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Linear Multiuser Receivers: Effective Interference,
Effective Bandwidth and User Capacity

David N. C. Tse,Member, IEEE, and Stephen V. Hanly,Member, IEEE

Abstract—Multiuser receivers improve the performance of
spread-spectrum and antenna-array systems by exploiting the
structure of the multiaccess interference when demodulating the
signal of a user. Much of the previous work on the performance
analysis of multiuser receivers has focused on their ability to
reject worst case interference. Their performance in a power-
controlled network and the resulting user capacity are less well-
understood. In this paper, we show that in a large system
with each user using random spreading sequences, the limit-
ing interference effects under several linear multiuser receivers
can be decoupled, such that each interferer can be ascribed
a level of effective interferencethat it provides to the user
to be demodulated. Applying these results to the uplink of a
single power-controlled cell, we derive aneffective bandwidth
characterization of the user capacity: the signal-to-interference
requirements of all the users can be met if and only if the
sum of the effective bandwidths of the users is less than the
total number of degrees of freedom in the system. The effective
bandwidth of a user depends only on its own SIR requirement,
and simple expressions are derived for three linear receivers:
the conventional matched filter, the decorrelator, and the MMSE
receiver. The effective bandwidths under the three receivers serve
as a basis for performance comparison.

Index Terms—Decorrelator, effective bandwidth, effective in-
terference, MMSE receiver, multiuser detection, power control,
user capacity, random spreading sequences.

I. INTRODUCTION

TO meet the growing demand of untethered applications,
there have been intense efforts in recent years to develop

more sophisticated physical-layer communication techniques
to increase the spectral efficiency of wireless systems. A signif-
icant thrust of work has been on developingmultiuserreceiver
structures which mitigate the interference between users in
spread-spectrum systems. These receivers include the optimum
multiuser detector [24], the linear decorrelator [11], [12],
and the linear minimum mean-square error (MMSE) receiver
[29], [13], [16], [17]. Unlike the conventional matched-filter
receiver, these techniques take into account the structure
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of the interference from other users when demodulating a
user. Another important line of work is the development
of processing techniques in systems with antenna arrays.
Both spread-spectrum techniques and antenna arrays provide
additionaldegrees of freedomthrough which communication
can take place, and multiuser techniques aim to better exploit
those degrees of freedom.

Despite significant work done in the area, there is still much
debate about theuser capacity1 of the various approaches
to deal with multiuser interference. (See, for example, [23].)
One reason is that the performance of multiuser receivers in
conjunction with networking-level techniques of power control
and resource allocation are less well understood than for more
traditional multiaccess schemes. Indeed, much of the previous
work on performance evaluation of multiuser receivers focuses
on their ability to reject worst case interference (near–far
resistance[11]) rather than on their performance in a power-
controlled system. The main goal of this paper is to make
progress towards addressing these issues.

One difficulty in understanding the performance of mul-
tiuser receivers in power-controlled environments stems from
the intertwining of the effects ofall of the interferers in the
system. For example, the MMSE receiver depends on the
signature sequences and received powers of all interferers,
and hence at the output of the filter, it is hard to separate
out the effect of individual interferers. The main result of
this paper shows, somewhat surprisingly, that in a large
system with many degrees of freedom and many users, a
decoupling of the interfering effects is indeed possible for
several important linear receivers: each interferer can be
ascribed a level ofeffective interferencethat it provides to
the user to be demodulated. The effective interference of an
interferer depends only on the received power of the interferer,
the received power of the user being demodulated, and the
achieved signal-to-interference ratio (SIR) at the output of the
receiver.

Applying this notion of effective interference to the uplink
of a single power-controlled cell, we derive aneffective
bandwidthcharacterization of the user capacity under several
linear receivers. Assuming that each user’s requirement can
be expressed in terms of a target SIR at the output of the
receiver, we will show that a notion of effective bandwidth
can be defined such that the SIR requirements of all the users
can be met if and only if the sum of the effective bandwidths

1In this paper, we use the termuser capacityto refer to the number of
users that can be supported at the desired quality-of-service requirement. This
should be distinguished from theinformation-theoretic capacityof a channel.
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of the users is less than the total number of degrees of freedom
in the system. These degrees of freedom can be provided
by the processing gain in a spread-spectrum system or the
number of antenna elements in a system with an antenna
array. These capacity characterizations are simple in that the
effective bandwidth of a user depends only on its own SIR
requirement and nothing else. While this approach yields an
interference-limited characterization of the user capacity, we
will also quantify the reduction in user capacity when there
are additional power constraints on the users. We observe that
the SIR is a reasonable performance measure for the class of
linear multiuser receivers we are concerned with.

The effective bandwidth of a user depends on the multiuser
receiver employed. Results for three receivers are obtained:
the linear MMSE receiver, the decorrelator, and the conven-
tional matched-filter receiver. We will show that the effective
bandwidths are, respectively,

where is the SIR requirement of the user. These effective
bandwidth expressions also provide a succinct basis for per-
formance comparison between different receiver structures. In
particular, the MMSE receiver occupies a special place as it
can be shown to lead to the minimum effective bandwidth
among all linear receivers. Moreover, its performance is the
least understood of the three receivers, and its analysis is the
main thrust of this paper.

To obtain these results, we assume that the users’ signals
arrive from random directions. In the context of a spread-
spectrum system, this means that each of the users employ
random spreading sequences. In the context of an antenna
array system, this translates into independent fading from
each of the users to each of the receiving antenna elements.
We will also restrict our analysis to synchronous systems in
this paper. Extensions of these results to symbol-asynchronous
spread-spectrum systems can be found in [9].

Related results on the performance of multiuser receivers
under random spreading sequences were obtained indepen-
dently in [26], presented simultaneously as a conference ver-
sion [19] of this work. They considered exclusively the single
class case where every user has the same received power
and the same rate requirement, and derived Shannon theoretic
performance. In the present paper, our main results are for
situations where users have different received powers and
possibly different SIR requirements.

The outline of the paper is as follows. In Section II,
we will introduce the basic model of a multiaccess spread-
spectrum system and the structure of the MMSE receiver. In
Section III, we will present our main result, that in a large
system with each user using random spreading sequences, the
limiting interference effects under the MMSE receiver can be
decoupled into a sum of effective interference terms, one from
each of the interferers. In Sections V and VI, we apply this
result to study the performance under power control and obtain
a notion of effective bandwidth. In Section VII, we obtain
analogous results for the decorrelating receiver. In Section

VIII, we show that similar ideas carry through for systems
with antenna diversity. Section IX contains our conclusions.

II. BASIC SPREAD-SPECTRUM

MODEL AND THE MMSE RECEIVER

In a spread-spectrum system, each of the user’s information
or coded symbols is spread onto a much larger bandwidth
via modulation by its ownsignatureor spreading sequence.
The following is a chip-sampled discrete-time model for a
symbol-synchronous multiaccess spread-spectrum system:

(1)

where and are the transmitted symbol
and signature spreading sequence of user, respectively, and

is background Gaussian noise. The length of
the signature sequences is, which one can also think of
as the number of degrees of freedom. The received vector
is . We assume the ’s are independent and that

and , where is the received power
of user . There are users in the system.

Rather than looking at multiuser detection, which involves
hard decisions on a symbol-by-symbol basis, we are more
interested in the problem of extracting good estimates of the
(coded) symbols of each user as soft decisions to be used
by the channel decoder. For this reason, we prefer the term
“multiuser receiver” rather than “multiuser detector,” although
the latter is more common in the literature. In this case,
the relevant performance measure is the signal-to-interference
ratio (SIR) of the estimates.

We shall now focus on the demodulation of user 1, assuming
that the receiver has already acquired the knowledge of the
spreading sequences. In this paper, we shall confine ourselves
to the study oflinear demodulators, such that the estimates
are linear functions of the received vector. For user 1,
the optimal demodulator that generates a soft decision

maximizing the signal-to-interference ratio (SIR)

is the MMSE receiver2 [13], [16], [17].
As a comparison, note that the conventional code-division

multiple access (CDMA) approach simply matches the re-
ceived vector to , the signature sequence of user 1. This
is indeed the optimal receiver when the interference from
other users is white. However, in general the multiaccess
interference is not white and has structure as defined by

, assumed to be known to the receiver. The
MMSE receiver exploits the structure in this interference in
maximizing the SIR of user 1.

2More precisely, this should be termed thelinear least square (LLSE)
receiver, since it is only optimal within the class of linear receivers if the
Xi ’s are not Gaussian. In deference to the standard practice in the multiuser
detection literature, however, we will call this the MMSE receiver.
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While there are well-known formulas for the MMSE re-
ceiver and its performance, we will describe a simple deriva-
tion, which provides some geometric insights to the operation
of this receiver. Let

be the total interference for user 1 from other users and
background noise. Then

If were white, then

which is a projection onto , i.e., the conventional matched
filter. In general, then, we should whiten the interference
and then follow that by a projection. The covariance matrix
of is

where is a -by- matrix whose columns are the signa-
ture sequences of the other users, and
is the covariance matrix of . is positive def-
inite. Factorize , where
is the diagonal matrix of (nonnegative) eigenvalues of, and
the columns of are the orthonormal eigenvectors of . The
whitening filter is simply . Applying this to , we get:

and we note that the interference is now white. We can then
project it along the direction to get a scalar sufficient
statistic for the estimation problem

Thus the MMSE demodulator is [13]

(2)

and the signal-to-interference ratio for user 1 is

SIR (3)

While the SIR is taken as the basic measure of performance
in this paper, we would like to mention some connections to
information-theoretic quantities.

• If the linear receiver is followed by single-user decoders,
one for each user, then the mutual information achieved
for each user under an independent Gaussian input dis-
tribution is precisely

SIR

bits per symbol time. There is, therefore, a one-to-one
monotonic relationship between the information-theoretic
rate and the achieved SIR. In particular, meeting a target
SIR is equivalent to meeting a target rate.

• It has been shown [22] that any vertex of the Shannon
capacity region of the CDMA channel (1) can be achieved
by a combination of successive cancellation and MMSE
demodulation. Each vertex corresponds to a particular
choice of decoding order. The information-theoretic rate
achieved for theth user in a given decoding order is

SIR

where SIR is the SIR at the output of the MMSE
demodulator for theth user, with the signals from the
first users already canceled off.

III. PERFORMANCEUNDER RANDOM SPREADING SEQUENCES

Equation (3) is a formula for the performance of the
MMSE receiver, which one can compute for specific choices
of signature sequences. However, it is not easy to obtain
qualitative insights directly from the formula. For example,
the effect of an individual interferer on the SIR for user 1
cannot be seen directly from this formula. In practice, it is
often reasonable to assume that the spreading sequences are
randomly and independently chosen. (See, e.g., [14], [3].)
For example, they may be pseudorandom sequences, or the
users choose their sequences from a large set of available
sequences as they are admitted into the network, or the
transmitted sequences may be distorted by random multipath
fading channels. In this case, the performance of the optimal
demodulator can be modeled as a random variable, since it is
a function of the spreading sequences. In this section, we will
show that, unlike the deterministic case, there is a great deal
of analytical information one can obtain about this random
performance in a large network. In the development below,
we will assume that although the sequences are randomly
chosen, they are known to the receiver once they are picked.
In practice, this assumes that the change in the spreading
sequences occurs at a much slower timescale than the time
required to acquire the sequences. (There are known adaptive
algorithms for which acquisition can be done blindly; see [6].)
However, theperformanceof the MMSE receiver depends on
the initial choice of the sequences and hence is random.

The model for random sequences is as follows: let

The random variables ’s are independent and identically
distributed (i.i.d.), zero mean, and variance. The normal-
ization by ensures that . In practice, it is
common that the entries of the spreading sequences areor

, but we want to keep the model general so that we can later
apply our results to problems with other modes of diversity.
For technical reasons, we will also make the mild assumption
that .

Our results are asymptotic in nature, for a large network.
Thus we consider the limiting regime where the number of
users is large, i.e., . To support a large number of
users, it is reasonable to scale up as well, keeping the
number of users per degree of freedom (equivalently, per unit
bandwidth), , fixed. We also assume that as we scale up
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the system, the empirical distribution of the powers of the users
converges to a fixed distribution, say . The following is
our main result, giving the asymptotic information about the
SIR for user 1. The proof is given in Section IV.

Theorem 3.1:Let be the (random) SIR of the MMSE
receiver for user 1 when the spreading length is. Then
converges to in probability as , where is the
unique solution to the equation

(4)

and

(5)

Here, denotes taking the expectation with respect to the
limiting empirical distribution of the received powers of
the interferers.

Heuristically, this means that in a large system, the SIR
is deterministic and approximately satisfies

(6)

where, as before, is the received power of user. This result
yields an interesting interpretation of the effect of each of the
interfering users on the SIR of user 1: for a large system,
the total interference can be decoupled into a sum of the
background noise and an interference term from each of the
other users. (The factor results from the processing gain of
user 1.) The interference term depends only on the received
power of the interfering user, the received power of user 1, and
the attained SIR. It does not depend on the other interfering
users except through the attained SIR. This decoupling is
rather surprising since the effect of an interferer depends on the
MMSE receiver , which in turn is a function of the signature
sequences and received powers of all the users in the system.

One must be cautioned not to think that this result implies
that the interfering effect of the other users on a particular
user is additive across users. It is not, since the interference
term from interferer depends on the attained
SIR which in turn is a function of the entire system. Due to
the following proposition, on the other hand, one can make a
related statement.

Proposition 3.2: The equation

(7)

has a unique fixed point . For any , if and only if

Proof: Define the function

which we note to be a continuous, strictly increasing function.
To see that a fixed point exists to (7), we note that

and so it follows that there must exist
a value satisfying . But this implies that is a
unique fixed point of (7). By monotonicity of

It follows then that to check if the target for user 1’s SIR,
, can be met for a given system of users, it suffices to

check the following condition:

Based on this interpretation, it seems justified to term
as theeffective interferenceof user on user 1,

at a target SIR of .
To gain more insights into this concept of effective interfer-

ence, it is helpful to compare the situation with that when the
conventional matched filter is used for the demodulation.
For that case, we have the following proposition, in parallel
with Theorem 3.1:

Proposition 3.3: Let be the (random) SIR of the
conventional matched filter receiver for user 1 when the
spreading length is . Then as with ,

converges in probability to

where, as before, the expectation is taken with respect to the
limiting empirical distribution of the received powers of
the interferers.

Proof: See Appendix B.

Hence, for large , the performance of the matched receiver
is approximately

(8)

Comparing this expression with (6), we see that the interfer-
ence due to useris simply in place of . Since
the matched receiver filter is independent of the signature
sequences of the other users, it is not surprising that the
interference is linear in the received powers of the interferers.
In the case of the MMSE receiver, the filter does depend on
the signature sequences of the interferers, thus resulting in the
interference being a nonlinear function of the received power
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Fig. 1. Randomly generated MMSE SIR’s for user 1 compared to asymptotic
limit (9) in the equal-power regime, forN = 32; 64; 128. Here, P

�
= 20 dB.

of the interferer. Also, observe that , which
is expected since the MMSE receiver maximizes the SIR
among all linear receivers. But more importantly, while for
the conventional receiver, the interference grows unbounded
as the received power of the interferer increases, we see that
for the MMSE receiver, the effective interference (5) from
user is bounded and approaches as goes to infinity.
Thus while the SIR of the matched filter receiver goes to zero
for large interferers’ powers, the SIR of the MMSE receiver
does not. This is the well-knownnear–far resistanceproperty
of the MMSE receiver [13]. The intuition is that as the power
of an interferer grows to infinity, the MMSE receiver will null
out its signal. While the near–far resistance property has been
reported by previous authors, Theorem 3.1 goes beyond these
works in that it not only quantifies the worst case performance
(i.e., large interferer’s power) but also the performance for all
finite values of the interference. This is useful, for example,
in situations when power control is exercised, as will be the
case in the next section.

In general, we have no explicit solution for the SIR in
(4). However, for the special case when the received powers
of all users are the same, the equation is quadratic inand
a simple solution is obtained (independently obtained in [26])

(9)

We see that the is positive for all values of , and
approaches as , the number of users per degree of freedom,
goes to infinity.

To get a sense of the convergence of the random SIR
to the asymptotic limit in the equal received power case,
Fig. 1 compares the actually realized SIR’s from randomly
generated spreading sequences to the asymptotic limit (9).
For different spreading lengths and for each value of,
100 samples of realized SIR’s for user 1 are obtained from
randomly generated and spreading sequences. One sees
that as the processing gain increases, the spread around the

Fig. 2. Randomly generated MMSE SIR’s across users for one realization of
the spreading sequences. Here, spreading lengthN = 128, number of users
K = 80, and P

�
= 20 dB.

asymptotic limit becomes more narrow, to about 1 or 2 dB
when . Note, however, that for a fixed processing
gain, the spread does not get smaller as the number of users
increases, which means that therelative spread is large when
the SIR is low. Fig. 2 plots the SIR’s attained across users
for a single realization of the random spreading sequences.
The processing gain and the number of users is 80.
Again, there is a spread of about 1 dB around the asymptotic
limit.

Theorem 3.1 gives only the asymptotic limit but does not
describe the fluctuation of the SIR around this limit for finite-
sized system. A sequel [20] to this paper is devoted to the
analysis of such fluctuations, via Central-Limit theorems. It
turns out that even the computation of the variance of the
fluctuations is nontrivial. See also [7] and [8] for a related
study.

Two performance measures commonly used in the literature
for multiuser receivers are theirefficiencyand theirasymptotic
efficiency[25]. In the context of linear receivers, the efficiency
for user 1 is defined to be the ratio of the achieved SIR to the
SIR when there is no interferer and only background noise.
For the MMSE receiver with random spreading sequences and
equal received power for all users, this is given by

where is given by (9). The asymptotic efficiency is the
limiting efficiency as the background noise goes to zero. If

, this is given by

For , the limiting SIR is positive but bounded

(10)

and so the asymptotic efficiency is.
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IV. PROOF OF MAIN THEOREM

We will now prove our main result, Theorem 3.1. It hinges
on a result about the limiting eigenvalue distribution of large
matrices whose elements are random variables. Letbe an
infinite array of i.i.d. complex-valued random variables with
variances , and be a sequence of real-valued random
variables. Let be an -by- matrix, whose th
entry is . Let be an -by- diagonal matrix whose
diagonal entries are ; we assume that as ,
the empirical distribution of these entries converges almost
surely to a nonrandom limit . Moreover, is independent
of .

The matrix ( is the complex conjugate
transpose of ) is -by- Hermitian and has real nonnegative
eigenvalues . Let be the empirical distri-
bution of the eigenvalues; since the eigenvalues are random, so
is . (The empirical distribution of the eigenvalues depends
on the realization of the random entries of and .) The
following theorem due to Silverstein and Bai [18], which is
a strengthening of an earlier result by Marcenko and Pastur
[15], gives the asymptotic behavior of as and grows.
The solution is in terms of the Stieltjes transform, which for
any distribution is defined as

for

Theorem 4.1:As such that , then
almost surely converges in distribution to a nonrandom
limit . The Stieltjes transform of the limit satisfies
the following equation:

(11)

for all .

The above theorem says that the empirical distribution of
the eigenvalues for large random matrices looks the same for
almost all realizations of the entries. Equation (11) gives a
functional equation for the Stieltjes transform of the limit.

We can apply this result to the covariance matrix
of the interference; note that in this caseis the

distribution function of the received power. It follows that in
a large system with random signature sequences, the spectrum
of the interference is essentially deterministic, since it con-
verges to the nonrandom limiting distribution described in the
theorem. Moreover, since the limiting eigenvalue distribution
is not degenerate, it follows that the deterministic spectrum is
colored and not white. This is perhaps a little counterintuitive.
For, if the number of interferers were fixed and the number of
degrees of freedom increased, then each interferer would be
more or less orthogonal to user 1 and the overall interference
would be white. On the other hand, if the number of degrees of
freedom were fixed and the number of interferers increased, the
aggregate interference would also become increasingly white
because of averaging. Theorem 4.1 tells us, however, that
when there are many interferersandmany degrees of freedom,

neither intuition is correct and the aggregate interference has
a colored spectrum in the limit. As a consequence, the MMSE
receiver outperforms the conventional matched filter, even in
the limit.

Theorem 4.1 gives the asymptotic distribution of the eigen-
values of the covariance matrix . However, this is in
general not enough for characterizing the SIR performance
for user 1, as that depends on the position ofrelative to the
eigenvectorsof . This can be seen by writing
where is diagonal and is orthogonal, so that the SIR for
user 1 is given by

However, the following lemma shows that the distribution of
the eigenvectors is asymptotically irrelevant since for large
spreading length, looks “white” in any coordinate system,
in the sense of containing about the same amount of energy
in each direction.

Lemma 4.2:Let be a random -by- matrix
such that every realization consists of orthonormal rows. Let

where the ’s are i.i.d. random variables
independent of , , , and .
Then for any

for some constant which depends only onand the statistics
of .

Proof: See Appendix B.

This lemma allows us to express the limiting SIR in terms
of only the eigenvalue distribution of .

Lemma 4.3:As , , the SIR
converges in probability to

where is the limiting eigenvalue distribution of the random
matrix .

Proof: See Appendix B.

We shall now complete the proof of the Theorem 3.1 by
evaluating this limit .

Consider the Stieltjes transform of the limiting spectrum
of the matrix

By Theorem 4.1, this satisfies

(12)

where is the limiting distribution of the received powers
of the users.

Since the support of is on the nonnegative real axis,
is continuous in the neighborhood of . It follows that
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By the continuity of the right-hand side of (12) as a function
of , it follows from Lemma 4.3 that

Hence the limiting SIR for user 1 satisfies

which completes the proof of the theorem.

While the above provides a rigorous proof, it provides
little intuition as why Theorem 3.1 is true. In particular, a
better understanding of the decoupling phenomenon between
interferers is desired. Based on some new results obtained in
[27], we provide a heuristic but more intuitive derivation of (4)
in Appendix A, bypassing the mysterious Stieltjes transform
characterization of the limiting eigenvalue distribution of
random matrices in (11) and only basing ourselves on Lemma
4.3.

V. USER CAPACITY UNDER POWER CONTROL

We observed in Section III that in the conventional receiver
case, the interference of a user is proportional to its power, and
hence a strong interferer can completely overcome a weaker
signal. This is the so-called near–far problem, and a well-
known consequence is that the conventional receiver can only
avoid this via tight power control. We also observed that the
MMSE receiver does not suffer arbitrarily poorly from the
near–far problem, and indeed this is one of the key motivations
for the original work on multiuser detection [24]. Nevertheless,
an MMSE receiver still suffers interference from other users,
and it follows that user capacity can be increased and power
consumption reduced, if power control is employed.

In the present section we consider the case in which all
users require an SIR of exactly , given a processing gain
of degrees of freedom per symbol. For a given number of
users we compute the minimum power consumption required
to achieve for all users, and then look at the maximum
number of users per degree of freedom supportable for a given
power constraint under power control. Of particular interest
is the maximum number without power constraint, which we
refer to as theuser capacityof the system (in terms of number
of users per degree of freedom). This is the point at which
saturation occurs as we put in so many users that we drive
the required power level to infinity. We will show that this
user capacity is different but finite for both the conventional
and the MMSE receivers, showing that both are interference-
limited systems. As before, our results are asymptotic as the
the processing gain goes to infinity.

Let us focus first on the conventional receiver. Under the
matched filter, Proposition 3.3 tells us that, asymptotically,
users receive the same level of interference, and hence must
be received at the same power level to get the same SIR. It
is easy to compute that with a processing gain ofand
users, the common received power required, asymptotically as

, for the conventional receiver is given by

(13)

For a given constraint on the received power, the maximum
number of users supportable is then

users/degree of freedom

The user capacity of the conventional receiver when
is then

users/degree of freedom. (14)

Put it another way, as , the system saturates and the
required power level goes to infinity. A similar result is given
in [5].

Now let us turn to the MMSE receiver. To satisfy given
target SIR requirements which are feasible, [10], [21], [2]
showed that there is an optimal solution for which the received
power of every useris minimized; moreover, they gave an
iterative algorithm to compute it. However, here we can give
an explicit solution and characterize the resulting user capacity.

To begin, we fix the number of users per degree of freedom
at . As in the conventional receiver case, it turns out that the
system saturates if is too high, so we first obtain a necessary
and sufficient condition for feasibility. The following theorem
shows that in the limit of a large number of degrees of freedom,
the system is feasible if and only if the SIR can be met with
equal received powers for all users.

Theorem 5.1:If

then there is no distribution of received powers such that
the SIR requirements of all users are satisfied, i.e.,

for all in the support of (15)

On the other hand, if , the SIR requirements of
all users can be satisfied and the minimum power solution is
having the received powers of all users to be

(16)

Proof: Suppose that there is a power distributionsuch
that all users get , i.e.,

for all in the support of

Let be the power of the weakest user in this distribution,
i.e.,
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and note that , .
Focusing on the user with received power, since

therefore,

Using the explicit expression for the effective interference term
and rearranging terms, the last statement is equivalent to

Hence

This proves the first part of the proposition.
Conversely, if , then it can be easily checked that

is positive and satisfies

By Theorem 3.1, this implies that by assigning all users
the same received power , they will all achieve the
SIR requirement . To see that this is the minimal solution,
suppose that is another power distribution such that the SIR
requirements of all users are satisfied, and letbe the power
of the weakest user of this distribution. By exactly the same
argument as the proof of the first half of this proposition, we
conclude that

(16)

This shows that indeed the solution with equal received powers
at is the minimal solution.

Hence, the user capacity of the system under MMSE re-
ceiver is

users/degree of freedom (17)

Moreover, for a given received power constraint, the maxi-
mum number of users that can be supported is to assign each
user the same received power, and that number is given by

users/degree of freedom

Contrasting (13) and (14) with (16) and (17), we note
that if is feasible for both types of receiver, then the
MMSE power consumption is less than the matched filter
power consumption, and the MMSE has potentially much
greater user capacity. Indeed, if then we can take

arbitrarily high without saturating the MMSE receiver,
whereas the conventional receiver saturates as . For
fixed , we also note that the MMSE saturates at a higher
value of , yielding a user capacity of precisely one more user
per degree of freedom than the conventional receiver. On the

other hand, the relative gain of the MMSE is not so large for
small values of .

The above user capacity results are derived in the context
of random spreading sequences. A natural question to ask is
whether one can get performance gain if we one optimizes the
choice of the sequences. In [27], it is shown that even with the
optimal choice of sequences, the user capacity (without power
constraint) under the MMSE receiver is still users
per degree of freedom. However, somewhat surprisingly, the
capacity gap between the MMSE and conventional receiver
disappears under optimal sequences.

VI. M ULTIPLE CLASSES AND EFFECTIVE BANDWIDTHS

It is straightforward to generalize our results to the case in
which we have classes, with class users requiring a SIR
of . We denote the number of users of classby , and
again consider the limiting regime .

The conventional matched-filter results generalize very eas-
ily to

where denotes the common received power level
of all users of class (see [5]). Thus the user-capacity
constraint on feasible values of is the linear
constraint Furthermore, if class users have
a maximum power constraint that , for each ,
then the tighter user-capacity constraint

emerges [4]. It seems very reasonable to callthe bandwidth
of class users, in degrees of freedom per classuser. Let
us denote this bandwidth by

degrees of freedom per classuser.

We now show that the MMSE filter results generalize in a
similar manner. It is clear in this case also that the minimal
power solution consists of the same received power for each
class; let all users in class be received at power . Then
the power control equations become

(18)

where, as in Theorem 3.1, . But (18)

implies that is a constant, which allows us to simplify (18)
down to

(19)
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Fig. 3. User-capacity region for two classes of users, withP

�
= 29 dB, P

�
= 20 dB.

The user-capacity constraint for the MMSE receiver with
classes is therefore given by

(20)

which is linear in .
As above, maximum power constraints provide tighter ca-

pacity constraints, and in this context we note that (19) implies
that

Thus if is a maximum power constraint on
class , then the linear constraint

defines the restricted user-capacity region of the system. It
seems very reasonable to define the effective bandwidth of
class users to be degrees of freedom per user,
where

Linearity in the matched-filter case is a straightforward con-
sequence of the fact that powers of interferers add. However,
our MMSE effective bandwidth results are rather surprising,
and it is a consequence of the asymptotic decoupling of the
interference due to other users. For more discussions about
the linearity of the user-capacity region under MMSE, please
consult Appendix A.

Fig. 3 gives an example of a user-capacity region for two
classes of users, one with SIR requirement 1 dB and the
other 10 dB. The upper line gives the asymptotic limit for

the boundary of the region, under the MMSE receiver. The
simulation curve gives the average number of class 2 users
admissible as a function of the number of class 1 users in the
system, for a spreading length of . The average number is
obtained by averaging over 100 realizations of the spreading
sequences. The actual number of class 2 users depends on
the realization of the spreading sequences, and will fluctuate
around this average, as was seen in Fig. 1.

One interesting observation is that no matter how high
is, the MMSE effective bandwidth of a user is upper-bounded
by unity. We will gain further insight into why this is so in
the next section.

VII. T HE DECORRELATOR

To this point we have contrasted the performance of the
MMSE receiver with that of the conventional matched-filter
receiver. It is also illuminating to compare its performance
with that of the decorrelator.

The decorrelator was in fact the first linear multiuser de-
tector, introduced by Lupas and Verdú [11]. This receiver
is known to be optimal in the worst case scenario in which
interferers’ powers tend to infinity; its near–far resistance is
optimal [12]. Its main shortcoming, as we will see, is that each
user has an effective bandwidth of one degree of freedom,
which can be wasteful when the SIR of the user is small. On
the other hand, it is hardly wasteful when the SIR is large.

We can write the channel equation (1) in matrix form

where , and is the
matrix of signature sequences. It is well known [11] that the
matched-filter outputs

are sufficient statistics to recover the inputs.
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Consider now a further linear transformation applied to the
matched-filter outputs, to obtain

The overall filter is called the decorrelating re-
ceiver. If the inverse does not exist, then the pseudoinverse is
used in its place. Observe that in the absence of external noise
the decorrelator output would be the vector, and as such it
represents the optimal zero-forcing linear filter. At this point,
it is useful to provide an expression for the covariance matrix

of the “noise” , namely,

The decorrelator for the userreturns as an estimate of
. Thus the channel for useris given by

where is a zero-mean, Gaussian random variable of vari-
ance . The SIR for user is given by . An important
point about the decorrelator detector is that the correlation
between the noise variables is not exploited, which
explains why it is suboptimal to the MMSE receiver.

We can think of each row of as a separate
decorrelating filter for each user. For example, if we denote
the first row of by , then the decorrelating filter
for user 1 is to apply to the received signal to obtain
the decorrelator estimate of user 1’s symbol. It is insightful to
look for a geometric interpretation. It turns out that each row of

is the orthogonal projection of the corresponding
onto the subspace . For example, is

the orthogonal projection of onto . To
see why this is so, we prove the following proposition.

Proposition 7.1: The vector is the orthogonal pro-
jection of onto the subspace , defined by

, and the SIR for user 1 is given
by

SIR

Proof: Let us begin by denoting the orthogonal projec-
tion of onto by . Since lies in , the effect of
applying to nulls out the interference of users ,
and the SIR under , which we denote by SIR , satisfies

SIR

The same applies to the decorrelator, since it also lies in
, which has corresponding SIR given by

SIR

Now let SIR be the SIR of user 1 under the MMSE
linear receiver. Since is the projection of onto , it
can be seen that achieves the best SIR among all linear
receivers constrained to be in. On the other hand, the MMSE

is the optimal linear receiver overall. Hence, the following
inequalities must hold:

SIR SIR SIR

But it is shown in [11] that the decorrelator has the optimal
asymptotic efficiency in the class of linear receivers, i.e.,

SIR SIR

and hence

It follows that must lie in the direction . Further, since
is then orthogonal to , we have that

and hence that SIR .

We can therefore think of the decorrelator receiver for user
1 as the orthogonal projection of the received signal onto the
orthogonal complement to the interferers’ signals. In this way,
interfering signals are effectively “nulled out” in an optimal
way. We can think of the overall matrix as a bank
of decorrelating receivers, one given by each row of the matrix.

We now study the performance of the decorrelator in the
asymptotic regime in which the processing gaintends to
infinity, the number of users is . The following result was
also obtained independently in [26].

Theorem 7.2:Let be the (random) SIR of the decor-
relating receiver for user 1 when the spreading length is.
Then converges to in probability as , where

is given by

Proof: As in Proposition 7.1, let us denote the subspace
orthogonal to the span of by . We note that

has dimension equal to , where is
the matrix with columns consisting of the signature sequences
of users . We also note that since the signature
sequences are selected randomly,is a random subspace,
independent of the choice of . Finally, as in Proposition 7.1,
we denote the decorrelating vector for user 1 by.

The simplest case is . In this case, ,
and since is the orthogonal projection of onto (Propo-
sition 7.1), it follows that . Proposition 7.1 implies
that the SIR of user 1 tends to zero in this case.

Now consider the case . In this case, Bai and Yin [1]
show that the smallest eigenvalue of the random matrix
converges almost surely to a strictly positive number; hence

is almost surely of full rank when is large. Thus

as . But by Proposition 7.1, is the orthogonal
projection of onto , and we note that is independent of
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. It follows from Lemma 4.2 that in probability.
The theorem then follows from Proposition 7.1.

We observe that as , i.e., the number of users per
degree of freedom approaches, the SIR goes to zero. Geo-
metrically, as the dimensionality of the orthogonal complement
to the span of the interference decreases to zero, the length
of the projection of the desired signal onto this orthogonal
complement tends to zero, and so in the limit the projected
signal is lost in the background noise. This is the high price
paid for ignoring the background noise. In contrast, the MMSE
receiver can support more users than the number of degrees of
freedom as it takes both the interference and the background
noise into account.

By comparing Theorem 7.2 and Theorem 3.1, it can be seen
that the effective interference for an interferer on user 1 under
the decorrelator is , which does not depend on the power
of the interferer. The theorem states that the user-capacity
constraint on the system is .

We also observe that if all users require a SIR ofand
employ power control then it is sufficient for each user to be
received with power at least . Thus for a given received
power constraint , the maximum number of users with SIR
requirement supportable is . Similarly, for multiple
classes of users with SIR requirementand power constraint

for each class, then the system can supportusers (per
degree of freedom) from each class if

Thus the user-capacity region under the decorrelator is given
by

(21)

when there are no power constraints, or equivalently, when
the background noise power goes to zero. Thus each user
occupies an effective bandwidth of one degree of freedom,
independent of the value of.

From Theorem 7.2, it can be immediately inferred that the
efficiency of a decorrelator in a large system with random
spreading sequences is if , the number of users per
degree of freedom, is less thanand zero otherwise. Since
this does not depend on the background noise power, this
is also the asymptotic efficiency.

It is well known [13] that the MMSE receiver has the
same asymptotic efficiency as the decorrelator, and hence the
decorrelator is optimal in this sense among all linear receivers.
However, comparing (20) and (21), it can be seen that the user-
capacity region under the MMSE receiver is strictly larger
than that under the decorrelator, even as the background
noise goes to zero. In particular, the MMSE receiver can in
general accommodate more users than the available degrees of
freedom, while the decorrelator cannot. This apparent paradox
can be resolved by noting that when , the attained SIR by
the decorrelator is zero (Theorem 7.2) while the attained SIR
by the MMSE receiver is strictly positive but bounded, as the

noise power goes to zero. Since the asymptotic efficiency
only measures therate at which the SIR goes to infinity as
goes to zero, they are the same (zero) for both receivers. On the
other hand, the user-capacity region quantifies the number of
users withfixedSIR requirements a receiver can accommodate;
hence the difference between the decorrelator and the MMSE
receiver is captured when we compare their user-capacity
regions. In practice, users have target SIR requirements and
hence the user-capacity region characterization seems to be
a more natural performance measure than the asymptotic
efficiency. In this context, the decorrelator remains suboptimal
even as , when .

VIII. A NTENNA DIVERSITY

In spread-spectrum systems, diversity gain is obtained by
spreading over a wider bandwidth. However, there are other
ways to obtain diversity benefits in a wireless system. A
technique, particularly effective for combating multipath fad-
ing, is the use of anadaptive antenna arrayat the receiver.
Multipath fading can be very detrimental as the received signal
power can drop dramatically due to destructive interference
between different paths of the transmitted signal. By placing
the antenna elements greater than half the carrier wavelength
apart, one can ensure that the received signal fades more
or less independently at the different antenna elements. By
appropriately weighting, delaying, and combining the received
signals at the different antenna elements, one can obtain a
much more reliable estimate of the transmitted signal than
with a single antenna. Such antenna arrays are said to be
adaptiveas the combining depends on the strengths of the
received signals at the various antenna elements. This in turn
depends on the locations of the users. Moreover, the combining
weights will be different for different users, allowing the array
to focus on specific users while mitigating the interference
from other users. This is so-calledbeam-forming. Using our
previous results, it turns out that the user capacity of such
antenna-array systems can again be characterized by effective
bandwidths.

The following is a model for a synchronous multiaccess
antenna-array system

Here, is the transmitted symbol of theth user, and is
an -dimensional vector of received symbols at theantenna
elements of the array. The vector represents the fading
of the th user at each of the antenna array elements. The
entries are complex to incorporate both phase and magnitude
information. The vector is complex-valued, background
Gaussian noise.

The fading is time-varying, as the mobile users move.
However, this is usually at a much slower time scale than
the symbol rate of the system. Assuming then that the channel
fading of the users can be measured and tracked perfectly
at the receiver, we would like to combine the vector of
received symbols appropriately to maximize the SIR of the
estimates of the transmitted symbols of the users. The optimal
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Fig. 4. Random SIR’s for user 1 in Rayleigh fading environment, compared
to asymptotic limit equation (8). Here,P

�
= 20 dB.

linear receiver is clearly the MMSE. Assuming that the fading
of each user at each antenna element is independent and
identically distributed, we are essentially in the same setup as
for spread-spectrum systems. Thus for a system with a large
number of antenna elements and large number of users, we can
treat each of the interfering users as contributing an additive
effective interference. Under perfect power control, the user
capacity is characterized by sharing thedegrees of freedom
among the users according to theireffective bandwidthsgiven
by the previous expressions for the different receivers. The
only difference here is that the degrees of freedom are
obtained by spatial rather than frequency diversity.

These results should be compared with that of Winterset
al. [28], which showed that for a flat Rayleigh fading channel,
a combiner which attempts to null out all the interferers will
cost one degree of freedom per interferer. This combiner is
of course the suboptimal decorrelator, which we have shown
earlier to be very wasteful of degrees of freedom if interferers
are weak. It should be noted that while Winters’ result holds
for the Rayleigh model and any number of antennas, our results
hold for any fading distribution, but are asymptotic in the
number of antennas.

Fig. 4 illustrates the performance of MMSE receiver under
a Rayleigh fading environment. It compares the asymptotic
limit of the SIR for user 1 given by (9), as a function of the
number of users per antenna element, with actual SIR achieved
depending on realizations of the Rayleigh fading. The number
of antenna elements is 128. The similarity between Figs. 4
and 1 further emphasizes the fact that the asymptotic limit
does not depend on the interpretation of the’s as spreading
sequences or as channel fading.

IX. SUMMARY OF RESULTS AND CONCLUSIONS

It is illuminating to compare the effective interference
and effective bandwidths of the users in the three cases:
the conventional matched filter, the MMSE filter, and the
decorrelating filter (Figs. 5 and 6.). The effective interference
under MMSE is nonlinear, and depends on the received power

Fig. 5. Effective interference for the three receivers as a function of inter-
ferer’s received powerPi. Here,P is the received power of the user to be
demodulated, and� is the SIR achieved.

Fig. 6. Effective bandwidths for three receivers as a function of SIR.

of the user to be demodulated as well as the achieved SIR
. The effective interference under the conventional matched

filter is simply , the received power of the interferer. Under
the decorrelator, the effective interference is, independent
of the actual power of the interferer. The intuition here is that
the decorrelator completely nulls out the interferer, no matter
how strong or weak it is. The MMSE receiver, on the other
hand, is sensitive to the received power of the interferer.

Assuming perfect power control, we can define effective
bandwidths which characterize the amount of network re-
source a user consumes for a given target SIR. The effective
bandwidths under the conventional, MMSE, and decorrelating
receivers are and respectively. We note that the
conventional receiver is more efficient than the decorrelator
when is small, and far less efficient when is large.
Intuitively, at high SIR requirements, a user has to transmit
at high power, thus causing a lot of interference to other users
under the conventional receiver. Not surprisingly, since it is by
definition optimal, the MMSE filter is the most efficient in all
cases. When is small, it operates more like the conventional
receiver, allowing many users per degree of freedom, but when

is large, each user is decorrelated from the rest, much as in
the decorrelator receiver, and therefore the interferers can still
occupy no more than one degree of freedom per interferer. The
performance gain afforded by the MMSE receiver over the
conventional receiver depends on the SIR at which the system
is to be operated, and this in turn depends on the data rate,
amount of coding and symbol constellation size. However, due
to the superior performance of the MMSE receiver over a wide
range of SIR’s, it can be seen that it is particularly suitable in
a heterogeneous network with multiple traffic types.

In the present paper, we have focused our attention on the
simplest possible multiaccess CDMA model. There are many
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possible extensions of this work to study various physical-
layer and networking-layer issues. At the physical layer, an
important problem is to understand the performance of mul-
tiuser receivers in more realistic scenarios with asynchrony,
multipath fading, and channel uncertainty. Under these channel
imperfections, one can expect an even larger performance
gap between the MMSE receiver and the decorrelator. This
is because while signals of an interferer arrive from asin-
gle direction in a synchronous system with perfect channel
knowledge, the channel imperfections typically spread the
interferer’s energy into multiple directions, so that nulling out
all the directions would be very wasteful, if at all possible. It is
hoped that the extension of the notions of effective interference
and effective bandwidth can give insights to the performance
gain of the MMSE receiver over both the decorrelator and
conventional receiver in these situations. Some results along
these lines have been obtained in [9] for asynchronous systems.

At the networking layer, important issues to study include
multiple cells and the effect of traffic burstiness such as
voice activity. In fact, we believe it is already possible to
directly draw some insights into these issues from some of
our present results. For example, despite the fact that we have
not addressed voice activity in an explicit way, it is clear
from Theorem 3.1 and the notion of effective interference that
the “averaging of voice activity” property of the conventional
receiver will carry over to the MMSE receiver, in contrast to
claims made in [23]. Furthermore, we have demonstrated that
simple power-control mechanisms can be used for resource
allocation in almost exactly the same way that they are used
in the IS95 standard, and this will clearly also hold in the
multiple-cell scenario (indeed, see [21]). It is important to note
that the effective bandwidth concept we have developed for the
MMSE receiver is only valid in the perfectly power-controlled
single-cell case. However, the concept of effective interference
applies with or without perfect power control, and may prove
more useful in the multicell context.

In a TDMA or FDMA system, the network resource is
shared amongst users via disjoint frequency and time slots,
and these models provide a simple abstraction of the resource
consumed by a user at the physical layer. Such an abstraction
allows a clean separation between the physical layer and
networking layer resource-allocation problems, such as call
admissions control, cell handoffs, and resource allocation for
bursty traffic. It is hoped that the effective bandwidth results
in the present paper will be a first step in providing such
an abstraction for systems with multiuser receivers. It must
be emphasized, however, that the results reported here are
asymptotic in the system size. Thus a better understanding of
the performance fluctuations in finite-size systems is needed
before they can be directly applied to real-time control prob-
lems such as admission control [7]. We note that a recent
paper, [20], provides Central Limit theorems to characterize
the performance fluctuations around the asymptotic limits.

APPENDIX A
A HEURISTIC DERIVATION OF THEOREM 3.1

In this appendix, we gave an alternative and heuristic
derivation of (4), without invoking the Stieltjes transform

characterization of the limiting eigenvalue distribution (11).
The goal is to shed more light into the form of the expression
and to provide some intuition about the decoupling of the
interference from different users and the consequent linearity
in the effective bandwidth characterization of the capacity
region. The derivation given here makes use of some ideas
developed in [27] but is self-contained.

We first give a formula for the MMSE receiver and the
associated SIR under the MMSE receiver, alternative but
equivalent to (2) and (3). First recall the channel model in
matrix form

where is the matrix the columns of which are the signature
sequences of the users. If is the vector MMSE estimate
of , a direct application of the orthogonality principle

yields

and the covariance matrix of the error is given by

(22)

where is the covariance matrix of .
Right-multiplying the above equation with and taking
the trace of both sides, we get

(23)

using the fact

(24)

where ’s are the eigenvalues of the matrix . If we let

MMSE

be the (normalized) minimum mean-square error for user,
then (24) says that

MMSE (25)

Now it is well known that the SIR and the MMSE error
are related as follows (see, e.g., [13]):

MMSE (26)

Substituting this into (25) and rearranging terms, we obtain

(27)

So far, we have not introduced any probabilistic model for the
spreading sequences, and this equation holds for every choice
of the sequences and for every. Now, let us assume the
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sequences are randomly chosen, and each component is i.i.d.,
and consider what happens when , , and
the empirical distribution of the received powers converges to

. The right-hand side of the above equation converges to

where is the limiting eigenvalue distribution of , and
by Lemma 4.3, converges to

Expressing everything in terms of , one can expect that the
limiting form of (27) to become3

Dividing throughout by and rearranging terms gives us the
desired fixed-point equation (4)

This development allows us to understand the linearity of
the effective bandwidth characterization of the capacity region.
First, consider the simpler case when , i.e., no power
constraint. Assuming that the spreading sequences span a space
of dimension . Then precisely of the
eigenvalues ’s are nonzero. Equation (25) becomes

MMSE

Note that the total MMSE of the users is a constant, irrespec-
tive of the received powers of the users. Since the SIR of a
user is a function of the MMSE error, this is the reason for the
linearity of the capacity region with no power constraint. For
the case when there are power constraints (i.e., ), the
situation is more subtle. Asymptotically, the right-hand side of
(25) depends on the received powers of the users only through

which can be interpreted as the SIR achieved by a user with
unit received power.

APPENDIX B
PROOFS

Proof of Proposition 3.3

Now

3This is the heuristic step of the derivation.

Clearly, converges to in probability, by the weak law
of large numbers. We now look at the interference from the
other users. Consider a scaled version of the crosscorrelation
between the signature sequences of user 1 and user

where

Also, define Let us first condition on a
random realization of powers . Then

(28)

By expanding out the product, we obtain that for , the
term

equals

(29)

Expanding out the first term on the right-hand side, we obtain

Now each of these expectations is zero except when
and , so it reduces to . Now,

of these terms are unity, and are , which
is , so it follows that the first term on the right-hand side
of (29) is . In a similar manner, the second
term can be shown to be and the third term is .
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Returning to the expansion of (28), we note that for all

equals

(30)

Expanding out the first term we obtain

and each of these expectations is zero, unless and
, or and , or and .

In each of these nonzero cases, the expectations are and
there are of them, so the first term of (30) is .
Similarly, for the other two terms. We conclude that

as . But by our assumption that the empirical distri-
bution function of powers converges to a deterministic limit,
it follows that

and hence that for any

and this is true for any realization . Hence, for all

But , which implies mean-square con-
vergence of to , and hence conver-
gence in probability. So we have

in probability. We conclude that

in probability

Proof of Lemma 4.2

Let . We compute the first and second moments
of conditional on an arbitrary realization of .

Since the ’s are independent and zero mean, the terms
in the expectation above are zero whenever it has one random
variable which has a different index than the other three. Hence

the last step using the orthonormality of the rows of. Now
if we add orthonormal rows to to construct an -by-
orthogonal matrix , then the columns of are orthonormal.
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This implies that for every column

Hence

and

(31)

and hence

Using Chebyshev’s inequality, we have for every

Picking the constant yields the desired result.

Proof of Lemma 4.3

From (3)

Let be the eigenvalues of . Write
as , where

Let . Then

Fix a . Pick a finite partition
of such that

(32)

and

(33)

where are the left and right endpoints of the
interval , respectively.

Let be the empirical distribution of the eigenvalues of
. Fix , and consider the events

for all

for all

If both events and hold, then we have

from (32)

and, similarly,

from (32)

Hence, given any , one can pick and
such that

whenever events and occur. Thus by the union of events
bound

(34)

and

By Theorem 4.1, each of the probabilities in the sum go to
zero as . Hence . Now

for some

by Lemma 4.2
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which approaches as . Hence, from (34), we can
conclude that

in probability
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