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High-Rate Codes That Are Linear in Space and Time

Babak Hassibi and Bertrand M. Hochwald

Abstract—Multiple-antenna systems that operate at high rates in the hope that at least one path from the transmitter reaches
require simple yet effective space—time transmission schemes tothe receiver [3]-[6]. To keep the transmitter and receiver com-
handle the large traffic volume in real time. At rates of tens of —axity jow, linear processing is often preferred [3]. To achieve
bits per second per hertz, Vertical Bell Labs Layered Space—Time : . -

(V-BLAST), where every antenna transmits its own independent the high dgta rates prqmllsed in [2], however, new approaches_
substream of data, has been shown to have good performancefor space—time transmission are needed. One such approach is
and simple encoding and decoding. Yet V-BLAST suffers from presented in[7], [8] where a practical scheme, called V-BLAST
its inability to work with fewer receive antennas than transmit  (Vertical Bell Labs Layered Space—Time), encodes and decodes
antennas—this deficiency is especially important for modern yaiag of tens of bits per second per hertz (b/s/Hz) with 8 transmit
cellular systems, where a base station typically has more antennas . .

than the mobile handsets. Furthermore, because V-BLAST an_d_12 receive anten_nas. The V-BLAST architecture _breaks the
transmits independent data streams on its antennas there is no 0r|g|nal data stream Iinto SubStreamS that are tl’ansmltted on the
built-in spatial coding to guard against deep fades from any given individual antennas. The receiver decodes the substreams using
transmit antenna. On the other hand, there are many previously a sequence of nulling and canceling steps.

proposed space—time codes that have good fading resistance and Since then there has been considerable work on a variety

simple decoding, but these codes generally have poor performance . o

at high data rates or with many antennas. We propose a high-rate of space—time transmission s_chemes. and performance mea-
coding scheme that can handle any configuration of transmit and Sures [9] such as the space-time trellis codes of [10] and the
receive antennas and that subsumes both V-BLAST and many space—time block codes of [11], [12] for the known channel
proposed space-time block codes as special cases. The schemgd [13]-[17] for the unknown channel.

transmits substreams of data_ln linear co_mblnatlons over space A very high rates and with a large number of antennas, many
and time. The codes are designed to optimize the mutual infor-

mation between the transmitted and received signals. Because ofOf these space—time codes suffer from complexity or perfor-
their linear structure, the codes retain the decoding simplicity of mance difficulties. The number of states in the trellis codes of
V-BLAST, and because of their information-theoretic optimality, [10] grows exponentially with either the rate or the number of
they possess many coding advantages. We give examples of thgransmit antennas. The block codes of [11], [12] suffer from rate
codes and show that their performance is generally superior o,q nerformance loss as the number of antennas grow, and the

to earlier proposed methods over a wide range of rates and ) L. .
Signa|_t0_ngisep ratios (SNRs). g codes of [14]-[16] suffer from decoding complexity if the rate is

_ _ too high. Although V-BLAST can handle high data rates with
Index Terms—Bell Labs Layered Space—Time (BLAST), fading

channels, multiple antennas, receive diversity, space—time Codeslreasonable Com.pIeXIty, the dgcodlng schemg presented in [7]
transmit diversity, wireless communications. does not work with fewer receive than transmit antennas.

We present a space—time transmission scheme that has many
of the coding and diversity advantages of previously designed
|. INTRODUCTION AND MODEL codes, but also has the decoding simplicity of V-BLAST at high
T is widely acknowledged that reliable fixed and mobilglata rates. The codes work with arbitrary numbers of transmit
wireless transmission of video, data, and speech at high ra#@¢l receive antennas.
will be an important part of future telecommunications systems. The codes break the data stream into substreams that are dis-
One way to get high rates on a scattering-rich wireless channep@sed in linear combinations over space and time. We refer
to use multiple transmit and/or receive antennas. In [1], [2], tht® them simply as linear dispersion codes (LD codes). The LD
oretical and experimental evidence demonstrates that charfles
capacity grows Ii_nearly as the number of transmit and receive 1) subsume, as special cases, both V-BLAST [7] and the
antennas grow S|mul_tane0usly. _ _ _ block codes of [12];
Early uses of multiple transmit antennas in a scattering en—Z)
vironment achieve reliability through “diversity,” where redun- 3)
dant information is sent or received on two or more antennas

generally outperform both;

can be used for any number of transmit and receive an-
tennas;

4) are very simple to encode;

5) can be decoded in a variety of ways including simple
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7) satisfy the following information-theoretic optimality cri-often (but not always) assume that the channel matrialso
terion: has independerit\ (0, 1) entries.
— the codes are designed to maximize the mutual infor- The entries of the channel matrix are assumed to be known
mation between the transmit and receive signals.  to the receiver but not to the transmitter. This assumption is rea-
|§onable if training or pilot signals are sent to learn the channel,
which is then constant for some coherence interval. The coher-
ence interval of the channel should be large comparéd [21].
M\éhen the channelis known at the receiver, the resulting channel
capacity (often referred to as tperfect-knowledgeapacity) is

(2], [1]

We briefly summarize the general structure of the L
codes. Suppose that there dretransmit antennasy receive
antennas, and an interval @f symbols available to us during
which the propagation channel is constant and known to t
receiver. The transmitted signal can then be written’Bs<aM
matrix S that governs the transmission over theé antennas

during the interval. We assume that the data sequence has b@fir/} M, N)= — E log det (IN +? gr H*)
broken intoQ substreams (for the moment we do not specify =~ R, >0trR,=M M °
() and thatsy, ..., so are the complex symbols chosen from ®3)

an arbitrary, say-PSK or ~-QAM, constellation. We call a where the expectation is taken over the distribution of

rate R = (Q/T) log, r linear dispersion code one for which € random matrixH.t The capacity-achievings is a
obeys zero-mean complex Gaussian vector with covariance matrix

Ess® = R; opt, WhereR, o is the maximizing covariance

Q@ matrix in (3). When the distribution or{ is rotationally
S = (aqAq +jBBy) (1) invariant, i.e., whem(H) = p(6H) = p(H®) for any unitary
g=1 matrices®© and ¢ (as is the case whel has independent

CN(0, 1) entries), the optimizing covariancef& o, = I,

here the real scalagsy,, 3,} are determined b
W g, fa} ! y and (3) becomes

Sq = g + 184, =1,...0Q.
¢« =t il 4 @ Clp, M, N) = Blogdet (Iv + = HH') . (4)

The design of LD codes depends crucially on the choices
of the parameter®’,  and the dispersion matricést,, B,}. This expectation can sometimes be computed in closed form
To choose thg A,, B,} we propose to optimize a nonlinear(see, for example, [22]).
information-theoretic criterion: namely, the mutual information When the channel is constant for at le@sthannel uses we
between the transmitted signafsy,, 3,} and the received may write
signal. We argue that this criterion is very important for
achieving high spectral efficiency with multiple antennas. Ty = \/ZHS-,- + vr, T=1....,7T
We also show how the information-theoretic optimization has M
implications for performance measures such as pairwise ergorthat defining
probability. Section IV has several examples of LD codes and

performance comparisons with existing schemes. X=[z1 22 - ar|
We now present the multiple-antenna model considered in S=[s1 s2 - sr|

this paper. and

A. The Multiple-Antenna Model V=[v v2 - orl

In a narrow-band, flat-fading, multiple-antenna communicgwhere the superscriptdenotes “transpose”), we obtain
tion system withd/ transmit andV receive antennas, the trans-

mitted and received signals are related by Xt — \/% st + V.
x = \/%HS +v (2) Itis generally more convenient to write this equation in its trans-
posed form
wherez € CV denotes the vector of complex received signals
during any given channel use,c C* denotes the vector of X = \/ZSH +V (5)
complex transmitted signal&f € ¢V** denotes the channel M

matrix, and the additive noisee C isCA(0, 1) (zero-mean, \here we have omitted the transpose notation frmand

unit-variance, complex-Gaussian) distributed that is spatiallymply redefined this matrix to have dimensidfi x N. The
and temporally white. The channel matitk and transmitted matrix X € ¢7* is the received signa§ € C7*M is the

vectors are assumed to have unit variance entries, implying th@snsmitted signal, antt € ¢7*¥ is the additiveCA’(0, 1)

EwHHE* = MN and Es*s — M. noise. InX, S, andV, time runs vertpally and space runs
horizontally. We are concerned with designing the signal matrix

Since the random quantitie, s, andv are independent, the 5 0beying the power constraiflir55™ = T'M.

L 7 . . .
normallzatlonv a In (2) _ensures that _'S the Slgnal'to'nO'Se 1Equation (3) actually slightly generalizes [2], [1], which assume Ehditas
ratio (SNR) at each receive antenna, independentlyy/ofWe independen€\'(0, 1) entries.
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We note that, in general, the number®fx M matricesS We effectively have an equivalent matrix chanfgln (7) that
needed in a codebook can be quite large. If the rate in bits p&r scaled unitary matrix. Maximume-likelihood decodingsef
channel use is denote, then the number of matrices2§”. ands, is, therefore, decoupled [11].

For example, with\/ = 4 transmit andV = 2 receive antennas We may ask how much mutual information the orthogonal
the channel capacity at= 20 dB (withCA(0, 1) distributed design structure (6) can attain? To answer this question we need
H) is more than 12 bits per channel use. Even with a relatively compute the mutual information between the transmitted and
small block size ofl’ = 4, we need2*® ~ 10'* matrices at received vectors andz in the equivalent channel model (7) and
rateR = 12. The huge size of the constellations generally rulempare it with the capacity of all = 2, N = 1 multiple-

out the possibility of decoding at the receiver using exhaustie@tenna system.

search. Sinces has the power constraitis*s = 2, the maximum

The LD codes that we present easily generate the very lamgetual information in (7) is simply the channel capacity that is
constellations that are needed. Moreover, because of their strofstained with the structured channel mafttixIf we denote this
ture, they also allow efficient real-time decoding. In the next semaximum mutual information b¥,..;,(¢), using (3) we obtain
tion, we briefly describe and analyze some existing space—tim
codes so that we may motivate the LD codes and explain how"“h(p)

i 1
they are different. _ max 5 E log det (_,2 1 gHRSH*)

R,>0,trR ;=2
Il. INFORMATION-THEORETIC ANALYSIS OF SOME 1 p
= max  _Elogdet (l+ 2 H'HR,)
SPACE-TIME CODES P S 2t 5

Since the capacity of the multiple-antenna channel can easily 1 p ) )
be calculated, we may ask how well a space—time code performs =, _max _ 5B log det (12 +35 (1he]? + |R2]?) Rs)
by comparing the maximum mutual information that it can sup- o '
port to the actual channel capacity. The distribution forthe ~Where the factot in front of the expectation normalizes for the
M matrix S that achieves (4) is independeht/(0, 1) entries, WO channel uses spanned by the orthogonal design. Since, sub-
but we cannot easily use this by itself as a guideline for colgct to a trace constraint, the determinant of any positive-definite
structing and decoding a (random) constellatiof’of A/ ma- Matrixis maximized when its eigenvalues are all equal, itis easy
trices because of the sheer number of matrices involved. Thel@see that the maximizing covariance matrikis i = I2, SO
fore, a constellation of matrices that has sufficient structure féfat we obtain

efficient encoding and decoding is generally needed. One such Corn(p) =Elog (1 + P (|h1|2 + |h2|2))
structure is that of anrthogonal designoriginally proposed in ' 2
[11] and later generalized in [12]. =C(p,M =2, N=1). 9)

A. Mutual Information Attainable With Orthogonal Designs The expression on the right symbolically denotes the capacity
L - i ithf =2 i =1

An orthogonal design is introduced by Alamouti in [11] for?éﬁgzd;x:nif;e; évll\tg Thist;atz\?gna?r;eqigzstﬁgfthe or-
T = M = 2 and has the structure q b

thogonal design (6) can achieve the full channel capacity of the

g | ™ 6) M = 2, N = 1 system, and there is no loss incurred by as-
—s5 sy suming the structure (6) as opposed to a general transmit ma-
trix S.

The complex scalars; and s, are drawn from a particular . )
(r-PSK orr-QAM) constellation, but we may simply assume 2) TWo or More Receive Antenna®' (> 2): With N = 2
that they are random variables such théls, |? + |s.|?) = 2. '€celve antennas, (5) becomes

We show that this particular structure can be used to achieve daz11 3712} p [ S1 82} [hu h12} [1111 1112}

2

pacity when there is one receive antennarmttwhen thereis | ., =~ ;.. —s5 st| Lhay ko Vo1 ag

more than one. Portions of our argument may also be found in

23], [24]. which can be reorganized as
1) One Receive Antenn&/(= 1): With N = 1, (5) be- T11 hir hoy V11
comes z3 hi, —h? S1 vy
T s s h v =/t . H [ } + - (10)
[ 1}: [ [ L 2}[ 1}_,_[ 1} 12 2 hi2 haa 52 V12
ok * : N~
*2 2 %2 % ho vz x5, h3,  —hi, A, V3o
This can be rewritten as N ﬁ’_’
1 0 hl hg S1 U1 = . -
=5 . . +| .- (7)  We now readily see
./172 2 h2 _h’l 32 UQ
A‘ Y Y H*H: (|hll|2+|]121|2+|]7’12|2+|]7’22|2) IQ. (11)

I
I

= H 5
As with N = 1, maximum-likelihood estimation of; and
s2 is decoupled. However, unlike witN = 1, the orthogonal

HH* = H*H = (|hl|2 + |hQ|2) Is. (8) design structure prohibits us from achieving channel capacity.

It readily follows that
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M=2, N=2

C (bits)

0 I I 1 I
0 5 10 15 20 25 30

SNR (db)

Fig. 1. Maximum mutual information achieved Byx 2orthogonal design (6) compared to actual channel capacity favhe 2, N = 2 system. Solid line:
maximum mutual information fo2 x 2orthogonal design. Dashed line: capacity of fife= 2, N' = 2 system.

To see this, we compare the maximum mutual information bere take a loss with the structure (6). The amount of this loss is
tweens andz in (10) with C'(p, M = 2, N = 2), the actual substantial at high SNR and is depicted in Fig. 1 which shows

channel capacity for the system. the actual channel capacity compared to the maximum mutual
As before, the maximum mutual information in (10) is simplynformation obtained by the orthogonal design (6).
the channel capacity for the structured channel matfiDe- For N > 2 receive antennas, the analysis is similar and is
noting this maximum mutual information by,,.1(p), we ob- omitted. We simply state that fal/ = 2 transmit antennas
tain and N receive antennas ttiex 2 orthogonal design allows us
Cort(p) to attain onlyC(Np, M = 2N, N = 1), rather than the full
orth\ P C(p, M = 27 N)
—  max lElogdet (_72 1 BH*HRS) 3) Other Orthogonal DesignsThe preceding subsection
R,>0,trR,=2 2 2 focuses on the\d = 2 orthogonal design but there are also

1 p ) ) orthogonal designs fod > 2. The complex orthogonal
= RSZI(JI}S)}%g:Q 3 Elogdet (I2 + 9 (|h11| + [ a1 designs forM > 2 are no longer “fyll-rate” (se_e [12]) and
therefore generally perform poorly in the maximum mutual
+lha|* + |h22|2) RS) information they can achieve, even whah= 1. We give an
example of these nonsquare orthogonal designs [12], [25].

1 _
_ QElogdet(IQ + g(|h11|2+|h21|2+|h12|2+|h22|2)12) For M = 3, we have, for example, the ra%orthogonal

design
2
= Elog <1+Tp (|h11|2+|h21|2+|h12|2+|h22|2)> s1 Ss  s3
4 | —s3 ST 0
=C(2p, M =4, N=1) S=4/2 >0l . (13)
3 |-s5 0 st

<C(p, M =2, N =2). (12)

The last equation implies that the orthogonal design (6) is re-

strictive anddoes nofallow us to achieve the full channel ca- The factor\/4/3 ensuresthdf tr SS* =T-M = 12.ltcan
pacity of thed = 2, N = 2 system, but rather the capacity ofbe shown that maximum-likelihood estimation of the variables
anM = 4, N = 1 system at twice the SNR. Thus, whah=2 s;, s2, s3 is decoupled. Again using an argument similar to

* *
0 —s3 55
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Fig. 2. Maximum mutual information achieved #yx 3 orthogonal design (13) compared to actual channel capacity. Solid lines: maximum mutual information
of 4 x 3 orthogonal design foN = 1, 2, 3 receive antennas. Dashed lines: capacityot= 3, N = 1, 2, 3 systems.

the one presented far/ = 2, it is straightforward to show substream). Thus, over a block Bfchannel uses, th€ x A
that the maximum mutual information attainable with (13) witlransmit matrix takes on the form
N receive antennas %C(Np, M = 3N, N = 1) which is

(much) less than the true channel capacitiyp, M, N). We St s12 ... S1M
omit the proof and refer instead to Fig. 2 which shows the actual S91 S22 ... Sam
channel capacity compared to the maximum mutual information S=1 L _ (14)

obtained by the orthogonal design (13).

sSTr1 S22 ... STM

B. Mutual Information Attainable With V-BLAST ] ]
where each;; is an independent symbol drawn from a complex

We showed in Section II-A that, even though orthogonal deenstellation. Since the transmitted symbols are not dispersed in
signs allow efficient maximume-likelihood decoding and yieldime, 7" is arbitrary. (We could, for example, takké=1.)
“full-diversity” (the appearance of the sum of tive;|* in the WhenN > M (the number of receive antennas is at least as
mutual information formulas attests to this), orthogonal desigi#ge as the number of transmit antennas), there exist efficient
generally cannot achieve high spectral efficiencies in a mehemes for decoding the V-BLAST matrices. These are based
tiple-antenna system, no matter how much coding is addedd®“successive nulling and canceling” [7], and its more efficient
the transmitted signal constellation. This is especially true wheariants [18], as well as more recently on sphere decoding [19].
the system has more than one receive antenna. An examinafidinhese decoding schemes essentially solve a well-conditioned
of the model (10) (and its counterparts for other orthogonal dsystem of linear equations. Successive nulling and canceling
signs) reveals that the orthogonal design does not allow enoygbvides a fast approximate solution to the maximum-likeli-
“degrees of freedom”—there are only two unknowns in (10) biiood decoding problem with the benefit of cubic complexity
four equations. in the number of transmit antenn@®/ ). Sphere decoding, on

We can conclude that orthogonal designs are not suitable foe other hand, finds the exact maximum-likelihood estimate
very-high-rate communications. On the other hand, a scheara benefits from avoiding an explicit exhaustive search. Recent
that is proven to be suitable for high spectral efficiencies i8ork [20] has shown analytically that for a wide range of SNRs,
V-BLAST [7]. In V-BLAST each transmit antenna during eachlthe expected computational complexity of sphere decoding is
channel use sends an independent signal (often referred to atsa roughly cubic in the number of transmit antennas.
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Because there is no restriction on the transmitted matrixtransmit signal is normalized such thattrSS* = T'M. This
in (14), the maximum mutual information that can be achievédduces the following normalization on the matride$,, B, }:
by transmitting V-BLAST-like matrices is indeed the full mul- o
tipIe—antennq ghannel capacity. l\_levertheless, V.-BLAST suffers Z (tr Al A, + 1B} Bq) — 9TM. (18)
from two deficiencies. First, nulling and canceling fails when

there are fewer receive antennas than transmit antennas, sinc%1 di ) q 5 b ial both
the decoder is confronted with amderdeterminedgystem of The dispersion codes (16) subsume as special cases both or-

linear equations. Although sphere decoding can still be useoﬂt@@l’%nal,deSigns and V'BEAST' For example, mfﬁ orthog-
find the maximum-likelihood estimate, the computational con?"a! design (6) correspondso= M = @ = 2 an
plexity is exponential imi/ — N. Second, because V-BLAST [1 0} 4 { 0 1}

’ 2 =

q=1

transmits independent data streams on its antennas there is no Ay = 0 1 1 0

built-in spatial or temporal coding, and hence none of the error

resilience associated with such coding. We seek to remedy these 1 0 _ o1
O . B , By=

deficiencies in the next section. 0 -1 10

whereas V-BLAST corresponds & = 7'M and

(19)

I1l. L INEAR-DISPERSIONSPACE-TIME CODES

. . . . A]\l(‘r—l)-{—rn = B]\l(‘r—l)-i—rn = CH?:,”
In this section, we propose a high-rate coding scheme that
brop 9 g r=1,....T,m=1,....,M (20)

retains the decoding simplicity of V-BLAST, handles any con-
figuration of transmit and receive antennas, and has many of thgere ¢, and 7,, are T-dimensional and}/-dimensional
coding advantages of schemes, such as the orthogonal desigdisimn vectors with one in theth andmth entries, respec-

without suffering the loss of mutual information. tively, and zeros elsewhere.
We call alinear-dispersion (LD) codene for which Note that in V-BLAST each signala,, 3,} is transmitted
from only one antenna during only one channel use. With the
Q ) . . . .
g— (5,C, +5°D,) (15) LD codes, however, the dispersion matrices potentially transmit
= e T some combination odachsymbol fromeachantenna aevery

channel use. This can lead to desirable coding properties. Before
wheresy, ..., sg are complex scalars (typically chosen fronwe specify good choices of the dispersion matrices, we discuss
anr-PSK orr-QAM constellation) and where thg, and D, decoding.

arefixedT’ x M complex matrices. The code is completely de- .

termined by the set afispersionmatrices{C,, D,}, whereas A. Decoding

each individual codeword is determined by our choice of the An important property of the LD codes (16) is their linearity

scalarssy, ..., sq- . _ in the variables{a,, /3,}, leading to efficient V-BLAST-like
We often find it more convenient to decompose #hento  decoding schemes. To see this, it is useful to write the block
their real and imaginary parts equation
) Q
Sq = g + jBq, =1, ... .
¢ =g+ 3 q Q X = /ﬁSHJerq/ﬁ > (agdy + 5B, B) H+V
and to write =1
(21)
Q
S = Z (agAq + B By) (16) inamore convenient form. We decompose the matrices in (21)
p into their real and imaginary parts to obtain
Xr+iXr

whered, = C, + D, andB, = C, — D,. The dispersion

. . . Q

matrices{4,, B,} also specify the code.The integer() and p . . )

the dispersion matrices are, for the moment, unspecified. A > Loy (Ar g A1) +ify (Br g +iBr,o)]
Without loss of generality, we assume that ..., cg and 'F% .

i, ..., Bo have variance and are uncorrelated. Otherwise, x (Hr+jH1)+VR+jVi

we can always replace them with appropriate linear combinghereHy = Re (H) andH; = Im (H). Equivalently,
tions that have this property—this simply leads to a redefini-

. . . Q

tion of the A;s andB,’s. Thus,s1, ..., sg are unit-variance _ /P

and uncorrelated. Recall from our model in Section I-A that the Xr = M 221 [(Ar,oHr = Ar o H1) g
p

2We remark that it is also possible to defide, |, = 7B, anda g, = 3, i i
forq=1, ..., Q,so that the LD codes become ! o + (=B1,¢Hr = Br,(Hr) By] + Ve
29 - P <
$=Y a.d,, an Xr=\l4/ > (A1 gHr + Ag o Hr) o
g=1 g=1

where the scalars,, are real. + (BR, qHR - BI, qHI) ﬁq] + Vi
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We denote the columns ofz, X;, Hg, Hy, Vg, andV; by is, the more of a coding effect we obtain since the equivalent

LR, ny X1, ns PR, ny RI,ny VR, n, @Ndvy 4, and define matrix H becomes “skinnier” and the system of equations in
An e _B, B (23) .becomes more overdetermined. As a gener_al practice, we
A, = { 1 1 } B, = { 1 R.q find it useful to take@) = min(M, N) - T since this tends to
Arq  Ary Br, —Big maximize the mutual information betwesrand z while still
hi n having the benefit of coding gain.
h, = { ’ } (22) We are left with the question of how to design the disper-
hrn sion matrices. We may first examine how sensitive the perfor-
wheren = 1, ..., N. We then gather the equationsir and mance of the LD codes is to the choice of the dispersion ma-
X to form the single real system of equations trices. Experiments with choosing random dispersion matrices
_ - _ _ - subject to the normalization constraint (18), or the more strin-
TR, 1 oy VR, 1 :
’ ’ gent constraints
7,1 A vr,1 ) ) TM
_ ﬁ H| |+ : 23) trAj A, =trB B, = ?, forg=1,...,Q
TR, N ag VR, N suggest that the performance for “avera@dy, B} is notgen-
erally very good. Fig. 3 shows the bit-error rate of ah= 3,
Lzr, v LBol Lo : i
y ~—— y N =1 antenna system with randomly chosen versus optimized

a a

I

v (according to a criterion we specify shortly) dispersion matrices.
The difference is dramatic; it is important to choose the disper-
sion matrices wisely.

x 5

where the equivale®NT x 2@ real channel matrix is given by

Aihy Bihy - Aghy  Bgh, One possible way of designing the spreading matrices is to
H— ) i ) i i (24) study the pairwise probability of error of two different LD code-
o 5 : - : : ’ words, say
Aihy Bihy -+ Aohn Bohy Q
We have alinear relation between the input and output vectors §= Z (g Aq + 56 B,)
s andx 7=1
and
P Q
q=1
where the equivalent chanrfglis known to the receiver becauserhe worst case pairwise error is generally obtained when
the original channeH, and the dispersion matricgsl,, B;} {q, ..., ag, i, ..., Pot and {ad, ..., apy, B, ..., Bo}

are all known to the receiver. The receiver simply uses (24) #ffer in only one element. We can then seek to choose the
find the equivalent channel. The system of equations betwegiBpersion matrices that minimizes the probability of this error.
transmitter and receiver is not underdetermined as long as  The main drawback of this strategy is that it leads to a criterion
Q< NT (26) on the _individua_l columns of the_m_atri%, ra_ther than on th_e
- matrix in its entirety. Therefore, it is conceivable that designs
We may, therefore, use any decoding technique already in pl&gsed on this criterion could lead to a (near) singidaleading
for V-BLAST, such as successive nulling and canceling [7], it® other forms of errors. Finally, it is not clear what effect
efficient square-root implementation [18], or sphere decodirginimizing pairwise error probability has on the overall error
[19]. The most efficient implementations of these schemes gdiobability, especially for a high-rate system. Therefore, this
erally requireO(Q?) computations, and have roughly constarfitrategy for choosing the dispersion matrices does not appear

complexity in the size of the signal constellatiof20]. to be promising.
We can also study thaveragepairwise error probability, ob-
B. Design of the Dispersion Codes tained by choosing Gaussiann (25) and averaging the pair-

wise error obtained between an independesands’. We show
in Appendix B that the average pairwise error has upper bound

Q ) o 1 P N2
S =" (A, + 3B By) P.(pairwisg < B det (1+ S5 HH) L (@7)

q=1

Although we have introduced the LD structure

We can then seek to minimize the upper bound with an ap-
we have not yet specified? or the dispersion matrices propriate choice ofA,, ..., Ag} and{Bi, ..., Bg}. Even
Ai,...,Ag andBy,. .., Bg. We have the inequalitg < N1'. though (27) is a simple formula, suggesting that it can possibly
Intuitively, the larger@ is, the higher the maximum mutualbe minimized, we do not attempt to do so here. The main reason
information betweers andwv is since the matrix signa¥ has is the following. Since multiple antennas are used for very high
more degrees of freedom. (Recall that orthogonal designs geny, . . .
. . At high SNR, the capacity of the multiple-antenna system grows as
erally have low mutual information because they do not haylgu( M, N)log p, suggesting that we neell — min(M. N) degrees of

enough degrees of freedom.) On the other hand, the sndallefreedom per channel use.
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M=3, N=1, R=6, Optimized vs. Random
10 m————————— | T | T, T ]

LD Codé (random)

LD Code (optimizea)

0 5 10 15 20 25 30
SNR (dB)

Fig. 3. Bit-error performance comparison for a randdm. {, B,} drawn from a complex Gaussian distribution and normalized) and an optimized LD code for
M = 3 transmit andV = 1 receive antenna foFf = ) = 4, and rateR = 6 bits/channel use (obtained by transmitting 64-QAMs@n. . ., s4).

rates, the pairwise error probability for any two signals is ex- for an SNRp of interest, subject to one of the following
tremely small. In Section I-A we argue that even for the small constraints:
test-case OM = 4 transmit andV =.2 regeive antennas, we i) Zgzl (trAqu + trB;I*Bq) —9TM
could theoretically have a constellation size of as mang*&s . ™
i) trAz A, = BB, = g=1,...Q

signal-matrices ap = 20 dB. It is therefore conceivable that Q

the pairwise error probability between any two could be roughly iy A7A, =B;B, = %IM, g=1,...Q

27% ~ 107'%. Trying to minimize a quantity such as (27) that  where?{ is given by (24) with thé, having independent
is already so small can be numerically quite difficult. N(0, 1) entries.

Fortunately, information theory suggests a natural alternative : ) _ ] .
thatis connected with minimizing (27) but is more fundamental, NOt€ that (28) is effectively (3) withi, = I5q; as mentioned
Recall from Section II-A that orthogonal designs are deficieffi S€ction Ill, we may take the entries ofthea,’s and/,'s) to
in the maximum mutual information they support fuf > 2 be uncorrelated with variance Moreover, because the real and

or N > 1. We therefore choosd,, B, } to maximize the mu- imaginary parts of the noise vectoiin (23) also have variance
. 9 q

1 . .
tual information between and in (23). This guarantees that 2+ € SNR rema|n$.1We also note that (28) differs from (3)
the outside factogz because the effective channel is real-

we are taking the smallest possible mutual information penaw
within the LD structure (16). We propose to design codes th{t!u€d and the LD code spaiischannel uses.
are “blessed” by the “logdet” formula (3). We now make some remarks.

We formalize the design criterion as follows. 1) Clearly,Cin(p, T, M, N) < C(p, M, N).

2) The problem (28) can be solved subject to any of the con-
The Design Method straints i)—iii). Constraint i) is simply the power constraint
(18) that ensureR tr SS* = T'M . Constraint ii) is more

1) Choosel < NT (typically, @ = min(M, N) - T). restrictive and ensures that each of the transmitted signals

2) Choose{4,, B,} that solve the optimization problem «, and 3, are transmitted with the same overall power
from the M antennas during th#& channel uses. Finally,
Criplp, T, M, N) constraintiii) is the most stringent, since it forces the sym-

bols «; and 3, to be dispersed with equal energy in all

_ 1 ) P t
=4 phax o blogdet (IQNT oyt ) (28) spatial and temporal directions.

Ag,Bq,q=1,..Q
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3) Since constraints i)—iii) are successively more restric-

4

~

tive, the corresponding maximum mutual informations
obtained in (28) are necessarily successively smaller.
Nevertheless, we have found that constraint iii) generally
imposes only a small information-theoretic penalty while
having the advantage of better coding (or diversity)
gains. Using symmetry arguments one may conjecture
that the optimal solution to the problem with constraint
i) should automatically satisfy constraint ii). But we
have not experimented sufficiently with constraint i) to
confirm this; we instead usually restrict our attention to
constraints ii) and iii). We have empirically found that
of two codes with equal mutual informations, the one
satisfying the more stringent constraint gives lower error
rates. Examples of this phenomenon appear in Section IV.

The solution to (28) subject to any of the constraints i)—iii)
is highly nonunique: simply reordering thed,, B,}

gives another solution, as does pre- or post-multiplying all 5)

the matrices by the same unitary matrix. However, there
is also another source of nonuniqueness which is more
subtle. Equation (23) shows that we can always pre-mul-
tiply the transmit vectos = [«; 1 ag Pol

by a2@Q x 2Q orthogonal matrix®! to obtain a new
vectors’ = ®'s = [of 3] ag  Pglt with en-
tries that are still independent ard(0, $)-distributed.

Thus, we may rewrite (23) as

_ [P t._ | P ’
a:—UM’Hq)(I)s—UM’H(I)s.

Defining A,, B,, and’,, as in (22) allows us to write
the new equivalent chann&l’ = H® as shown in (29)

at the bottom of the page. Since the entriess @ind s’
have the same joint distribution, the maximum mutual
information obtained from the equivalent chanrigland

H' are the same. This implies that the transformation from
the dispersion matricelsd,, B} to {A), By}

Q
Ay = Z (Apd2ap—1,2¢-1 + Bpdap 24-1)

p=1

Q
Z (Apd2p—1,2¢ + Bpdap,24) »

p=1

/
B, =

, Q

(30)

qg=1, ...

where® = {d)i,j}fgzl is an orthogonal matrix, pre-

serves the mutual information. Thus, the transformation
(30) is another source of nonuniqueness to the solution of
(28).

This nonuniqueness can be used to our advantage
because a judicious choice of the orthogonal madrix
allows us to change the dispersion code through the
transformation (30) to satisfy other criteria (such as
space—time diversity) without sacrificing mutual infor-
mation. Examples of this appear in Remark 7, where we
construct unitary{ 4,, B, } from the rank-one V-BLAST
dispersion matrices (20), and in Section IV in some of
the two and three-antenna LD code constructions.

The constraints i)—iii) are convex in the dispersion ma-
trices{A,, B,} since they can be rewritten as

i) 2P (teAfA, + twBiB,) < 2T'M

i) trAzA, < %,trB;Bq < %, g=1,...Q

III') AZA(]S%IJ\LB;B(]S%IJ\L qI].,...Q

all of which are convex. However, the cost function
%Elogdet(IQNT + A—’;H?—ﬁ) is neither concave nor
convex in the variables{A4,, B,}. Therefore, it is
possible that (28) has local maxima. Nevertheless, we
have been able to solve (28) with relative ease using
gradient-based methods and it does not appear that local
maxima pose a great problem. Table | in Section IV-A
gathers the maximum mutual informations obtained via
gradient-ascent for a variety of differeift, M/, and V.

The results show that maximum mutual informations
obtained are quite close to the Shannon capacity (which
is clearly an upper bound on what can be achieved) and
so they suggest that the values obtained, if not the global
maxima, are quite close to them. (For convenience,
we include the gradient of the cost function (28) in
Appendix A.)

[ Aih, Boh $1,1 $1,20
H =

LAk Bohn 1 L20.1 $2q,20

— Q Q -
> (Apbop 1,1+ Bydap, 1) by > (Apbop 1,20 + Bpdap 20) by
p=1 p=1

- (29)

Q Q
> (Apdop1,1+ Bypap 1) by > (Apap-i,20 + Bpdap,20) hiy

Lp=1 =1 -

P P
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6)

7

8)

9)

We know that forl’ = 2, M = 2, N = 1, one solution

to (28), for any of the constraints i)—iii), is the orthogonal
design (19). This holds simply because the mutual infor-
mation of this particular orthogonal design achieves the
actual channel capacity(p, M = 2, N = 1). We note
that there are also many other solutions that work equally
well.

WhenN > M and@ = M1 one solution to (28), subject
to either constraints i) or ii), is given by the V-BLAST
matrices (20) since these achieve the full capacity of the
multiple antenna link. The V-BLAST matrices, however,
are rank-one and therefore do not satisfy constraint iii).

1813

10) It does not appear that (28) has a simple closed-form

solution for generall’, M, N, although we see in Sec-
tion IV that, in some nontrivial cases, it can lead to so-
lutions with simple structure. We have found that the so-
lution to (28) often yields an equivalent channel matrix
‘H that is “as orthogonal as possible.” Although complete
orthogonality appears not always to be possible, our ex-
perience with optimizing (28) shows that the difference
C(p, M, N) — Cr.p(p, T, M, N) can be made quite
small with a proper choice & and@ (see Table | in Sec-
tion IV-A). Thus, there appears to be very little capacity
penalty in assuming the LD structure (16).

But itis also possible to obtain an explicit solution to (28) 11) When the equivalent channel matftk is orthogonal,

subject to iii). ForI’ = M, one such set of matrices is
given by

L

Al]\l(k71)+l :Bﬁw(kfl)_H = S DFL
k=1,.... M I1l=1,..., M (31)
where
[1 0 0
0 &% 0
D=].
L0 (312”%_”
ro --- 0 1
1 0 0
Im=10 1 0 0
LO 0 1 0

The above code can be constructed by starting with the
V-BLAST matrices (20) and applying the transformation
(30) with a suitableb. We do not give the fullb here, and
only mention that, fofl’ = A4 = 2, the transformation is

A1+A4 A2+A3
! I
M=ms o hET s

Al—A4 AQ_A3
Ay =2 A=
® V2 * V2

with similar expressions for théB, }. It can be readily
checked that the matri¥ constructed from the coef-
fi(_:ients_ relatir_lg{AjI, B} to {4y, B} is orthogonal._
Fig. 4 in Section IV presents a performance comparison
of the LD code (31) with V-BLAST.

The block lengthl” is essentially also a design variable.
Although it must be chosen shorter than the coherence
time of the channel, it can be varied to help the optimiza-
tion (28). We have found that choosidd < 7" < 2M
often yields good performance.

Although the SNRp is a design variable, we have found
that the optimization (28) is not sensitive to its value for
largep (p ~ 20 dB). Once the optimization is performed,
the resulting LD code generally works well over a wide
range of SNRs.

maximum-likelihood decoding and the V-BLAST-like
nulling/canceling [7] perform equally well because the
estimation errors ofy, ..., s¢ are decoupled.

12) The design criterion (28Ylepends explicitly on the

number of receive antennad$, both through the choice
of @@ and through the matri¥{ in (24). Hence, the
optimal codes, for a givep, 7', and M, are different for

different V.

Nevertheless, a code designed Mmreceive antennas
can also easily be decoded using nulling/canceling or
sphere decoding wittv/ > N antennas. Hence, if we
wish to broadcast data to more than one user, we may
use a code designed for the user with the fewest receive
antennas, with a rate supported by all the users.

13) The ultimate rate of the code depends on the number of

signals senf}, the block length of the codE, and the size

of the constellation from whick, ..., sg are chosen.

We assume that the constellationri$?SK or »-QAM.

Then the rate in bits per channel use is easily seen to be
Q

R= = log,7.

T (32)

14) A standard gray-code assignment of bits to the symbols

of ther-PSK orr-QAM constellation may be used.

15) We see that the average pairwise error probability (27)

and the design criterion (28) have a similar expression. By
interchanging the expectation and log in (28), we see that
maximizing (28) has some connections to minimizing
(27).

On the other hand, our design criterion is not directly
connected with the diversity design criterion given in [9]
and [10], which is concerned with maximizing

. I\ * !

iy |det(S — S (S — 57| (33)

A constellation attains full diversity if (33) is nonzero.
This criterion depends only on matrix pairs, and there-
fore does not exclude matrix designs with low spectral
efficiencies.

At high spectral efficiencies, the number of signals in
the constellation of possibl§ matrices is roughly ex-
ponential in the channel capacity at a given SNR. This
number can be very large—in Section IV we present a
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code for’” = M = 8 andR = 16 that effectively has LD Versus V-BLASTM =2, N =2, R =4
2RT — 2128 ~ 3.4 x 10®® matrices. The relation between

the diversity criterion and the performance of such a large Ve look firstat anM = 2, V = 2 system at raté? = 4 and
constellation is very tenuous. Even if compare V-BLAST with an LD code. In V-BLASTQ = 4,

and the matrices are given by (20). To design an LD code we
also choose&) = 4 but use the matrices given by (31) that
satisfy constraint iii) in (28). To achievE = 4, we transmit
guaternary phase-shift keying (QPSK) &n ..., s4. The re-
for many pairs of5 # 57, our probability of encountering syits can be seen in Fig. 4, where the bit errors are compared.
one of these matrices may still be exceedingly small, apg,en though both V-BLAST and the LD code support the full
the constellation performance may still be excellent. Fehannel capacity, which is 11.28 bits/channel use at SNER)
such a large constellation it is probably more importagfg  the LD code has better performance; this can probably be
for the matrices in this constellation to be distributed iBttributed to the spatial and temporal dispersion of the symbols
the space of matrices according to the distribution that fat \V-BLAST lacks.
tains capacity; the mutual information criterion attempts gjnce we are transmitting at a rafé = 4 our spectral
to achieve this distribution. efficiency is low relative to the channel capacity, and we
As the SNR is allowed to increase, the performance g{ay therefore anticipate significant coding advantages from
some given space-time code with some given rate bgso satisfying the diversity criterion (33)—see Remark 15 in
comes more dependent on the diversity criterion sin@gsction 111-B for an explanation of the relative importance of
making a decoding error to a “nearest neighbor” becomgg/ersity at low spectral efficiencies. The LD code (31) may be
relatively more important. Chernoff bound computationgodified as in Remark 4 in Section 111-B, without changing its
in [10] show that the pairwise error falls off a¥p", mutual information, by premultiplying the transmitted signal
wherer is the rank ofS — S”. However, by increasing the yector by an orthogonal matrikt. In [26], a two-antenna code
SNR and keeping the code (and hence rate) fixed, we g&egesigned using the full diversity criterion. This code also
effectively reducing the relative spectral efficiency of th%appens to support the full capacity of the channel, and we may
code as compared with the channel capacity. We are th%gt it into our LD code framework by choosing to be the
fore led again to the conclusion that diversity plays a segtock-diagonal matrix shown in (34) at the bottom of the page
ondary role at high spectral efficiencies. In Section IV, WRyhere the subscript®” denotes real part, and/" denotes
present a comparison of codes that satisfy various Comphaginary part) and wher® = ¢ andé = /2. The result is
nations of the mutual information and diversity criteriag code that satisfies both the mutual information criterion and
The code that satisfies both criteria performs best, fokiversity criterion; it is also displayed in Fig. 4 and has the best
lowed by the mutual information criterion only, followedperformance. Although the codes in the figure all satisfy the
by the diversity criterion only. mutual information condition, the importance of also satisfying

16) Although the dispersion matricési,, B,} can, in gen- the diversity criterion at relatively low spectral efficiencies
eral, be complex, we have found that constraining theff underscored. The next example shows that satisfying the
to be real imposes little, if any, penalty in the optimize(BnUtua| information condition is most important at higher
mutual information. SpeCtl’al efficiencies.

det(S — §')* (S —§)=0

17) Our mutual information calculations and design exam-
ples assume that the channel matHixhas independent LD Versus OD:M = N =2, R = 8

CN(0, 1) entries, but designs for other channel distribu- We show in Section II-A2 that th2 x 2 orthogonal design is
tions using the mutual information criterion are also POgy

) eficient in mutual information whetv > 1. This deficiency
sible. should be reflected in its performance with = 2. We test its
performance whedl/ = N = 2 at R = 8 versus the LD code
IV. EXAMPLES OF LD CODES AND PERFORMANCE given by (31) forl’ = 2 and@ = 4. The result can be seen
in Fig. 5 which clearly shows the better performance of the LD
In this section, we present simulations that compare the peode over a wide range of SNRs. To achi&e- 8, we see from
formance of LD codes to V-BLAST and orthogonal design&32) that the orthogonal design needs to chagsands, from
over a wide range of SNRs and various combinations of rece@@56-QAM constellation, while the LD code can choose from a
and transmit antennas. All the LD codes are designed for a tarfjgtQAM constellation because it has four symbgls. . ., s;.
SNR of p = 20 dB (see Remark 9 in Section 111-B). We note that the orthogonal design has good diversity (33) [12]

st (R R A B AR B il o
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M=2, N=2, R=4, LD Code vs V-BLAST

ber

SNR (dB)

Fig. 4. The upper two curves are the bit error performance of V-BLAST (20) with nulling/canceling (upper), and with maximume-likelihood decoding (low
The lower two curves are the LD code given by (31)fdr= N = T = 2 and@Q = 4 (upper) and the code (34) with = ¢?/2 (lower). For both these codes,
sphere decoding is used to find the maximum-likelihood estimates. The fte-id, and is obtained by transmitting QPSK en ..., s4.

but achieves only 7.47-bits/channel use mutual information laturns out that this orthogonal design is a local maximum to
p = 20dB, while the LD code achieves the full channel capaci{g8) for7’ = 4 and@ = 3. It achieves a mutual information
of 11.28 bits/channel use. The orthogonal design and LD cooe5.13 bits/channel use at = 20 dB, whereas the channel
are maximum-likelihood decoded (using the sphere decodercapacity is 6.41 bits/channel use.
the case of the LD code). The orthogonal design is easier to de1, find an LD code with the same block length, we first ob-
code than th_e LD code becagssleandSQ may be decoded sep-ggpye that) must obey the constrai@® < N - T, with N = 1
arately, and its performance is better for SNR85 dB (where  4q — 4 Therefore() < 4, and to obtain the highest possible
spectral efficiency is low compared with capacity). mutual information we choos@ = 4. After optimizing (28)

But we may obtain a code thatis uniformly better at all SNRging a gradient-based search (Appendix A) and converging to
by using (34) to improve the diversity of (31) without cohggglngl local maximum ap = 20 dB, we find (36) as shown at the
its mutual information. As shown in [26], setting = ¢ 4t0m of the following page. This code has a mutual informa-
is & good choice when transmitting 16-QAM. The performanggn, of 6.25 bits/channel use at= 20 dB, which is most of the
of this constellation is g!so shown in F|g._5. Its performance |$,annel capacity. The matri& has some interesting features.
better than the unmodified LD code at high SNR. Clearly, the st it has orthogonal (but not orthonormal) columns; second,
best code satisfies both the mutual information and diversityk corresponding{* matrix is nonzero in only 12 of its 56
criteria, if possible. off-diagonal entries.

) Fig. 6 compares the performance of the orthogonal design

LD W ODM =3, N=1,R=6 .
ersus ) (35) with the LD code (36) at rat®& = 6. (From (32), the

We present a code fa¥/ = 3 transmit antennas amdl = 1 rate of either code i$Q/T")log, r; we achieveR = 6 by
receive antennas and compare itwith the orthogonal design f8ying the orthogonal design send 256-QAM, and the LD code
sented in Section II-A3 with block length = 4. The orthog- send 64-QAM.) The decoding in both cases is maximum like-

onal design (13) is written in terms &, } and{#3,} as lihood, which in the case of the LD code is accomplished with
a1+ 5 s +jfs  az+jBs the sphere decoder, and in the case of the orthogonal design is

_ . o simple becausey, ..., s3 are decoupled. We also compare de-

g J3 | il a—ib 0 . (35) coding with nulling/canceling, which appears to be only slightly

3 | —as+ 7B 0 o — 1Py worse than maximum likelihood (this is perhaps because the
0 —a3+ 503 o —if columns of the LD code are orthogonal—see Remark 11 in
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M=2, N=2, R=8, LD Codes vs. Orthogonal Design

ber

15
SNR (dB)

Fig. 5. Bit error performance of thz x 2 orthogonal design (19) and the LD code given by (31)¥6r= N = T = 2 and() = 4 (dashed line) and the code
(34) with¢ = €°-*55¢ (lower solid line). The rate i#2 = 8 implying that the orthogonal design transmits 256-QAM whereas the LD codes transmit 16-QAM.
The decoding is maximum likelihood in both cases.

Section IlI-B). We see from Fig. 6 that the LD code performs One possible code is obtained by symmetrically concate-
uniformly better. nating three2 x 2 orthogonal designs (normalized to obey the

) power constraint)
T =6, M = 3 LD Code From2 x 2 Orthogonal Dessign

TheT =4, M = 3, N = 1 LD code (36) is obtained via 51 %2
a gradient search and has mutual information 6.25 bits/channel —s5 s O
use atp = 20 dB. However, this is less than the ful = 3, 3 0 S5 84
N = 1 capacity of6.41, and we would like to close the gap S= \/; . . (37)
a little. We should be able to make an LD code with mutual 0 —s5 53
information at least as large as the mutual information of the S5 0 s6
two-antenna orthogonal design (6), which6ig8. We do not —st 0 st

resume our gradient search since the vai25 appears to be

a local maximum, but rather try a slightly different approachWhen viewed as an LD code, (37) has the deficiencytyand
We begin with the two-antenna orthogonal design and creaté&ga are only nonzero for two-channel uses and not for the full
three-antenna LD code that preserves its mutual informationsix-channel uses. Moreoved,, and 3, have rank two, rather

o+t [/32\-/2/33 +/34} 042\;5044 . {%4_/32 ; /33} 0
—azfoay ; [/3_1 B2 — /33} o — 7./32‘1-/33 Catay [/3_1 P2 /33}
| v et " v e -
0 062\-/1-_044 . {/3\/_1_ e ; /33} o — astj {/32\-/1-_/33 B /34}
2 2 2
ay— oy {/3_1 B2 — /33} st _aptoy i [/3_1 _ P2 /33}
L V2 V2 2 V2 V2 2 ]
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M=3, N=1, R=6, LD Code vs. Orthogonal Design

LD Code

ber/bler

10
0 5 10 15 20 25 30

Fig. 6. Block (dashed) and bit (solid) error performance of orthogonal design (35) and the LD code (6 dY antennas. The rate I8 = 6 bits/channel use,
obtained in the orthogonal design by transmitting 256-QAMson. . . , s3 and obtained in the LD code by transmitting 64-QAMan . . .. s,. The uppermost
block and bit curves are the orthogonal design, decoded with maximum likelihood. The lower two block and bit curves (very close to one anothé&)cadethe L
decoded with nulling/canceling (upper) and maximum likelihood (lower). The comparison of block error is meaningful here because the blodicaizesiisal
T = 4.

than their full possible rank of three. Consequently, constraiot the transformation (30), the mutual information is still 6.28
iii) in Section 111-B is not satisfied, and as we point out in Rebits/channel uses(= 20 dB).
mark 3, of two codes that have the same mutual information, theWe see in Fig. 7 that this code performs very well: displayed
one satisfying the stronger constraint generally performs bettier(37) (which has the same performance as2he?2 orthog-
It is clear that the code (37) is really only a two-antenna codmal design) and the LD codes (36) and (39) for rBte= 2.
in crude disguise and performs worse than (36), even though(ithe symbol constellation is hence QPSK.) The code (37) has
mutual information is slightly higher. the worst performance. The LD code (36) with= @ = 4
To improve its performance, we seek to modify it so that cofias better performance, despite its lower mutual information,
straint iii) is satisfied without changing its mutual informationbecause it satisfies constraint iii). The best performer, however,
One possible modification is described in Remark 4 in Seis(39), because its mutual information is higher than (8&Y
tion 11I-B. (See, in particular, the transformation involvidyg versuss.25), it satisfies constraint iii), and perhaps also because
(30).) Let.F denote the3 x 3 discrete Fourier transform (DFT) it has a longer block lengtli{ = 6 versusI’ = 4).
matrix, and choos@ to be thes x 6 real orthogonal matrix ob-
tained by repla_cing ea_c}h elemefit = gu +jl_zkl of F by the Two LD CodesM = 2,4, N =2, R = 8
2 x 2 real matrix[;*' ~ *']. The transformation of 4., B, }
to new dispersion matricelsd; , By} is Fig. 8 demonstrates the dramatic improvement of increasing
the number of transmitter antennas frat= 2 to M = 4 with
6 6 N = 2. An LD code was designed f&& = 6, M = 4, and
Ay =" Adpg, By=> Bydpy  q=1,...6. (38) N = 2thatattains 11.84 bits/channel use at SNR- 20 dB,
p=1 p=1 whereas the channel capacity is 12.49 bits/channel use. We do
not explicitly present the code becauge= 12 and there are
The resultingS matrix is shown in (39) at the bottom of thetherefore 246 x 4 A and B matrices. (The reader may obtain
following page. Each dispersion matrix spans all six channtle code by contacting the authors.) We compare this code with
uses and is unitargA;* A} = B,* B, = I3). Thus, constraint the best LD code we have fd = 2 transmit antennas ((31)
iii) is satisfied. Because the transformation (38) is a special casedified with (34) wherep = £0-48%%),
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M=3, N=1, R=2, Two different LD Codes vs. OD

ber

LD Codes

SNR (dB)

Fig. 7. Bit error performance fatf = 3, N = 1, andR = 2. The top curve is (37), whose performance is identical20-a2 orthogonal design. The middle
curveisthel’ = 4 LD code (36), and the lower curve is tlie= 6 LD code (39). In all cases, the transmitted symbols are QPSK, decoded via maximum likelihood.

LD Code:M =8, N =4, R =16 clude this example to demonstrate that very high rates are well
within the reach of these codes, even with maximume-likelihood

I;([‘Jecoding. The figure compares the performance of nulling/can-
eling versus maximume-likelihood decoding with the sphere de-

The last example is an LD code fa&f = 8 and N = 4 at
rate R = 16 bits/channel use displayed in Fig. 9. It is wortl

noting that the capacity of al/ = 8, N = 4 system at 20 dB ¢ q q ; likelihood perf tarb X K
is 24.94-bits/channel use. We therefore restrict our attentionGR9€!, @nd maximum Ikelinood periorms tar etter. Itis remark-

this figure to relatively high SNR. The LD code was designefi Iethgtthe sphere_decode_rsucceeds atall in_obtainingthe max-
using gradient search applied to (28) until a local maximum ngum—llkellhoc_)d %s;mat(laégsmce afull §§ha“5“"e search would
obtained ap = 20 dB. The code attains a mutual informatioff€€d 10 €xamin@™ = 25~ 3.4 x 10°* hypotheses.

of 23.10-bits/channel use, with = 8 and has? = 32. To
obtainR = 16, we choosesy, ..., s32 from a 16-QAM con-
stellation. Because of the sheer number of matrices involved,Table | summarizes the mutual informations of some LD
we again do not explicitly present the LD code here. We icodes that we generated, including the examples from the

A. Table of Mutual Informations

_ 3 3 -
> s%-1 > s 0
=1 =1
3 3
* *
>, — S5 > 851 0
=1 =1
1
- _ 53 VBssa _ s5 _ V3se _ VBss _ 54 V3Bss _ se
S V2 0 51— 5 +3 2 2 S2 2 7 T3 2 | (39)
ok \/gsg i_\/gsg N *_i \/554_5_2_\/558
0 Sot 5 t5 2 2 1~ 21T 2 2 2
_ s _ V3sa _ 55 V/3sg V3ss _ sa _ V3Bss _ se
51— % 3 5 +5 0 s2+-5 2 2 2
_+_\/§s§ i \/555 i +_i_\/§s;_i \/558
- 352 7 T3t 5 13 0 S17 2 2 3t
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LD Codes for M=2,4, N=2, R=8

ber

0 5 10 15 20 25 30
SNR (dB)

Fig. 8. Bit error performance of the best LD code Tor= M = N = 2 and@ = 4 ((31) modified with (34)) and an LD code f@f = 6, M = 4, andN = 2.
The rate isR = 8 and is obtained by transmitting 16-QAM on each symbol. The decoding in both cases is maximum likelihood. The LD tbde foachieves
11.84 bits/channel use mutual informatiorpat 20 dB versus the channel capacityl@f49, and benefits dramatically from the two extra transmit antennas.

TABLE | and receive antennas, subsume as special cases many earlier

MUTUAL INFORMATION C'z p(p, T, M, N') OBTAINED VIA GRADIENT- — gnace_time transmission schemes, and satisfy an information-
ASCENTOPTIMIZATION OF THE COST FUNCTION (28), COMPARED TO THE

ACTUAL CHANNEL CAPACITY C(p, M, N) FoRDIFFERENTVALUES oF A/ theoretic optimality property. We have argued that codes that

AND N AT SNRp = 20 dB are deficient in mutual information can never be used to attain
TMN) Cro b TL.M,N) | Clp, M, N) Reference capacity. We also have shown that information-theoretic opti-
2.2.1) 6.28 6.28 Eq. (6) mality has a theoretical connection with low pairwise error prob-
@30 6.25 641 Eq. (36), Fig. 6 ability and good performance at high spectral efficiencies. The
Eggg o2 oAl Eq. (39). Fig. 7 LD codes are designed to be linear while having little (if any)
(4:4:1) 634 6.47 penalty in mutual information, and additional channel coding
(6,4,2) 11.84 12.49 Fig. 8 acrosssy, ..., sg can be combined with an LD code to attain
(8.8.4) 23.10 24.94 Fig. 9 most (if not all) of the channel capacity.

(T'=M,M,N > M) C(p,M,N) * Eq. (31), Figs. 4 & 5

We have given some specific examples of the LD codes, and
) . N presented a recipe for generating more codes within this linear
previous section, and the actual channel capacitiep & gy ciure for any combination of transmit and receive antennas.
20 dB. As can be observedyp(p, T, M, N)is very close to  oyr simulations indicate that codes generated with this recipe
C(p, M, N); there is little penalty in the linear structure of the,omnare favorably with existing space—time schemes in their
dispersion codes. When studying this table, we should bearggoq performance and low complexity. We have argued that the
mind that the entries fof.p(p, T, M, N) are not necessarily giversity criterion commonly used to design space—time codes
the best achievable since (28) was maximized via gradigfitys a secondary role to mutual information criterion at high

ascent. Our maxima are therefore quite possibly local. Furthgpectral efficiencies. The diversity criterion alone may lead to
more, the values af1.p(p, 7', M, N) are for codes with block qqe designs that cannot attain capacity.

lengths obeyingl/ < 7" < 2M. Conceivably, increasing@’

i i In our simulations, we decoded the LD codes by either max-
could also yield higher values fdirp(p, T, M, N). ursimuiati w y ei X

imum likelihood or by nulling and canceling. Because of the
linear relation between andx in (25), the maximume-likeli-
hood search could be accomplished efficiently using the sphere

The linear dispersion codes we have introduced are simplecoding algorithm, which, for SNRs of interest, has polyno-
to encode and decode, apply to any combination of transmital complexity in the number of antennas.

V. CONCLUSION
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M=8, N=4, R=186, LD Code: N/C vs. ML Decoding
10° SR EESE e E

ber

SNR (dB)

Fig. 9. Bit error performance of an LD code f8f = 8 and N = 4 with @ = 32 with nulling/canceling (upper curve) and maximum-likelihood decoding
(lower curve). The rate i® = 16 and is obtained by transmitting 16-QAM on each symbol. The LD code achieves mutual information 23.10-bits/channel use at
p = 20 dB versus the channel capacity2af.94.

We have used the average capacity (across different channel APPENDIX A
realizations) as our design metric, rather than an outage capacity THE GRADIENT COMPUTATION
(for one-channel realization), because channels are rarely statiF . . . . .
. h all the simulations presented in this paper, the maxi-
for very long and because the outage capacity does not have .a

simple closed-form expression. It is reasonable to expect ﬂ[%lgatlon of the cost function in (28), needed to design the LD

codes that work well on average should also help reduce t%%des, is perfprmed usirlg asimple constrained—.gradient—ascent
probability of outage events, but this remains to be eprored.methOd' In this appendix, we compute the gradient of the cost

It would be interesting to see if the LD codes that satis nction in (28) that this method requires. More sophisticated
imization techniques that we do not consider, such as

(28) possess any general algebraic structure. This would | i L )
to better theoretical understanding of the codes, as well asYgion—Raphson, scoring, and interior-point methods, can
possibly faster and better decoding algorithms. The codes ($63° Use this gradient. _ _ ,
and (39), for example, are local maxima of the cost function and 10 help compute this gradient, we rewrite the cost function
yet have simple structure. It would also be important to chardf-(28) as shown in (A1) at the bottom of the page, whelge
terize theoretically how clos€yp(p, T, M, N) can be made Bg, andh,, are defined in (22) foy = 1,..., Q andn =
to C(p, M, N)—what is the penalty incurred by the LD struc-l; - - -5 N.
ture? Our experience suggests that the penalty is small. Perhapde wish to compute the gradient of the cost function in (A1)
the penalty approaches zero&s— co? with respect to the spreading matricég ,, Az, 4, Br, 4, and
Finally, there are potentially many ways to optimize the cogs, ;- To simplify the gradient calculation, we assume the log-
function (28), and the gradient method we chose is only oneafthm in (A1) is base.. The gradient with respect tdg , is
them. More sophisticated optimization techniques may also bemputed here explicitly—the remaining three gradients follow
useful. similar arguments and are given at the end of the section.

o A, - 0 h,
1 p ) ) ) ) } )
ﬁElogdet IQNTJFMZ SRR : : Co | By AY | (A1)

q=1
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The (4, j)th entry of the gradient of a functiof{ Ag ,) is {Q‘ 0 } 0
0 G
A + 6¢; B — f(A : . .
{8f(AR,q)} — lim F(ARr g +0Gn:) — f(AR,q) (A2) X : _ :
8Aqu ij 6—0 6 |:<z 0 :|
0
0 G
where ¢; andn; are theZ-dimensional and} -dimensional 2
unit column vectors with one in théth and jth entries, = W(Pq,i,j + Py ivr, jym +
respectively, and zeros elsewhere. Defining the matrix
appearing in thelogdet(-) of (Al) as Z(Ag ,), so that + Py it eN-1)T, j+ (N -1)M) (AS)
f(AR,q) = 55 Elogdet Z(Ag,4); we then obtain where we have defined teV7" x 2N M matrix P, as
h, A, - 0
Z(AR, . +6¢nt) = Z(A
(ra o+ 86im) = Zddn ) Py=B|z7H| [ e B
Gmp O
0 ¢l 0 hy 0 - A
8p oY (AB)
+ M : : This concludes the gradient calculation with respectfg,,.
0 Cm} 0 Similar expressions can be found for the gradients with re-
0 Gnt spect toAy 4, Br, 4, andBy_,. With
hy i1 [A - 0] h, By e 0
x | : S : Ry=E|Zz7*| : | [py - BY]
byl Lhy 0 - A hy 0 - B,
+ transposer higher order terms. (A3) (A7)
these gradients are
Applying logdet(-) = trlog(-) yields (A4), shown at the 9f(Ary)] 25 N
bottom of the following page, where in the last step we use [ 54 R = T (B, it @n—2)T, j+(2n—2)M
log(I + A) = A— A%?/2 + ---. This now leads to g dij n=1

+ By it (2n—1)T, j+(2n—1)M) (A8)
f(Arg +6Gn%) — f(ARr,q)

N

lim Af(Ary)] 2p
5§50 6 , [ 9A; qq =TM (P, i+(2n—1)T, j4+(2n—2)M
.t 0 ’ -ty n=1
Gin; o 0
0 Gt — Py itn—21, j+2n—1ym)  (A9)
2 - '
= —T_fo Etr . |:af(BR,q) . 2p " (R (@n—1)T (2n-2)M1
- q,t+(2n— ,i+(2n—
0 [Cm} 0 } OBrq 1;; TM 1=
0 Gnt = Ry iv@n—21, j+2n—1)m)  (A10)
t t
hy hy Arz - 0 af(BI,q) 2p N
% 71 78B17q Y = “TM s (Rq, i+(2n—2)T, j+(2n—2)M
hy hy 0 - A + Ry it (2n—1)T, j4+(2n—1)Mm)-  (All)
[773 0 } 0
0 n APPENDIX B
. 2p Etr . ) . AVERAGE PAIRWISE PROBABILITY OF ERROR
=T : . :

The signal model (25) is

t 0
0 VJ f} 7
0 77] xZ«/MHerv

whereH is a given realNT" x 2¢) matrix. We compute the
X : : Do, z ! pairwise error by conditioning o

bl Lhn 0 - A P_.(pairwise = EFP.(pairwise™).
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We assume that two independe2f x 1 signal vectorss To compute (B13), we look at the characteristic function of
and s’ are chosen with entries from independent zero-meé#me scalar

real Gaussian densities with variant£2. The entries of the tast tast t
» . ; =2p/M)s"H"Hs +/2p/M (s"H'v + v"'Hs).
additive 2NT x 1 noise vectory are also chosen from this y=(@p/M) PM( )

density. We want the probability that a maximum-likelihood/e can write

decoder mistakes for s/, given thats is transmitted, averaged st (20/MYH'H \/2p/MH' | [s
overs ands’, and conditioned ofi. v= /2p]M H 0 v’
Becauser has a Gaussian distribution, we equivalently want ~ ~
R
The characteristic function of is
P.(pairwisdH) $(w) = Beiey

:P{Hx— \/p/—M’Hs/

x|s transmittec}

< Hx— W’Hs

= [ et ey

) X exp {—[stvt](f—i—ij) [;j } .
=P {(\/WH(S - ')+ U) (WH(S - ')+ U) We use the formula
) } /da: AT = 72 (det A)7H/?

< v
for positive realA (A +A* > 0), wherex is a realn x 1 vector,
to conclude that

=r {( 20/ M + U) ( V 2o/ MM + U) < Utv} $(w) = det(I + jwR) L2,
(B12) This implies that
=P {(Qp/M)SthHS +/2p/M (s"H o + vt Hs) < 0} ' P, (pairwisd™)

(B13) =P{y <0}
0
= / dy p(y)
Equation (B12) follows because and s’ are independent e .
Gaussian vectors and we have replaced the difference of the 1 - ey py—1/2
two vectors by a single vector with twice the variance. Tom y /_oo dwer™ det( + jwR)™=. (B14)
J(AR ¢+ 6Gn}) — f(AR,q)
Gni O
o 0 bl [h]' TA 07"
0 ij vy g q
1 6
0 {let 0 } hx hy 0 - A
0 Gn
+transposet higher order term
Gm; O
A 0 h hy1°TA 017"
0 Gnj fp 1] 1
_ 1 bp _ _ : : . : —1
= ﬁ EtrM : . . : : : . . . Z
T ] e
0 G

+ transposet- higher order terms (A4)
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We wish to switch the order of integration, and we have to make 1 o w4 j/2 2Q ) 12
sure that/«¥ is well-behaved as a function efandy. We can = % dwm 110+ 20, (w* + 1/4)]
ensure its good behavior by shifting the path of integration to =~ a=1
w € (—oo—j/2, oo —j/2). (The formal argument for why this 1 e 1 2Q
does not affect the value of the integral is omitted.) We obtain = o / Y7 H[l + 20, (w? +1/4)] 72
T oo W
P.(pairwisdX 1=t
oco—j/2 -0 )
S dw/ dye’*¥ det(1 + ij)*l/2 To get an upper bound on the pairwise error probability, we
27 J—co—i/2 —o0 ignore the second appearanceJ3fin (B16) to obtain
1 oco—j/2 eIwy [=S) 2Q
- — dw det(I + jwR) Y/? —— - 1 1 ~1/2
27 ) ois o | P, (pairwisdH) < N do—— 7 g[l +0,4/2]
1 oo—j/2 1 ) 1)
= — dw— det(I 4+ jwR) . (B15) 1 @
21) Jovorjrz W =5 H[l Jraq/2]_1/2
We now computelet({ + jwR) by first computing the eigen- g=1
values ofR. The eigenvalues aR are the solutions to 1 p —1/2
= det [1+ 2707
ot Mg — (20/MYH'H  —\/2p/M H! . 2 2M
€ = It follows that
—/ 2p/ H )‘IQNT
as a polynomial in\.. Using a standard determinantidentity [27], ~ F=(Pairwisg < E det [I + o7 HtH} - (B17)

we can write this equation as Applying a union bound to th|s average pairwise probability

of error yields an upper bound on probability of error of a signal
constellation. Suppose that the transmission rat®,iso that
there are2®” elements in our constellation fét; then

r 2 M
0 I)\QJ\Tdet <)\IQQ — (2p/M)Ht p/

H%)

= \INT—2Q det()\QIQQ -2\ + 1)(p/M)HtH) ) i

P. <2RTEZ det [I + - HtH]

. 2 2M

= \2NT- 2QH — 2\ + D)oy 1
=5 Ee— (2 legdet[ 1455 H'H]-R)T

whereoy, ..., oa¢ are the eigenvalues ¢5/M )H'H. Solving
this last equation yield8NT — 2@Q) zero eigenvalues, with the REFERENCES
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