directions would be very wasteful, if at all possible. It is Y—SX+W
hoped that the extension of the notions of effective interference -

and effective bandwidth can give insights to the performanggere 5 is the matrix the columns of which are the signature
gain of the MMSE receiver over both the decorrelator angbquences of the users. X is the vector MMSE estimate

conventional receiver in these situations. Some results alafyg X, a direct application of the orthogonality principle
these lines have been obtained in [9] for asynchronous system§.X — X)'Y] = 0 yields

At the networking layer, important issues to study include
multiple cells and the effect of traffic burstiness such as X = Dst [SDSt_H,—?I]_lY
voice activity. In fact, we believe it is already possible to .
directly draw some insights into these issues from some @fd the covariance matrix of the ero= X — X is given by
our present results. For example, despite the fact that we have _
not addressed voice activity in an explicit way, it is clear K.=D - DS'[SDS" +0%I]  SD (22)
from Theorem 3.1 and the notion of effective interference thathe
the “averaging of voice activity” property of the convention
receiver will carry over to the MMSE receiver, in contrast t?h
claims made in [23]. Furthermore, we have demonstrated that
simple power-control mechanisms can be used for resour¢g,.c (x,D-!) = K — trace (DS![SDS! + 02I]1S) (23)
allocation in almost exactly the same way that they are used + + 211
in the 1S95 standard, and this will clearly also hold in the = K —trace(SDSSDS" +o71]7)

reD = diag (P, - -, Px) is the covariance matrix oX.
ight-multiplying the above equation witl—! and taking
trace of both sides, we get

multiple-cell scenario (indeed, see [21]). It is important to note using the factrace (AB) = trace (BA)

that the effective bandwidth concept we have developed for the N \;

MMSE receiver is only valid in the perfectly power-controlled =K - Z N + o2 (24)
i=1 "

single-cell case. However, the concept of effective interference
applies with or without perfect power control, and may provghere \,’s are the eigenvalues of the mat$xDSt. If we let
more useful in the multicell context.

In a TDMA or FDMA system, the network resource is _ E[(X - X,)%
shared amongst users via disjoint frequency and time slots, MMSE; = P
and these models provide a simple abstraction of the resource
consumed by a user at the physical layer. Such an abstrac{?(?n
allows a clean separation between the physical layer am?n
networking layer resource-allocation problems, such as call K Nooy
admissions control, cell handoffs, and resource allocation for ZMMSEi =K - Z . (25)
bursty traffic. It is hoped that the effective bandwidth results i=1 i=1 Aito
in the present paper will be a first step in providing such ™)
an abstraction for systems with multiuser receivers. It mudEW it is well known that the SIR3;”” and the MMSE error
be emphasized, however, that the results reported here i@ related as follows (see, e.g., [13]):
asymptotic in the system size. Thus a better understanding of 1
the performance fluctuations in finite-size systems is needed MMSE; = o
before they can be directly applied to real-time control prob- 1+5;
lems such as admission control [7]. We note that a recesiypstituting this into (25) and rearranging terms, we obtain
paper, [20], provides Central Limit theorems to characterize
the performance fluctuations around the asymptotic limits. 1 & g , 1 1
N 1+/3Z‘(N)_1 UN;)‘i—i_aQ' @0

the (normalized) minimum mean-square error for user
(24) says that

(26)

APPENDIX A

A HEURISTIC DERIVATION OF THEOREM 3.1 So far, we have not introduced any probabilistic model for the

In this appendix, we gave an alternative and heuristgpreading sequences, and this equation holds for every choice
derivation of (4), without invoking the Stieltjes transformof the sequences and for evefy. Now, let us assume the
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sequences are randomly chosen, and each component is i.Ctearly, (s} s;)? converges td in probability, by the weak law
and consider what happens wh&h N — oo, f\—‘ — «, and of large numbers. We now look at the interference from the

the empirical distribution of the received powers converges twher users. Consider a scaled version of the crosscorrelation
F. The right-hand side of the above equation converges tobetween the signature sequences of user 1 andiuser

o 1 N
_ o2 1 ,
1 0/0 )\+02dG (N & \/—NZVMVZ‘,M i=1,2- K
k=1

whereG* is the limiting eigenvalue distribution &f D.St, and

by Lemma 4.3,/314(N) converges to where
1
=~ 8 = —=(Vir, -, Vin)"
=P ——dG*(N). N
g =p /0 G v

Expressing everything in terms of, one can expect that the/IS0: define"™) = 55 ;_, P;. Let us first condition on a

limiting form of (27) to becom# random realization of powers;, P, --. Then

o0 P'_BI 02/3* K 2

Oé/ Plpa* dF(P):]._ 1' Var ZRgZ P17P27...
0 1 + I’)l Pl =2
K K P. 2 B
Dividing throughout by% and rearranging terms gives us the = Z Z E NZ <Z Vl,klvi,kl> — pi)
desired fixed-point equation (4) i=2 j=2 Ky
2
P b .
P = = P : X —’< Vik m) — PR |IP|. (28)
o2 +af mdF(P) N %: 200

This development allows us to understand the linearity gfy expanding out the product, we obtain that fog j, the
the effective bandwidth characterization of the capacity regiog,m

First, consider the simpler case wheh — 0, i.e., no power

constraint. Assuming that the spreading sequences span a space P, >
of dimensionmin { K, N}. Then preciselynin { K, N} of the E N <Z Vl,klvi,h) - P
eigenvalues\;’s are nonzero. Equation (25) becomes ks

2
K P. _
> MMSE; = K — min{K, N}. X NJ <Z Vl,kzvj,k2> — PP, Py
i=1 ko

Note that the total MMSE of the users is a constant, irrespeg;qua|5
tive of the received powers of the users. Since the SIR of a

user is a function of the MMSE error, this is the reason for the PP > >
linearity of the capacity region with no power constraint. For N2 E Z VieVig Z VirVik
the case when there are power constraints @&+ 0), the k k
situation is more subtle. Asymptotically, the right-hand side of PP, 2
(25) depends on the received powers of the users only through — TJ[E <Z Vl,kvj,k>
o n
——dG* (A
/0 Aoz 1 PP, 1
- E[{ DX Viavie ) | +P? (29)
which can be interpreted as the SIR achieved by a user with N —~ " '

unit received power.

Expanding out the first term on the right-hand side, we obtain
APPENDIX B

PROOFS 3D EVin Virs JE[Vik Vika]

ki ko ks ka

Proof of Proposition 3.3 X E[Vi ke Viko V1 ks Vi1 |
Now Now each of these expectations is zero except whes k3
) Pi(st8)° and k; = ki, so it reduces t&", 3, E[V?, V2, ]. Now,
Piyir = , K 5 N(N —1) of these terms are unity, amd areE[V}*], which
o2(sts)” + ZQPi(StlSi) is O (1), so it follows that the first term on the right-hand side

of (29) is P;P; + O (1/N). In a similar manner, the second
3This is the heuristic step of the derivation. term can be shown to h&; P and the third term ig’ F.
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Returning to the expansion of (28), we note that for aProof of Lemma 4.2

i=2-K LetY = ||QX||>. We compute the first and second moments
5 2 of Y conditional on an arbitrary realization & = (g;;).
F; _
lE N(Z‘/lkl Zkl) _P P17P2"” _rn n 2
EY|Q]=E Z > aiVi
equals ==

2 m o n n

<Z Vl,kVi,k> + P? =k z::z::z::lqij(h‘kvjvk
* L

2%

4

<Z Vl,kVi,k> _bF
%

(30) z_: '

Expanding out the first term we obtain

r 2
SO STS E Vi Vi Vi Vit Vi Vi Vi Vi m (= ’
ki ke ks ks EY?|Q]=E Zqz‘jvj
and each of these expectations is zero, unlgss- k. and L =
ks = kg, or ki = k3 and ks = ky, Or k1 = kg and ko = k3. mm n n non
In each of these nonzero cases, the expectation® &t¢ and =L Z Z Z Z kit r s ViViVe Vs
there areO (N?) of them, so the first term of (30) i© (1). =1 j=lk=li=lr=ls=l

Similarly, for the other two terms. We conclude that

1K
ar <EZPZ§3

Since theV;’s are independent and zero mean, the terms
in the expectation above are zero whenever it has one random
P, Py, ) variable which has a different index than the other three. Hence

m m n

K K 2
EY? Q=) > aidiB W]
(K) ik'Yjk k
K?E;E:Q PP PP =1 j=1k=1
=== m m
— BPY) 1+ (PUIY) 40 (1/N) +2_ 2. 2 aaa BRIEV]
i=1 j=1 k#r
as N T oo. But by our assumption that the empirical distri- m m
bution function of powers converges to a deterministic limit, + QZZ Z Qiqu‘lq]'ijlE[VkQ]E[VIQ]
it follows that i=1 j=1 k3l

m m n

K K
; - P+ (P = ]-3
ﬁ;; (PP — P PY) — p U 4 (PUOY) 0 ;;;qzk%k )

and hence that for any > 0 + Z Z Z Z Gir

- =1 j=1k=1r=1
tmsup Var L3 e | P Shely
s Var { g L P PP | < #2333 Y antuna
= i=1 j=1 k=1 I=1
and this is true for any realizatioRy, P», - --. Hence, for all m m n

e >0 =>_>_ > ahagi(B[Vi] - 3)

1 K 2 i=1 j=1k=1
lim sup E (— PiSiQ—P(K)) m m [ n n
| 33 () (z )
=1 j=1 \k=1 r=1

But P — [ PdF(P), which implies mean-square con-

2
K 2 oo m m n
vergence ofz >_.* , Pi&7 to 7 PdF(P), and hence conver- 9 e
gence in probability. So we have + ZZ 1%’“%’“

ZP slsZ = ZP£2_>04/ PdF(P) :zn:<zm:q12k> (E[V,f] _3)+m2+2m

in probab|I|ty. We conclude that

P the last step using the orthonormality of the rows(hfNow
1

5 — in probability 0 if we add orthonormal rows td&) to construct ann-by-n
’ +afy PAR(P) orthogonal matrix}’, then the columns of are orthonormal.
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‘s | )
This implies that for every colum# Ey = {|GN(Ik) — G < MQ’
2 <1.
Zq”“_l forallk:l,---,M}
Hence If both eventsE; and E> hold, then we have
E[Y?| Q] < n|E[V{] - 3]+ m* +2m e Z WM P
and o et )\EN) + o2
E[(Y —m)? | Q] < n|E[V}] = 3| +2m (31) M e p
N 1
and hence <2 2 () (L) + 0*
k=1 \ iaMer,
B —m)?] < n| E[V}] - 3] +2m. e
Using Chebyshev’s inequality, we have for every 0 <P Z G+ 2M
g Yy quality, ¥ 1 I(Ti) + 02
Y m E[Y —m)?]
Pr||— —‘ >e|l K ——————= >~ P 26,
n n n2e? < / p 5 dG"(A) + 61 + —  from (32)
n|E[VY] - 3] +2m oo o? d
< Y and, similarly,
|E[Vi] -3|+2 1 M
= €2 n /3JEN) 2 Z Z (“EN))Q a 1;:_ 2
— V(N T\LE a
Picking the constant’ = M yields the desired result. PN eny
O G (I) — 2%
> P Z AEE:
Proof of Lemma 4.3 k)
From (3 TR . 202
(3) 2/0 e dGT )~ - 22 from (32)

(N) _ ¢ t 21
Al =si(SDiSi+o7l) Taihy Hence, given any > 0, one can pickd;, 8, > 0 and M

Let A§N>,---,A<A¢’> be the eigenvalues of; D;S!. Write such that
51D, St + %1 as Q*AQ, where
7 7 A +

A:diag()\gj\)+02,---,)\§\¢)—|—02). i .
. whenever event&’; and £, occur. Thus by the union of events

Let u™) = Qs;. Then bound
N (N) 2P N i Pl * c c

[u{M* Py Pr[/}i( R (A)‘>c} < Pr[E¢] + Pr [E5]

aY =3

=1 )\EJV) + 02 '

AN / D dG*()\)‘ <e
0

34
Fix a 6 > 0. Pick a finite partitionZ = {I1,15,---,{p} (34)
of (0,00) such that and
3 B _ [T A pr (5] < 3P [j6 () - 6 (1) > 2
G (L) —— — dG*(\) < & (32 r B3] < r{ ~(Tx k)| > }
; kl(fk)—i-a /0 A+02 W) <b (32) — M
and By Theorem 4.1, each of the probabilities in the sum go to
= p &) zero asN — oo. HencePr [ES] — 0. Now
dG*(\) — G' () ————— <6 33 .
/0 A+ o2 ) Z: ( k)T(Ik) + 02 <4 (33 py [E1]
where I(1},),r(I) are the left and right endpoints of the oo S
interval I, respectively. =Pr Z (US,A)) - Gy(I)| > MQ for somek
Let G be the empirical distribution of the eigenvalues of {iaMerny
S1D1St. Fix 62 > 0, and consider the events "
(N))2 b2
B - (M2 g 62 <> Pr > W) -any) > i
1= Z (u; ) - Gy(I)| < i k=1 aMery
{ia™ern} M
< — by Lemma 4.2
forall k=1 M ) kz_:_l v
orallk=1,---, MO
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which approache® as N — «o. Hence, from (34), we can [13] U. Madhow and M. Honig, “MMSE interference suppression for direct-
conclude that

0 [14]

(V) 5 . , "
gy — /0 102 dG*(A) in probability.
[15]

[16]
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