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Abstract—We consider the design of channel codes for im-
proving the data rate and/or the reliability of communications
over fading channels using multiple transmit antennas. Data is
encoded by a channel code and the encoded data is split into
n streams that are simultaneously transmitted usingn transmit
antennas. The received signal at each receive antenna is a linear
superposition of then transmitted signals perturbed by noise. We
derive performance criteria for designing such codes under the
assumption that the fading is slow and frequency nonselective.
Performance is shown to be determined by matrices constructed
from pairs of distinct code sequences. The minimum rank among
these matrices quantifies thediversity gain, while the minimum
determinant of these matrices quantifies thecoding gain. The
results are then extended to fast fading channels. The design
criteria are used to design trellis codes for high data rate wireless
communication. The encoding/decoding complexity of these codes
is comparable to trellis codes employed in practice over Gaussian
channels. The codes constructed here provide the best tradeoff
between data rate, diversity advantage, and trellis complexity.
Simulation results are provided for 4 and 8 PSK signal sets
with data rates of 2 and 3 bits/symbol, demonstrating excellent
performance that is within 2–3 dB of the outage capacity for these
channels using only 64 state encoders.

Index Terms—Array processing, diversity, multiple transmit
antennas, space–time codes, wireless communications.

I. INTRODUCTION

A. Motivation

CURRENT cellular standards support circuit data and fax
services at 9.6 kb/s and a packet data mode is being

standardized. Recently, there has been growing interest in
providing a broad range of services including wire-line voice
quality and wireless data rates of about 64–128 kb/s (ISDN)
using the cellular (850-MHz) and PCS (1.9-GHz) spectra [2].
Rapid growth in mobile computing is inspiring many proposals
for even higher speed data services in the range of 144 kb/s
(for microcellular wide-area high-mobility applications) and
up to 2 Mb/s (for indoor applications) [1].

The majority of the providers of PCS services have further
decided to deploy standards that have been developed at
cellular frequencies such as CDMA (IS-95), TDMA (IS-54/IS-
136), and GSM (DCS-1900). This has led to considerable
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effort in developing techniques to provide the aforementioned
new services while maintaining some measure of backward
compatibility. Needless to say, the design of these techniques
is a challenging task.

Band-limited wireless channels are narrow pipes that do not
accommodate rapid flow of data. Deploying multiple transmit
and receive antennas broadens this data pipe. Information the-
ory [14], [35] provides measures of capacity, and the standard
approach to increasing data flow is linear processing at the
receiver [15], [44]. We will show that there is a substantial
benefit in merging signal processing at the receiver with
coding technique appropriate to multiple transmit antennas.
In particular, the focus of this work is to propose a solution
to the problem of designing a physical layer (channel coding,
modulation, diversity) that operate at bandwidth efficiencies
that are twice to four times as high as those of today’s systems
using multiple transmit antennas.

B. Diversity

Unlike the Gaussian channel, the wireless channel suffers
from attenuation due to destructive addition of multipaths in
the propagation media and due to interference from other users.
Severe attenuation makes it impossible for the receiver to
determine the transmitted signal unless some less-attenuated
replica of the transmitted signal is provided to the receiver.
This resource is calleddiversity and it is the single most
important contributor to reliable wireless communications.
Examples of diversity techniques are (but are not restricted to)

• Temporal Diversity:Channel coding in conjunction with
time interleaving is used. Thus replicas of the transmit-
ted signal are provided to the receiver in the form of
redundancy in temporal domain.

• Frequency Diversity:The fact that waves transmitted on
different frequencies induce different multipath structure
in the propagation media is exploited. Thus replicas of
the transmitted signal are provided to the receiver in the
form of redundancy in the frequency domain.

• Antenna Diversity:Spatially separated or differently po-
larized antennas are used. The replicas of transmitted
signal are provided to the receiver in the form of redun-
dancy in spatial domain. This can be provided with no
penalty in bandwidth efficiency.

When possible, cellular systems should be designed to encom-
pass all forms of diversity to ensure adequate performance
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[26]. For instance, cellular systems typically use channel
coding in combination with time interleaving to obtain some
form of temporal diversity [28]. In TDMA systems, frequency
diversity is obtained using a nonlinear equalizer [4] when
multipath delays are a significant fraction of symbol interval.
In DS-CDMA, RAKE receivers are used to obtain frequency
diversity. Antenna diversity is typically used in the up-link
(mobile-to-base) direction to provide the link margin and
cochannel interference suppression [40]. This is necessary to
compensate for the low power transmission from mobiles.

Not all forms of diversity can be available at all times. For
example, in slow fading channels, temporal diversity is not an
option for delay-sensitive applications. When the delay spread
is small, frequency (multipath) diversity is not an option. In
macrocellular and microcellular environments, respectively,
this implies that the data rates should be at least several
hundred thousand symbols per second and several million
symbols per second, respectively. While antenna diversity at
a base-station is used for reception today, antenna diversity
at a mobile handset is more difficult to implement because
of electromagnetic interaction of antenna elements on small
platforms and the expense of multiple down-conversion RF
paths. Furthermore, the channels corresponding to different
antennas are correlated, with the correlation factor determined
by the distance as well as the coupling between the antennas.
Typically, the second antenna is inside the mobile handset,
resulting in signal attenuation at the second antenna. This
can cause some loss in diversity benefit. All these factors
motivate the use of multiple antennas at the base-station for
transmission.

In this paper, we consider the joint design of coding,
modulation, transmit and receive diversity to provide high
performance. We can view our work as combined coding and
modulation for multi-input (multiple transmit antennas) multi-
output (multiple receive antennas) fading channels. There
is now a large body of work on coding and modulation
for single-input/multi-output channels [5], [10], [11], [29],
[30], [38], and [39], and a comparable literature on receive
diversity, array processing, and beamforming. In light of these
research activities, receive diversity is very well understood.
By contrast, transmit diversity is less well understood. We
begin by reviewing prior work on transmit diversity.

C. Historical Perspective on Transmit Diversity

Systems employing transmit fall into three general cate-
gories. These are

• schemes using feedback,
• those with feedforward or training information but no

feedback, and
• blind schemes.

The first category uses implicit or explicit feedback of
information from the receiver to the transmitter to configure
the transmitter. For instance, in time-division duplex systems
[16], the same antenna weights are used for reception and
transmission, so feedback is implicit in the appeal to channel
symmetry. These weights are chosen during reception to
maximize the signal-to-noise ratio (SNR), and during trans-

mission to weight the amplitudes of the transmitted signals.
Explicit feedback includes switched diversity with feedback
[41] as well as techniques that use spatiotemporal-frequency
water pouring [27] based on the feedback of the channel
response. However, in practice, vehicle movements or inter-
ference causes a mismatch between the state of the channel
perceived by the transmitter and that perceived by receiver.

Transmit diversity schemes mentioned in the second cat-
egory use linear processing at the transmitter to spread the
information across the antennas. At the receiver, information
is obtained by either linear processing or maximum-likelihood
decoding techniques. Feedforward information is required to
estimate the channel from the transmitter to the receiver. These
estimates are used to compensate for the channel response
at the receiver. The first scheme of this type was proposed
by Wittneben [43] and it includes the delay diversity scheme
of Seshadri and Winters [32] as a special case. The linear
processing approach was also studied in [15] and [44]. It has
been shown in [42] that delay diversity schemes are indeed
optimal in providing diversity in the sense that the diversity
advantage experienced by an optimal receiver is equal to the
number of transmit antennas. We can view the linear filter as
a channel code that takes binary data and creates real-valued
output. It is shown that there is significant gain to be realized
by viewing this problem from a coding perspective rather than
purely from the signal processing point of view.

The third category does not require feedback or feedforward
information. Instead, it uses multiple transmit antennas com-
bined with channel coding to provide diversity. An example of
this approach is to combine phase sweeping transmitter diver-
sity of [18] with channel coding [19]. Here a small frequency
offset is introduced on one of the antennas to create fast fading.
An appropriately designed channel code/interleaver pair is
used to provide diversity benefit. Another scheme is to encode
information by a channel code and transmit the code symbols
using different antennas in an orthogonal manner. This can be
done either by frequency multiplexing [9], time multiplexing
[32], or by using orthogonal spreading sequences for different
antennas [37]. A disadvantage of these schemes over the
previous two categories is the loss in bandwidth efficiency due
to the use of the channel code. Using appropriate coding, it is
possible to relax the orthogonality requirement needed in these
schemes and obtain the diversity as well as coding advantage
offer without sacrificing bandwidth. This is possible when the
whole system is viewed as a multiple-input/multiple-output
system and suitable codes are used.

Information-theoretic aspects of transmit diversity were
addressed in [14], [25], and [35]. We believe that Telatar
[35] was the first to obtain expressions for capacity and
error exponents for multiple transmit antenna system in the
presence of Gaussian noise. Here, capacity is derived under the
assumption that fading is independent from one channel use
to the other. At about the same time, Foschini and Gans [14]
derived the outage capacity under the assumption that fading
is quasistatic; i.e., constant over a long period of time, and
then changes in an independent manner. A particular layered
space–time architecture was shown to have the potential to
achieve a substantial fraction of capacity. A major conclusion
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Fig. 1. The block diagram of a delay diversity transmitter.

of these works is that the capacity of a multi-antenna systems
far exceeds that of a single-antenna system. In particular,
the capacity grows at least linearly with the number of
transmit antennas as long as the number of receive antennas
is greater than or equal to the number of transmit antennas.
A comprehensive information-theoretic treatment for many of
the transmit diversity schemes that have been studied before
is presented by Narula, Trott, and Wornell [25].

D. Space–Time Codes

We consider the delay diversity scheme as proposed by
Wittneben [44]. This scheme transmits the same information
from both antennas simultaneously but with a delay of one
symbol interval. We can view this as a special case of the
arrangement in Fig. 1, where the information is encoded by
a channel code (here the channel code is a repetition code of
length ). The output of the repetition code is then split into
two parallel data streams which are transmitted with a symbol
delay between them. Note that there is no bandwidth penalty
due to the use of the repetition code, since two output-channel
symbols are transmitted at each interval.

It was shown in [32], via simulations, that the effect of
this technique is to change a narrowband purely frequency-
nonselective fading channel into a frequency-selective fad-
ing channel. Simulation results further demonstrated that a
maximum-likelihood sequence estimator at the receiver is
capable of providing dual branch diversity.

When viewed in this framework, it is natural to ask if
it is possible to choose a channel code that is better than

the repetition code in order to provide improved
performance while maintaining the same transmission rate?

We answer the above question affirmatively and propose a
new class of codes for this application referred to as theSpace–
Time Codes. The restriction imposed by the delay element in
the transmitter is first removed. Then performance criteria are
established for code design assuming that the fading from each
transmit antenna to each receive antenna is Rayleigh or Rician.
It is shown that the delay diversity scheme of Seshadri and
Winters [32] is a specific case of space–time coding.

In Section II, we derive performance criteria for design-
ing codes. For quasistatic flat Rayleigh or Rician channels,
performance is shown to be determined by the diversity
advantage quantified by the rank of certain matrices and by
the coding advantage that is quantified by the determinants of
these matrices. These matrices are constructed from pairs of
distinct channel codewords. For rapidly changing flat Rayleigh
channels, performance is shown to be determined by the
diversity advantage quantified by the generalized Hamming
distance of certain sequences and by the coding advantage that
is quantified by the generalized product distance of these se-
quences. These sequences are constructed from pairs of distinct
codewords. In Section III, this performance criterion is used to
design trellis codes for high data rate wireless communication.
We design coded modulation schemes based on 4-PSK, 8-PSK,
and 16-QAM that perform extremely well and can operate
within 2–3 dB of the outage capacity derived by Foschini and
Gans [14]. For a given data rate, we compute the minimal
constraint length, the trellis complexity required to achieve a
certain diversity advantage, and we establish an upper bound
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Fig. 2. The block diagram of the transmitter.

on the data rate as a function of the constellation size and
diversity advantage. For a given diversity, we provide explicit
constructions of trellis codes that achieve the minimum trellis
complexity as well as the maximum data rate. Then, we revisit
delay diversity and show that some of the codes constructed
before have equivalent delay diversity representations. This
section also includes multilevel constructions which provide an
efficient way to construct and decode codes when the number
of antennas is large (4–8). It is further shown that it is not
possible for block-coded modulation schemes to outperform
trellis codes constructed here at a given diversity advantage
and data rate. Simulation results for many of the codes that
we have constructed and comparisons to outage capacity for
these channels are also presented. We then consider design
of space–time codes that guarantee a diversity advantage of

when there is no mobility and a diversity advantage of
when the channel is fast-fading. In constructing these

codes, we combine the design criteria for rapidly changing
flat Rayleigh channels with that of quasistatic flat Rayleigh
channels to arrive at a hybrid criteria. We refer to these
codes assmart greedy codeswhich also stands forlow-rate
multidimensional space–time codes for both slow and rapid
fading channels. We provide simulation results indicating that
these codes are ideal for increasing the frequency reuse factor
under a variety of mobility conditions. Some conclusions are
made in Section IV.

II. PERFORMANCE CRITERIA

A. The System Model

We consider a mobile communication system where the
base-station is equipped with antennas and the mobile is
equipped with antennas. Data is encoded by the channel

encoder, the encoded data goes through a serial-to-parallel
converter, and is divided into streams of data. Each stream
of data is used as the input to a pulse shaper. The output
of each shaper is then modulated. At each time slot, the
output of modulator is a signal that is transmitted using
transmit antenna ( antenna) for . We emphasize
that the signals are transmitted simultaneously each from a
different transmit antenna and that all these signals have the
same transmission period. The signal at each receive antenna
is a noisy superposition of the transmitted signals corrupted
by Rayleigh or Rician fading (see Fig. 2). We assume that the
elements of the signal constellation are contracted by a factor
of chosen so that the average energy of the constellation
is .

At the receiver, the demodulator computes a decision statis-
tic based on the received signals arriving at each receive
antenna . The signal received by antenna
at time is given by

(1)

where the noise at time is modeled as independent
samples of a zero-mean complex Gaussian random variable
with variance per dimension. The coefficient is the
path gain from transmit antennato receive antenna. It is
assumed that these path gains are constant during a frame and
vary from one frame to another (quasistatic flat fading).

B. The Case of Independent Fade Coefficients

In this subsection, we assume that the coefficients are
first modeled as independent samples of complex Gaussian
random variables with possibly nonzero complex mean
and variance per dimension. This is equivalent to the
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assumption that signals transmitted from different antennas
undergo independent fades.

We shall derive a design criterion for constructing codes
under this transmission scenario. We begin by establishing
the notation and by reviewing the results from linear algebra
that we will employ. This notation will also be used in the
sequel to this paper [34]. Let and

be complex vectors in the-dimensional
complex spaceC . The inner product of and is given by

where denotes the complex conjugate of. For any matrix
, let denote the Hermitian (transpose conjugate) of.

Recall from linear algebra that an matrix is Hermitian
if . The matrix is nonnegative definiteif
for any complex vector . An matrix is unitary
if where is the identity matrix. An matrix
is a square rootof an matrix if . We shall
make use of the following results from linear algebra [20].

• An eigenvector of an matrix corresponding to
eigenvalue is a vector of unit length such that

for some complex number. The vector space
spanned by the eigenvectors of corresponding to the
eigenvalue zero has dimension , where is the rank
of .

• Any matrix with a square root is nonnegative
definite.

• For any nonnegative-definite Hermitian matrix, there
exists a lower triangular square matrix such that

.
• Given a Hermitian matrix , the eigenvectors of span

C , the complex space of dimensions and it is easy
to construct an orthonormal basis ofC consisting of
eigenvectors . Furthermore, there exists a unitary matrix

and a real diagonal matrix such that .
The rows of are an orthonormal basis ofC given
by eigenvectors of . The diagonal elements of are
the eigenvalues , of counting
multiplicities.

• The eigenvalues of a Hermitian matrix are real.
• The eigenvalues of a nonnegative-definite Hermitian ma-

trix are nonnegative.

Let us assume that each element of the signal constellation
is contracted by a scale factor chosen so that the average
energy of the constellation elements is. Thus our design
criterion is not constellation-dependent and applies equally
well to 4-PSK, 8-PSK, and 16-QAM.

We consider the probability that a maximum-likelihood
receiver decides erroneously in favor of a signal

assuming that

was transmitted.

Assuming ideal channel state information (CSI), the proba-
bility of transmitting and deciding in favor of at the decoder
is well approximated by

(2)

where is the noise variance per dimension and

(3)

This is just the standard approximation to the Gaussian tail
function.

Setting , we rewrite (3) as

After simple manipulations, we observe that

(4)

where and
for . Thus

(5)

where

Since is Hermitian, there exists a unitary matrix
and a real diagonal matrix such that . The
rows of are a complete orthonormal basis
of C given by eigenvectors of . Furthermore, the diagonal
elements of are the eigenvalues of
counting multiplicities. By construction, the matrix

...
...

...
...

...
...

...

(6)

is clearly a square root of . Thus the eigenvalues of
are nonnegative real numbers.

Next, we express in terms of the eigenvalues of
the matrix .

Let , then

(7)

Next, recall that are samples of a complex Gaussian
random variable with mean . Let
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Since is unitary, is an orthonormal
basis of C and are independent complex Gaussian
random variables with variance per dimension and mean

. Let . Thus are
independent Rician distributions with pdf

for , where is the zero-order modified Bessel
function of the first kind.

Thus to compute an upper bound on the average probability
of error, we simply average

with respect to independent Rician distributions of to
arrive at

(8)

We next examine some special cases.
The Case of Rayleigh Fading:In this case, and

asa fortiori for all and . Then the inequality (8)
can be written as

(9)

Let denote the rank of matrix , then the kernel of has
dimension and exactly eigenvalues of are zero.
Say the nonzero eigenvalues ofare , then it
follows from inequality (9) that

(10)

Thus a diversity advantage of and a coding advantage
of is achieved. Recall that is the
absolute value of the sum of determinants of all the principal

cofactors of . Moreover, it is easy to see that the ranks
of , and are equal.

Remark: We note that the diversity advantage is the power
of SNR in the denominator of the expression for the pairwise
error probability derived above. The coding advantage is an
approximate measure of the gain over an uncoded system
operating with the same diversity advantage.

Thus from the above analysis, we arrive at the following
design criterion.

Design Criteria for Rayleigh Space–Time Codes:

• The Rank Criterion:In order to achieve the maximum
diversity , the matrix has to be full rank for
any codewords and . If has minimum rank

over the set of two tuples of distinct codewords, then
a diversity of is achieved. This criterion was also
derived in [15].

• The Determinant Criterion:Suppose that a diversity ben-
efit of is our target. The minimum ofth roots of the
sum of determinants of all principal cofactors of

taken over all pairs of distinct
codewords and corresponds to the coding advantage,
where is the rank of . Special attention in the
design must be paid to this quantity for any codewords
and . The design target is making this sum as large as
possible. If a diversity of is the design target, then
the minimum of the determinant of taken over all
pairs of distinct codewords and must be maximized.

We next study the behavior of the right-hand side of inequality
(8) for large signal-to-noise ratios. At sufficiently high signal-
to-noise ratios, one can approximate the right-hand side of
inequality (8) by

(11)

Thus a diversity of and a coding advantage of

is achieved. Thus the following design criteria is valid for the
Rician space–time codes for large signal-to-noise ratios.
Design Criteria for The Rician Space–Time Codes:

• The Rank Criterion:This criterion is the same as that
given for the Rayleigh channel.

• The Coding Advantage Criterion:Let denote the
sum of all the determinants of principal cofactors
of , where is the rank of . The minimum
of the products

taken over distinct codewords and has to be maxi-
mized.

Note that one could still use the coding advantage
criterion, since the performance will be at least as good
as the right-hand side of inequality (9).

C. The Case of Dependent Fade Coefficients

In this subsection, we assume that the coefficients are
samples of possibly dependent zero-mean complex Gaussian
random variables having variance per dimension. This is
the Rayleigh fading, but the extension to the Rician case is
straightforward.
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To this end, we consider the matrix

...
...

...
...

...
...

...
...

where denotes the all-zero matrix. If

,then (5) can be written as

(12)

Let denote the correlation matrix of. We assume
that is full rank. The matrix , being a nonnegative-definite
square Hermitian matrix, has a square rootwhich is an

lower triangular matrix. The diagonal elements of
are unity, so that the rows of are of length one. Let

, then it is easy to see that the components of
are uncorrelated complex Gaussian random variables with

variance per dimension. The mean of the components of
can be easily computed from the mean of and the

matrix . In particular, if the have mean zero, so do the
components of .

By (12), we arrive at the conclusion that

(13)

We can now follow the same argument as in the case of
independent fades with replaced by . It
follows that the rank of has to be maximized.
Since is full rank, this amounts to maximizing

Thus the rank criterion given for the independent fade coeffi-
cients holds in this case as well.

Since have zero mean, so do the components of. Thus
by a similar argument to that of the case of independent fade
coefficients, we arrive at the conclusion that the determinant
of must be maximized. This equals to

In this light the determinant criterion given in the case of
independent fade coefficients holds as well. Furthermore, by
comparing this case to the case of independent fade coeffi-
cients, it is observed that a penalty of
decibels in the coding advantage occurs. This approximately
quantifies the loss due to dependence.

It follows from a similar argument that the rank criterion is
also valid for the Rician case and that any code designed for
the Rayleigh channel performs well for the Rician channel
even if the fade coefficients are dependent. To obtain the
coding advantage criterion, one has to compute the mean of
the components of and apply the coding advantage criterion
given in the case of independent Rician fade coefficients. This
is a straightforward but tedious computation.

D. The Case of Rapid Fading

When the fading is rapid, we model the channel by the
mathematical equation

(14)

The coefficients for
are modeled as independent samples of

a complex Gaussian random variable with mean zero and
variance per dimension. This assumption corresponds to
very fast Rayleigh fading but the generalization to Rician
fading is straightforward. Also, are samples of independent
zero-mean complex Gaussian random variables with variance

per dimension.
As in previous subsections, we assume that the coefficients

for
are known to the decoder. The probability of transmitting

and deciding in favor of

at the maximum-likelihood decoder is well approximated by

where

This is just the standard approximation to the Gaussian tail
function. Let

and denote the matrix with the element atth row
and th column equal to . Then it is easy
to see that

The matrix is Hermitian, thus there exist a unitary
matrix and a diagonal matrix such that

[20]. The diagonal elements of , denoted
here by , are the eigenvalues of count-
ing multiplicities. Since is Hermitian, these eigenvalues
are real numbers. Let

then for
are independent complex Gaussian variables with

mean zero and variance per dimension and
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By combining this with (3) and (15) and averaging with respect
to the Rayleigh distribution of , we arrive at

(15)

We next examine the matrix . The columns of are
all different multiples of

Thus has rank if and rank
zero otherwise. It follows that elements in the list

are zeros and the only possibly nonzero element in this list is
. By (15), we can now conclude that

(16)

Let denote the set of time instances such that
and let denote the number of elements

of . Then it follows from (16) that

(17)

It follows that a diversity of is achieved. Exam-
ining the coefficient of leads to a design
criterion.
Design Criteria for Rapid fading Rayleigh Channels:

• The Distance Criterion:In order to achieve the diversity
in a rapid fading environment, for any two codewords

and the strings and must be
different at least for values of .

• The Product Criterion:Let denote the set of time
instances such that
and let

Then to achieve the most coding advantage in a rapid
fading environment, the minimum of the products

taken over distinct codewordsand must be maximized.

III. CODE CONSTRUCTION

A. Fundamental Limits on Outage Capacity

Let us consider a communication system employingtrans-
mit and one receive antennas where the fading is quasistatic
and flat. Intuition suggests that, there must come a point
where adding more transmit antennas will not make much
of a difference and this can be seen in the mathematics
of outage capacity. Foschini and Gans [14] prove that the
capacity of the aforementioned system is a random variable
of the form , where is a random

Fig. 3. 4-PSK and 8-PSK constellations.

variable formed by summing the squares of independent
Gaussian random variables with mean zero and variance
one. This means that by the strong law of large number

in distribution. Practically speaking, for ,
and the capacity is the familiar Gaussian capacity

SNR per complex dimension. Thus in the presence
of one receive antenna, little can be gained in terms of
outage capacity by using more than four transmit antennas. A
similar argument shows that if there are two receive antennas,
almost all the capacity increase can be obtained using
transmit antennas. These observations also follow from the
capacity plots given by Telatar [35]. This paper considers
communication systems with at most two receive antennas,
so we focus on the case that the number of transmit antennas
is less than six. If more transmit and receive antennas are
used, we can use the coding methods given in [33], where
array processing and space–time coding are combined.

Our focus is mostly on low-delay applications. We thus only
allow coding inside a frame of data as coding across different
frames introduces delay. This emphasis on the method of
coding motivated the choice of outage capacity (rather than
Shannon’s capacity) as the measure of achievable perfor-
mance.

B. Code Construction for Quasi-Static Flat Fading Channels

We proceed to use the criteria derived in the previous
section to design trellis codes for a wireless communication
system that employs transmit antennas and (optional) receive
antenna diversity where the channel is quasistatic flat fading
channel. The encoding for these trellis codes is obvious,
with the exception thatat the beginning and the end of each
frame, the encoder is required to be in the zero state. At
each time , depending on the state of the encoder and the
input bits a transition branch is chosen. If the label of this
branch is , then transmit antenna is used to
send constellation symbols, and all these
transmissions are simultaneous.

Let us consider the 4-PSK and 8-PSK constellations as
given in Fig. 3. In Figs. 4–6, we provide 4-PSK codes for
transmission of 2 b/s/Hz using two transmit antennas. As-
suming, one receive antenna, these codes provide a diversity
advantage of two. Similarly, in Figs. 7–9, we provide 8-PSK
codes for transmission of 3 b/s/Hz using two transmit antennas.
Assuming, one receive antenna, these codes provide a diversity
advantage of two. We did not include the 64-state 4-PSK and
8-PSK codes for brevity of presentation.

We next consider decoding of these codes. Assuming
ideal channel state information, the path gains ,

are known to the decoder.
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Fig. 4. 2-space–time code, 4-PSK, 4 states, 2 b/s/Hz.

Fig. 5. 2-space–time codes, 4-PSK, 8 and 16 states, 2 b/s/Hz.

Fig. 6. 2-space–time code, 4-PSK, 32 states, 2 b/s/Hz.

Fig. 7. 2-space–time code, 8-PSK, 8 states, 3 b/s/Hz.

Fig. 8. 2-space–time code, 8-PSK, 16 states, 3 b/s/Hz.

Fig. 9. 2-space–time code, 8-PSK, 32 states, 3 b/s/Hz.

Assuming that is the received signal at receive antenna
at time , the branch metric for a transition labeled
is given by

The Viterbi algorithm is then used to compute the path
with the lowest accumulated metric. In the absence of ideal
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Fig. 10. Codes for 4-PSK with rate 2 b/s/Hz that achieve diversity4 with two receive and two transmit antennas.

Fig. 11. Codes for 4-PSK with rate 2 b/s/Hz that achieve diversity2 with one receive and two transmit antennas.

channel state information, an analysis carried in [34] gives the
appropriate branch metrics. Channel estimation algorithm for
this case is also considered in [34].

The aforementioned trellis codes arespace–timetrellis
codes, as they combine spatial and temporal diversity tech-
niques. Furthermore, if a space–time trellis code guarantees a
diversity advantage of for the quasistatic flat fading channel
model described above (given one receive antenna), we say
that it is an -space–timetrellis code. Thus the codes of
Figs. 4–9 are -space-time codes.

In Figs. 10–13, we provide simulation results for the perfor-
mance of these codes with two transmit and with one and two
receive antennas. For comparison, the outage capacity given
in [14] is included in Figs. 14 and 15. We observe that, at
the frame error rate of (In these simulations, each frame
consists of 130 transmissions out of each transmit antenna.),
the codes perform within 2.5 dB of the outage capacity. It
appears from the simulation results that the coding advantage
obtained by increasing the number of states increases as the
number of receive antennas is increased. We also observe that
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Fig. 12. Codes for 8-PSK with rate 3 b/s/Hz that achieve diversity4 with two receive and two transmit antennas.

Fig. 13. Codes for 8-PSK with rate 3 b/s/Hz that achieve diversity2 with one receive and two transmit antennas.

the coding advantage over the-state code is not as large
as that forecasted by the determinant criterion. This is not
unexpected, since the determinant criterion is approximate. For
instance, it takes no account of path multiplicity. Furthermore,
in the derivation of the design criteria, only the probability of
confusing two distinct codewords was considered. In any case,
simulation results demonstrate that the codes we constructed
perform very well.

The above codes are designed by hand and for fixed rate,
diversity advantage, constellation size, and trellis decoding
complexity the designer sought to maximize the coding ad-

vantage given by the determinant criterion. A natural question
is whether higher transmission rates are possible for 4-PSK
and 8-PSK constellation rates using-space–time codes? A
second question is whether simpler coding schemes exist?
Fundamental questions of this type are the focus of the next
section.

C. Tradeoff Between Rate, Diversity, Constellation
Size, and Trellis Complexity

We shall derive fundamental tradeoff between transmis-
sion rate, diversity advantage, constellation size, and trellis
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Fig. 14. Outage capacity for two receive and two transmit antennas.

Fig. 15. Outage capacity for one receive and two transmit antennas.

decoding complexity. For fixed rate, diversity advantage, con-
stellation size, and trellis decoding complexity, we seek to
maximize the coding advantage given by the determinant
criterion.

Consider a wireless system withtransmit and receive
antennas. It is known, from the result of previous sections that
a maximum diversity of can be achieved. Our objective of
code design must be achieving the maximum possible rate at a
diversity advantage of . The following theorem addresses
this issue.

Theorem 3.3.1:Consider an transmit, receive antenna
mobile communication system with a Rician transmission
model as given in the previous section. Let be the diversity

advantage of the system. Assuming that the signal constellation
has elements, the rate of transmissionsatisfies

(18)

in bits per second per Hertz, where is the maximum
size of a code length and minimum Hamming distance
defined over an alphabet of size .

Proof: Let denote the frame length. We consider the
superalphabet given by the -folded
Cartesian product of with itself. The mapping

taking the codeword
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in to

in is one-to-one. By the rank criterion, the matrix
given in (6) is of rank at least for any two distinct codewords

and . Thus at least rows of are nonzero. It
follows that and have Hamming distance at least

as codewords defined over . The alphabet has size ,
thus the number of codewords is bounded above by .
It follows that the rate of transmission is bounded above by
(18).

Corollary 3.3.1: Consider the Rician transmission model
with transmit and receive antennas. If the diversity
advantage is , then the transmission rate is at mostbits
per second per hertz.

Proof: It is known that and this is
achieved by a repetition code [24].

Remark: For 4-PSK, 8-PSK, or 16-QAM constellations,
respectively, a diversity advantage of places an upper
bound on transmission rate of 2, 3, and 4 b/s/Hz.

It follows also from the above that there is a fundamental
tradeoff between constellation size, diversity, and the trans-
mission rate. We relate this tradeoff to the trellis complexity
of the code.

Lemma 3.3.1:The constraint length of an-space–time
trellis code is at least .

Proof: Consider two parallel transitions corresponding to
the constraint length in the trellis diagram. Without loss of
generality, we may assume that one of these transitions corre-
sponds to all-zero path and the other corresponds
to

If , the rank criterion is easily seen to be violated.

Lemma 3.3.2:Let denote the transmission rate of a
multiple-antenna system employed in conjunction with an
-space–time trellis code. The trellis complexity of the

space–time code is at least .
Proof: Since the transmission rate isbits per second

per hertz, the number of branches leaving each state of the
trellis diagram is . Thus at time instance , there are

paths that have diverged from the zero state of the
trellis at time zero. By Lemma 3.3.1, none of these paths can
merge at the same state. Thus there are at least states
in the trellis.

The codes constructed in Figs. 4 and 7 and some of those
to be constructed later, achieve this upper bound. Thus the
bound of Theorem 3.3.1 is tight. This also means that these
codes produce the optimal tradeoff between the transmission
rate, diversity, trellis complexity, and constellation size.

D. Geometrical Uniformity and Its Applications

For the Gaussian channel, the method of constructing trellis
codes based on lattices and cosets allowed coding theorists
to work with larger constellations and more complicated set
partitioning schemes [7]. Here, we examine the algebraic

structure of the codes presented in Section III-B. We begin
with the code of Fig. 4. This is an example of delay diversity
codes to be discussed later.

Example 3.4.1:Here the signal constellation is 4-PSK,
where the signal points are labeled by the elements of, the
ring of integers modulo as shown in Fig. 3. We consider
the -state trellis code shown in Fig. 4. The edge label
indicates that signal is transmitted over the first antenna
and that signal is transmitted over the second antenna. This
code has a very simple description in terms of a sequence

of binary inputs. The output signal pair at time
is given by

(19)
where the addition takes place in (cf. Calderbank and
Sloane [7]).

Following Forney [12], we shall say that a code is geo-
metrically uniform if given any two codewords there is
an isometry permuting the set of codewords such that

. For Rician transmission as above, the isome-
tries are unitary transformations of the underlying Complex
space. If a space–time code is geometrically uniform, then
it is easy to see that the performance is independent of the
transmitted codeword [12]. We claim that the code of Fig. 4
is geometrically uniform.

To this end, let and
be permutations of the elements of 4-PSK constellation. The
permutations and are realized by reflection in the
bisectors of the first and second quadrants of the complex
plane, respectively. In this light, they are isometries of the
complex space.

Given a codeword of the code of Fig. 4, we consider
the corresponding sequence of binary inputs. Let

C C C C be the isometry given by

Then

maps the all zero codeword to while preserving the code.
This proves the claim.

For a diversity advantage of, it is required that for any
pair of distinct codewords and the matrix

must have rank . This is evident from Fig. 4 or from the
algebraic description (19), for if the paths corresponding to
codewords and diverge at time and remerge at time ,
then the vectors and
are linearly independent. In fact, ,

, and .
To compute the coding advantage, we need to find code-

words and such that the determinant

(20)
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Fig. 16. State diagram of Example 3.4.1.

is minimized. As the code of this example is geometrically
uniform, we could assume without loss of generality thatis
the all zero codeword. We can attack (20) by replacing the
edge label by the complex matrix

This labeling is shown in Fig. 16.
Diverging from the zero state contributes a matrix of the

form

and remerging to the zero state contributes a matrix of the form

where . Thus (20) can be written as

(21)

with and . Hence the minimum determinant
is .

Remark: It is straightforward to prove that the codes of the
previous section are geometrically uniform. Indeed, we exam-
ine the 4-PSK trellis codes with 8, 16, and 32 states in Figs. 5

and 6. These codes can be, respectively, expressed by equa-
tions

in , using the same notation as the one employed in Example
3.4.1. These codes are geometrically uniform. The minimum
determinants are, respectively,, , and .

The design rulesthat guarantee the diversity in Figs. 4 and
7 are as follows.

• Design Rule 1:Transitions departing from the same state
differ in the second symbol.

• Design Rule 2:Transitions arriving at the same state
differ in the first symbol.

The rest of the codes are a bit trickier to analyze but it can
be confirmed using geometrical uniformity that the diversity
advantage is actually achieved.

E. Optimal Codes

Here, we construct some other codes that are optimal with
respect to the fundamental tradeoffs between rate, diversity,
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constellation size, and trellis complexity. First, we consider
the case when and design -space–time trellis codes.
Suppose that the constellation has elements. By
Corollary 3.3.1, the maximum transmission rate isbits per
second per hertz. On the other hand, Lemma 3.3.2 implies that
the number of states of any-space–time trellis code is at least

. The following lemma proves that all these bounds can be
attained together.

Lemma 3.5.1:There exists -space–time trellis codes de-
fined over a constellation of size having trellis complexity

and transmission rate bits per second per hertz.
Proof: Every block of bits naturally corresponds to

an element of , the ring of integers modulo . The
constellation alphabet can also be labeled with elements of

in a one-to-one and onto manner. Thus without loss of
generality, we identify both the input blocks and the states
of the encoder with the elements of . We consider the
trellis code having states corresponding to elements of

as defined next. Given that a block of lengthof bits
corresponding to is the input to the encoder and the encoder
is at state , the label of the transmission branch is

. The new state of the encoder is.
Given two distinct codewords and , the associated paths

in the trellis emerge from a state at time and remerge in
another state at a later time . It is easy to see that theth
and th columns of the matrix are independent.

Remark: The construction given above is just delay diver-
sity expressed in algebraic terms.

For the 4-PSK constellation, the code given by the above
Lemma appears in Fig. 4.

For the 8-PSK constellations, the code given by the above
lemma appears in Fig. 17. One can also consider the code of
Fig. 7. Assuming that the input to the encoder at timeis the
3 input bits , the output of the encoder at timeis

where the computation is performed in, the ring of integers
modulo , and the elements of the 8-PSK constellation have
the labeling given in Fig. 3. Design Rules 1 and 2 guarantee
diversity advantage for this code. We believe that the above
code optimizes the coding advantage (determinant criterion),
but unfortunately have not been able to prove this conjecture.
The minimum determinant of this code is.

As in the 4-PSK case, one can improve the coding advantage
of the above codes by constructing encoders with more states.
In fact, using the design criterion established in this paper,
we have designed-space–time trellis codes with number of
states up to 64 for 8-PSK and 16-QAM constellations. We
include the 16-state 16-QAM code as well (Figs. 18 and 19),
but for brevity, we avoided including the rest of these codes.
Design rules 1 and 2 (or simple extensions thereof) guarantee
diversity in all cases.

We conjecture that most of the codes presented above are
the best in terms of the determinant criterion, but we do not
have a proof to this effect.

Fig. 17. Space–time realization of a delay diversity 8-PSK code constructed
from a repetition code.

Fig. 18. The QAM constellation.

F. An -Space–Time Trellis Code for

Here, we design-space–time codes for . We construct
a -space–time code for a transmit antenna mobile commu-
nication system. The limit on transmission rate is 2 b/s/Hz.
Thus the trellis complexity of the code is bounded below by

. The input to the encoder is a block of lengthof bits
corresponding to an integer . The 64 states of
the trellis correspond to the set of all three tuples
with for . At state upon
input data , the encoder outputs elements of 4-
PSK constellation (see Fig. 3) and moves to state .
Given two codewords and , the associated paths in the
trellis diverge at time from a state and remerge in another
state at a later time . It is easy to see that the th,

th, th, and th columns of the matrix
are independent. Thus the above design gives a-space–time
code.

G. Coding with Delay Diversity

Here we observe that the delay diversity scheme of [32]
and [44] can be viewed as space–time coding, and that our
methods for analyzing performance apply to these codes.
Indeed, consider the delay diversity scheme of Fig. 1, where
the channel encoder is a rate block repetition code defined
over some signal constellation alphabet. This can be viewed
as a space–time code by defining

where and are the symbols of the equivalent space–time
code at time and is the output of the encoder at time.
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Fig. 19. 2-space–time 16-QAM code, 16 states, 4 b/s/Hz.

Next consider the 8-PSK signal constellation, where the
encoder maps a sequence of three bits at time to
with . It is easy to show that the equivalent
space–time code for this delay diversity code has the trellis
representation given in Fig. 17. The minimum determinant of
this code is .

Next, we consider the block code

of length defined over the alphabet 8-PSK instead of the
repetition code. This block code is the best in the sense of
product distance [32] among all the codes of cardinality
and of length defined over the alphabet 8-PSK. This means
that the minimum of the product distance
between pairs of distinct codewords and

is maximum among all such codes. The delay
diversity code constructed from this block code is identical to
the space–time code given by trellis diagram of Fig. 7. The
minimum determinant of this delay diversity code is thus.

The 16-state code for the 16-QAM constellation given in
Fig. 19, is obtained from the block code

using the same delay diversity construction. Again, this block
code is optimal in the sense of product distance.

The delay diversity code construction can also be gener-
alized to systems having more than two transmit antennas.
For instance, the 4-PSK-space–time code given before is
a delay diversity code. The corresponding block code is the
repetition code. By applying the delay diversity construction
to the 4-PSK block code

one can obtain a more powerful 4-PSK-space–time code
having the same trellis complexity.

It is an interesting open problem whether it is possible to
construct good space–time codes of a given complexity using
coding in conjunction with delay diversity. Note that coding
is an integral part of the delay diversity arrangement and is
not to be confused with outer coding.

H. Multilevel Space–Time Coding

Imai and Hirakawa [21] described a multilevel method
for constructing codes where the transmitted symbols are
obtained by combining codeword symbols from the component
codes. They also introduced a suboptimal multistage decoding
algorithm. Multilevel coding has been extended to Gaussian
channels (see [6] and the references therein).

Space–time codes may be designed with multilevel struc-
ture, and multistage decoding can be useful in some practical
communication systems, particularly when the number of
transmit antennas is high. This has the significant advantage
of reducing the decoding complexity.

Without loss of generality, we assume a signal constellation
consisting of signal points and a set partitioning of

based on subsets

where the number of elements of is equal to for all
. By such a set partitioning, we mean that

is the union of disjoint sets calledcosets of in ,
each having elements. The collection of cosets of

in must include as an element. Having the cosets
of in at hand, each coset is then divided into
disjoint sets each having elements. The subsets of

are called cosets of in . The collection of cosets of
in must include . Thus there are subsets of

with elements called the cosets of in . Trivially, the
collection of cosets of in includes . This procedure
is repeated until we arrive at cosets of in for all

. Let and for



760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

. Then contains cosets of
for all . Set partitioning of QAM and PSK
constellations were first introduced by Ungerboeck [36].

Corresponding to the aforementioned set partitioning,
there exist space–time encoders, namely, encoders

. It is required that all these encoders
have a trellis representation. Every
bits of input data is encoded using encoders
corresponding to the levels.

At each time depending on the state of theth encoder
and the input data, a branch of the trellis of theth encoder
is chosen which is labeled with blocks of bits denoted
by . For each , the
blocks then choose a point of the signal
constellation in the following way: the block chooses
a coset of in . The block chooses a coset

of in which is also a subset of , and so forth.
Finally, the block chooses a point of . The
chosen point is then transmitted using theth antenna at time
. Multilevel decoding is described in [21].

Let us suppose that the encoder of theth level has
states at time. One can view the multilevel code described
above as a space–time codewith states at
time . The states of at time correspond to -tuples

of states of encoders at
that time. There is a branch between states
and when goes from state to

for all . In this case, the branch labels
between these states is the set of symbols that are sent via
antennas when encoders
move from state to the state for all .
In this way, one can view a multilevel space–time code as a
regular space–time code with a multilevel structure that allows
simplified decoding. The penalty for this simplified decoding
is a loss in performance due in part to magnification of the
effective error coefficient. Also, in this way the design criterion
derived previously could be applied to the space–time code.
Alternatively, the criteria can be applied to the trellis of each
encoder providing different diversities at each level with the
levels decoded first given the higher diversities.

We provide an example of multilevel coding.
Consider a scheme using transmit antennas and an

8-PSK constellation. Suppose that a data rate of 5 b/s/Hz is
desired. We construct a multilevel scheme that has this data
rate and provides diversity advantage. If trellis space–time
coding is employed, at least states are required with 32
transitions leaving each state of the trellis. Instead, we employ
a multilevel code with multistage decoding [30].

At each time the input to the encoder is five bits of
information . The input sequence is encoded
using a repetition code of rate giving the output sequence

. The pair of bits and are encoded using a
parity-check code of rate yielding sequences and

. Let

be elements of the 8-PSK constellation, where the labeling is
given in Fig. 3. The transmitted signal from antenna
at time is .

At the decoder multistage decoding is performed. At first,
a decision on is made. A trellis diagram for has only
four states where the states depend on and . In such
a trellis diagram each branch has 15 parallel branches. There
are 32 branches leaving each state. It is easy to use the criterion
developed in this paper and observe that a diversity advantage
of on deciding the bits is guaranteed.

Assuming that are determined, the multistage
decoder performs decoding to determine . Here, the states
at time are given by the triplet , so there
are eight states in the trellis diagram. There are four parallel
transitions between any two connected states. The criteria
for diversity can be used to observe that assuming correct
decisions in the first stage of decoding, a diversity advantage
of two is achieved in the second stage.

In the third stage, the multilevel decoder determines
using a trellis. The states at timeare given by the triplet

, so there are eight states in the trellis
diagram. There are no parallel transitions between any two
connected states. Assuming correct decisions in the first and
second stage of decoding, a diversity advantage of two is
achieved in the third stage.

The total number of branches visited in decoding this
multilevel scheme is almost half as much as the one given
by the trellis space–time code having 32 states. Thus it is
natural to expect that multilevel coding is a good way to
produce powerful space–time codes for various high-bit-rate
applications if the number of antennas at the base-station is
high.

I. Space–Time Codes That Exploit Temporal
Variations: Smart Greedy Space–Time Codes

This subsection addresses the important problem of con-
structing codes for data transmission, not at rates greater than
today’s wireless systems, but operating at significantly lower
signal-to-noise ratios. This provides a better frequency reuse
factor. The second key issue addressed here is designing codes
that can take advantage of possible temporal variations in a
wireless channel to provide additional diversity. This has use
in providing quality service to both low- and high-mobility
users.

We provide examples of codes that address both these
key issues and refer to them aslow-rate multidimensional
space–time codes for both slow and rapid fading channelsor
smart–greedy space–timecodes. At the very highest level,
these are concatenated codes. As the function of the outer
code is fixing a small number of symbol errors, we focus
on the design of the inner code. The code is calledsmart and
greedybecause the encoder does not know the channel but can
exploit the benefits provided both by the transmit and receive
antennas as well as by possible rapid changes in the channel. It
is assumed that the transmitter does not know the channel but
seeks to choose a codebook that guarantees a diversity gain of

when there is no mobility and a diversity gain of
when the channel is fast fading.
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Fig. 20. The BPSK constellation.

When the fading is slow, it will be modeled as in Section
II as quasistatic. When fading is rapid, it will be modeled
as in Section II-D. In reality, we know that the situation is
something between these two extremes. It is thus expected
that a code designed using a hybrid criteria given by these two
extremes will perform well in a variety of mobility conditions.

We thus combine the criteria obtained in those subsections
to arrive at a hybrid design criteria.

A Hybrid Design Criteria for Smart–Greedy Space–Time
Codes:

• The Distance/Rank Criterion:In order to achieve the
diversity in a rapid fading environment, for any two
codewords and the strings and
must be different at least for values of .
Furthermore, let

...
...

...
...

...
...

...

(22)

If has minimum rank over the set of pairs of
distinct codewords, then a diversity of is achieved in
static flat fading environments.

• The Product/Determinant Criterion:Let denote
the set of time instances such that

and let

Then to achieve the most coding advantage in a rapid
fading environment, the minimum of the products

taken over distinct codewordsand must be maximized.
For the case of a static fading channel, the minimum of
th roots of the sum of determinants of all principal

cofactors of taken over all
pairs of distinct codewords and corresponds to the
coding advantage, whereis the rank of .

Using the above design criteria, we constructed smart–greedy
codes for both slow and fast fading channels. We illustrate the
construction of these codes by some examples. In all these
examples, it is again assumed that at the beginning and the
end of each frame, the encoder of the code is at zero state.

Example 3.9.1:Suppose that a transmission rate of 0.5
b/s/Hz is required. In this example, we will use the BPSK
constellation. The constellation points are given in Fig. 20.

Our objective is to guarantee a diversity advantage ofand
, respectively, in slow and rapid flat fading environments.

Fig. 21. BPSK smart–greedy code.

Fig. 22. 4-PSK smart–greedy code.

The following code (see Fig. 21) using M-TCM construction
guarantees these diversity gains.

At time , depending on the state
of the encoder and the input bit, a branch is chosen by the
encoder and the first coordinate and second coordinates of
the labels are sent simultaneously from the transmit antennas
at times and . For instance, at time, if the
branch label is chosen, symbols, and , are sent,
respectively, from transmit antennas one and two at times one
and two. From the design criteria established, it is easy to see
that this code guarantees the desired diversities in static and
rapid fading environments.

Example 3.9.2:Here a transmission rate of 1 b/s/Hz and
diversity gains of and , respectively, in static and rapid flat
fading environments are desired. From the criteria, we know
that a diversity gain of is possible in a static flat fading
environment and this transmission rate can be accomplished
using a BPSK constellation. In this example, we will use the
4-PSK constellation instead (see Fig. 3). Our objective is to
guarantee a diversity gain of and , respectively, in slow
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Fig. 23. Performance of the code of Example 3.9.3 with two receive and two transmit antennas.

Fig. 24. Performance of the code of Example 3.9.3 with one receive and two transmit antennas.

and rapid flat fading environments. The code of Fig. 22 using
-TCM construction guarantees these diversity gains. From

the design criteria established above, it is easy to see that
this code guarantees the desired diversities in static and rapid
fading environments.

In both these examples the design of smart–greedy codes of
the same rate and better performance having higher number
of states is also possible. Another possibility is concatenation
with appropriate RS codes. We demonstrate the performance
of these codes by the following examples.

Example 3.9.3:Consider the code of Example 3.9.1 as the
inner code and a extended RS code over GF
as an outer code. For 48 coded input bits (12 symbols of

GF ) and one terminating bit set equal to zero, the output
of the outer code corresponds to 65 bits which is used as the
input to the smart–greedy space–time encoder. The output of
the smart–greedy space–time encoder is two frames of length
130 symbols of BPSK symbols corresponding to two transmit
antennas. The uncoded zero bit guarantees that the encoder
of the inner code is at zero state at the end of each frame.
The rate of this smart–greedy code is almost 0.37 b/s/Hz. The
performance of this concatenated code is given in Figs. 23 and
24 for, respectively, two and one receive antennas.

Example 3.9.4:Consider the code of Example 3.9.2 as the
inner code and a shortened RS code over GF
as an outer code. For 105 coded input bits, four uncoded input



TAROKH et al.: SPACE–TIME CODES FOR HIGH DATA RATE WIRELESS COMMUNICATION 763

Fig. 25. Performance of the code of Example 3.9.4 with two receive and two transmit antennas.

Fig. 26. Performance of the code of Example 3.9.4 with one receive and two transmit antennas.

bits, and one terminating bit set equal to zero, the output of
the outer code corresponds to 130 bits which is used as the
input to the smart–greedy space–time encoder. The output of
the smart–greedy space–time encoder is two frames of length
130 symbols of 4-PSK symbols corresponding to two transmit
antennas. The uncoded zero bit guarantees that the encoder
of the inner code is at zero state at the end of each frame.
The rate of this smart–greedy code is almost 0.83 b/s/Hz. The
performance of this concatenated code is given in Figs. 25 and
26 for, respectively, two and one receive antennas.

The greediness and smartness of the codes can be observed
from the above performance curves. These codes are also ideal
for improving the frequency reuse factor.

J. Trellis Versus Block-Coded Modulation

There has been recently an explosion of interest in the trellis
complexity of codes. In this light, one may ask if a block-
coded modulation scheme can outperform the space–time
trellis codes in terms of the tradeoff between complexity of
implementation rate and diversity advantage.

It is well known that a block-code trellis is time-varying
and harder to implement than that of a space–time trellis code.
Space–time trellis codes have significant advantage over the
block codes that only one time section of the trellis must be
stored in memory. Moreover, for a block-coded modulation
scheme the number of ACS (Add–Compare–Select) elements
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required at each time instance is different, making both DSP
and VLSI implementation less attractive. The problem of de-
signing a block-coded modulation scheme that satisfy the rank
criterion is also an open problem. These deficiencies aside,
we further discourage the possibility of potential application
of block codes by proving that they cannot outperform the
space–time trellis codes in terms of the tradeoff between the
diversity advantage, rate, and trellis complexity.

It will be assumed that the reader is familiar with the theory
of trellis complexity of block codes (for details, we refer the
reader to [13]).

Let denote the constellation of (where is
not necessarily an integer) signals to be used for information
transmission. Consider a block codeand a trellis for .
Suppose that the code is used to transmit-ary symbols via
antennas using frames of length. Let us fix the transmission
model of the previous sections. The codewords are then blocks
of length of -ary symbols. At any time instancesymbols
of branches of a path in the trellis are assigned topoints of
the constellation in some manner. Thesignal points are then
simultaneously sent via the transmit antennas. We have the
following theorem.

Theorem 3.10.1:Consider a block code defined over a
-ary alphabet and a trellis for. Suppose that is employed

as above for transmission of information usingtransmit and
receive antennas. If the achieved diversity gain is and

the transmission rate is bits per second per hertz, then ,
the number of maximum states in the trellis of, satisfies

(23)

Furthermore, the above bound is still valid even if the trellis
is sectionalized into segments of length.

Proof: It suffices to prove the last statement of the
theorem. To this end, suppose that a sectionalized trellis of
is given with each branch labeled byconstellation symbols.
Then, it follows from the rank criterion, that no two paths of
this sectionalized trellis diverging from some state can remerge
at another state in a time interval of length less than.

Then a straightforward variant of [22] proves that , the
maximum number of states in the sectionalized trellis, satisfies
the inequality . Given that and
observing that , we arrive at the inequality

.
Corollary 3.10.1: No block code (that admits a trellis repre-

sentation) can outperform the designs of this paper in terms of
the tradeoff between diversity gain, rate, and trellis complexity.

Proof: The above bound is similar to the bound estab-
lished for the space–time trellis codes which can be attained
for our designs.

IV. CONCLUSIONS

We unveiled a new family of codes called the Space–Time
codes for transmission using multiple transmit antennas over
Rayleigh or Rician wireless channels. Many subfamilies of
space–time codes were also introduced. The performance of
these codes was shown to be excellent, and the decoding
complexity comparable to codes used in practice on Gaussian

channels. Space–time codes have simple systolic architecture
and can be readily implemented in DSP and VLSI.

Various fundamental theoretical limits on rate, trellis com-
plexity, diversity, constellation size, and their tradeoffs were
established. Examples were provided confirming that the limits
we established are attainable in practice.

We believe that the studies we initiated here, only scratch
the tip of the iceberg and many important questions remain to
be answered. Research on the interactions and combinations
of the space–time coding technology with other techniques
such as orthogonal frequency division multiplexing [3], array
processing [33], and numerous other topics is now being
pursued.
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