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High-Rate Codes That Are Linear in Space and Time
Babak Hassibi and Bertrand M. Hochwald

Abstract—Multiple-antenna systems that operate at high rates
require simple yet effective space–time transmission schemes to
handle the large traffic volume in real time. At rates of tens of
bits per second per hertz, Vertical Bell Labs Layered Space–Time
(V-BLAST), where every antenna transmits its own independent
substream of data, has been shown to have good performance
and simple encoding and decoding. Yet V-BLAST suffers from
its inability to work with fewer receive antennas than transmit
antennas—this deficiency is especially important for modern
cellular systems, where a base station typically has more antennas
than the mobile handsets. Furthermore, because V-BLAST
transmits independent data streams on its antennas there is no
built-in spatial coding to guard against deep fades from any given
transmit antenna. On the other hand, there are many previously
proposed space–time codes that have good fading resistance and
simple decoding, but these codes generally have poor performance
at high data rates or with many antennas. We propose a high-rate
coding scheme that can handle any configuration of transmit and
receive antennas and that subsumes both V-BLAST and many
proposed space–time block codes as special cases. The scheme
transmits substreams of data in linear combinations over space
and time. The codes are designed to optimize the mutual infor-
mation between the transmitted and received signals. Because of
their linear structure, the codes retain the decoding simplicity of
V-BLAST, and because of their information-theoretic optimality,
they possess many coding advantages. We give examples of the
codes and show that their performance is generally superior
to earlier proposed methods over a wide range of rates and
signal-to-noise ratios (SNRs).

Index Terms—Bell Labs Layered Space–Time (BLAST), fading
channels, multiple antennas, receive diversity, space–time codes,
transmit diversity, wireless communications.

I. INTRODUCTION AND MODEL

I T is widely acknowledged that reliable fixed and mobile
wireless transmission of video, data, and speech at high rates

will be an important part of future telecommunications systems.
One way to get high rates on a scattering-rich wireless channel is
to use multiple transmit and/or receive antennas. In [1], [2], the-
oretical and experimental evidence demonstrates that channel
capacity grows linearly as the number of transmit and receive
antennas grow simultaneously.

Early uses of multiple transmit antennas in a scattering en-
vironment achieve reliability through “diversity,” where redun-
dant information is sent or received on two or more antennas
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in the hope that at least one path from the transmitter reaches
the receiver [3]–[6]. To keep the transmitter and receiver com-
plexity low, linear processing is often preferred [3]. To achieve
the high data rates promised in [2], however, new approaches
for space–time transmission are needed. One such approach is
presented in [7], [8] where a practical scheme, called V-BLAST
(Vertical Bell Labs Layered Space–Time), encodes and decodes
rates of tens of bits per second per hertz (b/s/Hz) with 8 transmit
and 12 receive antennas. The V-BLAST architecture breaks the
original data stream into substreams that are transmitted on the
individual antennas. The receiver decodes the substreams using
a sequence of nulling and canceling steps.

Since then there has been considerable work on a variety
of space–time transmission schemes and performance mea-
sures [9] such as the space–time trellis codes of [10] and the
space–time block codes of [11], [12] for the known channel
and [13]–[17] for the unknown channel.

At very high rates and with a large number of antennas, many
of these space–time codes suffer from complexity or perfor-
mance difficulties. The number of states in the trellis codes of
[10] grows exponentially with either the rate or the number of
transmit antennas. The block codes of [11], [12] suffer from rate
and performance loss as the number of antennas grow, and the
codes of [14]–[16] suffer from decoding complexity if the rate is
too high. Although V-BLAST can handle high data rates with
reasonable complexity, the decoding scheme presented in [7]
does not work with fewer receive than transmit antennas.

We present a space–time transmission scheme that has many
of the coding and diversity advantages of previously designed
codes, but also has the decoding simplicity of V-BLAST at high
data rates. The codes work with arbitrary numbers of transmit
and receive antennas.

The codes break the data stream into substreams that are dis-
persed in linear combinations over space and time. We refer
to them simply as linear dispersion codes (LD codes). The LD
codes

1) subsume, as special cases, both V-BLAST [7] and the
block codes of [12];

2) generally outperform both;
3) can be used for any number of transmit and receive an-

tennas;
4) are very simple to encode;
5) can be decoded in a variety of ways including simple

linear-algebraic techniques such as

a) successive nulling and canceling (V-BLAST [7],
square-root V-BLAST [18]),

b) sphere decoding [19], [20];

6) are designed with the numbers of both the transmitand
receive antennas in mind;
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7) satisfy the following information-theoretic optimality cri-
terion:

— the codes are designed to maximize the mutual infor-
mation between the transmit and receive signals.

We briefly summarize the general structure of the LD
codes. Suppose that there aretransmit antennas, receive
antennas, and an interval of symbols available to us during
which the propagation channel is constant and known to the
receiver. The transmitted signal can then be written as a
matrix that governs the transmission over the antennas
during the interval. We assume that the data sequence has been
broken into substreams (for the moment we do not specify

) and that are the complex symbols chosen from
an arbitrary, say -PSK or -QAM, constellation. We call a
rate linear dispersion code one for which
obeys

(1)

where the real scalars are determined by

The design of LD codes depends crucially on the choices
of the parameters , and the dispersion matrices .
To choose the we propose to optimize a nonlinear
information-theoretic criterion: namely, the mutual information
between the transmitted signals and the received
signal. We argue that this criterion is very important for
achieving high spectral efficiency with multiple antennas.
We also show how the information-theoretic optimization has
implications for performance measures such as pairwise error
probability. Section IV has several examples of LD codes and
performance comparisons with existing schemes.

We now present the multiple-antenna model considered in
this paper.

A. The Multiple-Antenna Model

In a narrow-band, flat-fading, multiple-antenna communica-
tion system with transmit and receive antennas, the trans-
mitted and received signals are related by

(2)

where denotes the vector of complex received signals
during any given channel use, denotes the vector of
complex transmitted signals, denotes the channel
matrix, and the additive noise is (zero-mean,
unit-variance, complex-Gaussian) distributed that is spatially
and temporally white. The channel matrix and transmitted
vector are assumed to have unit variance entries, implying that

and

Since the random quantities, , and are independent, the
normalization in (2) ensures that is the signal-to-noise
ratio (SNR) at each receive antenna, independently of. We

often (but not always) assume that the channel matrixalso
has independent entries.

The entries of the channel matrix are assumed to be known
to the receiver but not to the transmitter. This assumption is rea-
sonable if training or pilot signals are sent to learn the channel,
which is then constant for some coherence interval. The coher-
ence interval of the channel should be large compared to[21].
When the channel is known at the receiver, the resulting channel
capacity (often referred to as theperfect-knowledgecapacity) is
[2], [1]

(3)
where the expectation is taken over the distribution of
the random matrix .1 The capacity-achieving is a
zero-mean complex Gaussian vector with covariance matrix

, where is the maximizing covariance
matrix in (3). When the distribution on is rotationally
invariant, i.e., when for any unitary
matrices and (as is the case when has independent

entries), the optimizing covariance is ,
and (3) becomes

(4)

This expectation can sometimes be computed in closed form
(see, for example, [22]).

When the channel is constant for at leastchannel uses we
may write

so that defining

and

(where the superscriptdenotes “transpose”), we obtain

It is generally more convenient to write this equation in its trans-
posed form

(5)

where we have omitted the transpose notation fromand
simply redefined this matrix to have dimension . The
matrix is the received signal, is the
transmitted signal, and is the additive
noise. In , , and , time runs vertically and space runs
horizontally. We are concerned with designing the signal matrix

obeying the power constraint .

1Equation (3) actually slightly generalizes [2], [1], which assume thatH has
independentCN (0; 1) entries.
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We note that, in general, the number of matrices
needed in a codebook can be quite large. If the rate in bits per
channel use is denoted, then the number of matrices is .
For example, with transmit and receive antennas
the channel capacity at 20 dB (with distributed

) is more than 12 bits per channel use. Even with a relatively
small block size of , we need matrices at
rate . The huge size of the constellations generally rules
out the possibility of decoding at the receiver using exhaustive
search.

The LD codes that we present easily generate the very large
constellations that are needed. Moreover, because of their struc-
ture, they also allow efficient real-time decoding. In the next sec-
tion, we briefly describe and analyze some existing space–time
codes so that we may motivate the LD codes and explain how
they are different.

II. I NFORMATION-THEORETIC ANALYSIS OF SOME

SPACE–TIME CODES

Since the capacity of the multiple-antenna channel can easily
be calculated, we may ask how well a space–time code performs
by comparing the maximum mutual information that it can sup-
port to the actual channel capacity. The distribution for the

matrix that achieves (4) is independent entries,
but we cannot easily use this by itself as a guideline for con-
structing and decoding a (random) constellation of ma-
trices because of the sheer number of matrices involved. There-
fore, a constellation of matrices that has sufficient structure for
efficient encoding and decoding is generally needed. One such
structure is that of anorthogonal design, originally proposed in
[11] and later generalized in [12].

A. Mutual Information Attainable With Orthogonal Designs

An orthogonal design is introduced by Alamouti in [11] for
and has the structure

(6)

The complex scalars and are drawn from a particular
( -PSK or -QAM) constellation, but we may simply assume
that they are random variables such that .
We show that this particular structure can be used to achieve ca-
pacity when there is one receive antenna butnot when there is
more than one. Portions of our argument may also be found in
[23], [24].

1) One Receive Antenna ( ): With , (5) be-
comes

This can be rewritten as

(7)

It readily follows that

(8)

We effectively have an equivalent matrix channelin (7) that
is a scaled unitary matrix. Maximum-likelihood decoding of
and is, therefore, decoupled [11].

We may ask how much mutual information the orthogonal
design structure (6) can attain? To answer this question we need
to compute the mutual information between the transmitted and
received vectorsand in the equivalent channel model (7) and
compare it with the capacity of an , multiple-
antenna system.

Since has the power constraint , the maximum
mutual information in (7) is simply the channel capacity that is
obtained with the structured channel matrix. If we denote this
maximum mutual information by , using (3) we obtain

where the factor in front of the expectation normalizes for the
two channel uses spanned by the orthogonal design. Since, sub-
ject to a trace constraint, the determinant of any positive-definite
matrix is maximized when its eigenvalues are all equal, it is easy
to see that the maximizing covariance matrix is , so
that we obtain

(9)

The expression on the right symbolically denotes the capacity
attained by a system with transmit antennas and
receive antennas at SNR. This equation implies that the or-
thogonal design (6) can achieve the full channel capacity of the

, system, and there is no loss incurred by as-
suming the structure (6) as opposed to a general transmit ma-
trix .

2) Two or More Receive Antennas ( ): With
receive antennas, (5) becomes

which can be reorganized as

(10)

We now readily see

(11)

As with , maximum-likelihood estimation of and
is decoupled. However, unlike with , the orthogonal

design structure prohibits us from achieving channel capacity.
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Fig. 1. Maximum mutual information achieved by2� 2orthogonal design (6) compared to actual channel capacity for theM = 2,N = 2 system. Solid line:
maximum mutual information for2� 2orthogonal design. Dashed line: capacity of theM = 2,N = 2 system.

To see this, we compare the maximum mutual information be-
tween and in (10) with , the actual
channel capacity for the system.

As before, the maximum mutual information in (10) is simply
the channel capacity for the structured channel matrix. De-
noting this maximum mutual information by , we ob-
tain

(12)

The last equation implies that the orthogonal design (6) is re-
strictive anddoes notallow us to achieve the full channel ca-
pacity of the , system, but rather the capacity of
an , system at twice the SNR. Thus, when

we take a loss with the structure (6). The amount of this loss is
substantial at high SNR and is depicted in Fig. 1 which shows
the actual channel capacity compared to the maximum mutual
information obtained by the orthogonal design (6).

For receive antennas, the analysis is similar and is
omitted. We simply state that for transmit antennas
and receive antennas the orthogonal design allows us
to attain only , rather than the full

.
3) Other Orthogonal Designs:The preceding subsection

focuses on the orthogonal design but there are also
orthogonal designs for . The complex orthogonal
designs for are no longer “full-rate” (see [12]) and
therefore generally perform poorly in the maximum mutual
information they can achieve, even when . We give an
example of these nonsquare orthogonal designs [12], [25].

For , we have, for example, the rateorthogonal
design

(13)

The factor ensures that . It can
be shown that maximum-likelihood estimation of the variables

is decoupled. Again using an argument similar to
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Fig. 2. Maximum mutual information achieved by4� 3 orthogonal design (13) compared to actual channel capacity. Solid lines: maximum mutual information
of 4� 3 orthogonal design forN = 1; 2; 3 receive antennas. Dashed lines: capacity ofM = 3,N = 1; 2; 3 systems.

the one presented for , it is straightforward to show
that the maximum mutual information attainable with (13) with

receive antennas is which is
(much) less than the true channel capacity . We
omit the proof and refer instead to Fig. 2 which shows the actual
channel capacity compared to the maximum mutual information
obtained by the orthogonal design (13).

B. Mutual Information Attainable With V-BLAST

We showed in Section II-A that, even though orthogonal de-
signs allow efficient maximum-likelihood decoding and yield
“full-diversity” (the appearance of the sum of the in the
mutual information formulas attests to this), orthogonal designs
generally cannot achieve high spectral efficiencies in a mul-
tiple-antenna system, no matter how much coding is added to
the transmitted signal constellation. This is especially true when
the system has more than one receive antenna. An examination
of the model (10) (and its counterparts for other orthogonal de-
signs) reveals that the orthogonal design does not allow enough
“degrees of freedom”—there are only two unknowns in (10) but
four equations.

We can conclude that orthogonal designs are not suitable for
very-high-rate communications. On the other hand, a scheme
that is proven to be suitable for high spectral efficiencies is
V-BLAST [7]. In V-BLAST each transmit antenna during each
channel use sends an independent signal (often referred to as a

substream). Thus, over a block ofchannel uses, the
transmit matrix takes on the form

...
...

...
...

(14)

where each is an independent symbol drawn from a complex
constellation. Since the transmitted symbols are not dispersed in
time, is arbitrary. (We could, for example, take .)

When (the number of receive antennas is at least as
large as the number of transmit antennas), there exist efficient
schemes for decoding the V-BLAST matrices. These are based
on “successive nulling and canceling” [7], and its more efficient
variants [18], as well as more recently on sphere decoding [19].
All these decoding schemes essentially solve a well-conditioned
system of linear equations. Successive nulling and canceling
provides a fast approximate solution to the maximum-likeli-
hood decoding problem with the benefit of cubic complexity
in the number of transmit antennas . Sphere decoding, on
the other hand, finds the exact maximum-likelihood estimate
and benefits from avoiding an explicit exhaustive search. Recent
work [20] has shown analytically that for a wide range of SNRs,
the expected computational complexity of sphere decoding is
also roughly cubic in the number of transmit antennas.
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Because there is no restriction on the transmitted matrix
in (14), the maximum mutual information that can be achieved
by transmitting V-BLAST-like matrices is indeed the full mul-
tiple-antenna channel capacity. Nevertheless, V-BLAST suffers
from two deficiencies. First, nulling and canceling fails when
there are fewer receive antennas than transmit antennas, since
the decoder is confronted with anunderdeterminedsystem of
linear equations. Although sphere decoding can still be used to
find the maximum-likelihood estimate, the computational com-
plexity is exponential in . Second, because V-BLAST
transmits independent data streams on its antennas there is no
built-in spatial or temporal coding, and hence none of the error
resilience associated with such coding. We seek to remedy these
deficiencies in the next section.

III. L INEAR-DISPERSIONSPACE–TIME CODES

In this section, we propose a high-rate coding scheme that
retains the decoding simplicity of V-BLAST, handles any con-
figuration of transmit and receive antennas, and has many of the
coding advantages of schemes, such as the orthogonal designs,
without suffering the loss of mutual information.

We call alinear-dispersion (LD) codeone for which

(15)

where are complex scalars (typically chosen from
an -PSK or -QAM constellation) and where the and
arefixed complex matrices. The code is completely de-
termined by the set ofdispersionmatrices , whereas
each individual codeword is determined by our choice of the
scalars .

We often find it more convenient to decompose theinto
their real and imaginary parts

and to write

(16)

where and . The dispersion
matrices also specify the code.2 The integer and
the dispersion matrices are, for the moment, unspecified.

Without loss of generality, we assume that and
have variance and are uncorrelated. Otherwise,

we can always replace them with appropriate linear combina-
tions that have this property—this simply leads to a redefini-
tion of the s and ’s. Thus, are unit-variance
and uncorrelated. Recall from our model in Section I-A that the

2We remark that it is also possible to defineA = jB and� = � ,
for q = 1; . . . ; Q, so that the LD codes become

S = � A ; (17)

where the scalars� are real.

transmit signal is normalized such that . This
induces the following normalization on the matrices :

(18)

The dispersion codes (16) subsume as special cases both or-
thogonal designs and V-BLAST. For example, the orthog-
onal design (6) corresponds to and

(19)

whereas V-BLAST corresponds to and

(20)

where and are -dimensional and -dimensional
column vectors with one in theth and th entries, respec-
tively, and zeros elsewhere.

Note that in V-BLAST each signal is transmitted
from only one antenna during only one channel use. With the
LD codes, however, the dispersion matrices potentially transmit
some combination ofeachsymbol fromeachantenna atevery
channel use. This can lead to desirable coding properties. Before
we specify good choices of the dispersion matrices, we discuss
decoding.

A. Decoding

An important property of the LD codes (16) is their linearity
in the variables , leading to efficient V-BLAST-like
decoding schemes. To see this, it is useful to write the block
equation

(21)

in a more convenient form. We decompose the matrices in (21)
into their real and imaginary parts to obtain

where and . Equivalently,
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We denote the columns of , , , , , and by
, , , , , and , and define

(22)

where . We then gather the equations in and
to form the single real system of equations

...
...

... (23)

where the equivalent real channel matrix is given by

...
...

...
...

... (24)

We have a linear relation between the input and output vectors
and

(25)

where the equivalent channelis known to the receiver because
the original channel , and the dispersion matrices
are all known to the receiver. The receiver simply uses (24) to
find the equivalent channel. The system of equations between
transmitter and receiver is not underdetermined as long as

(26)

We may, therefore, use any decoding technique already in place
for V-BLAST, such as successive nulling and canceling [7], its
efficient square-root implementation [18], or sphere decoding
[19]. The most efficient implementations of these schemes gen-
erally require computations, and have roughly constant
complexity in the size of the signal constellation[20].

B. Design of the Dispersion Codes

Although we have introduced the LD structure

we have not yet specified or the dispersion matrices
and . We have the inequality .

Intuitively, the larger is, the higher the maximum mutual
information between and is since the matrix signal has
more degrees of freedom. (Recall that orthogonal designs gen-
erally have low mutual information because they do not have
enough degrees of freedom.) On the other hand, the smaller

is, the more of a coding effect we obtain since the equivalent
matrix becomes “skinnier” and the system of equations in
(23) becomes more overdetermined. As a general practice, we
find it useful to take since this tends to
maximize the mutual information betweenand while still
having the benefit of coding gain.3

We are left with the question of how to design the disper-
sion matrices. We may first examine how sensitive the perfor-
mance of the LD codes is to the choice of the dispersion ma-
trices. Experiments with choosing random dispersion matrices
subject to the normalization constraint (18), or the more strin-
gent constraints

for

suggest that the performance for “average” is not gen-
erally very good. Fig. 3 shows the bit-error rate of an ,

antenna system with randomly chosen versus optimized
(according to a criterion we specify shortly) dispersion matrices.
The difference is dramatic; it is important to choose the disper-
sion matrices wisely.

One possible way of designing the spreading matrices is to
study the pairwise probability of error of two different LD code-
words, say

and

The worst case pairwise error is generally obtained when
and

differ in only one element. We can then seek to choose the
dispersion matrices that minimizes the probability of this error.
The main drawback of this strategy is that it leads to a criterion
on the individual columns of the matrix , rather than on the
matrix in its entirety. Therefore, it is conceivable that designs
based on this criterion could lead to a (near) singular, leading
to other forms of errors. Finally, it is not clear what effect
minimizing pairwise error probability has on the overall error
probability, especially for a high-rate system. Therefore, this
strategy for choosing the dispersion matrices does not appear
to be promising.

We can also study theaveragepairwise error probability, ob-
tained by choosing Gaussianin (25) and averaging the pair-
wise error obtained between an independentand . We show
in Appendix B that the average pairwise error has upper bound

pairwise (27)

We can then seek to minimize the upper bound with an ap-
propriate choice of and . Even
though (27) is a simple formula, suggesting that it can possibly
be minimized, we do not attempt to do so here. The main reason
is the following. Since multiple antennas are used for very high

3At high SNR, the capacity of the multiple-antenna system grows as
min(M; N) log �, suggesting that we needK = min(M; N) degrees of
freedom per channel use.
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Fig. 3. Bit-error performance comparison for a random (fA ; B g drawn from a complex Gaussian distribution and normalized) and an optimized LD code for
M = 3 transmit andN = 1 receive antenna forT = Q = 4, and rateR = 6 bits/channel use (obtained by transmitting 64-QAM ons ; . . . ; s ).

rates, the pairwise error probability for any two signals is ex-
tremely small. In Section I-A we argue that even for the small
test-case of transmit and receive antennas, we
could theoretically have a constellation size of as many as
signal-matrices at 20 dB. It is therefore conceivable that
the pairwise error probability between any two could be roughly

. Trying to minimize a quantity such as (27) that
is already so small can be numerically quite difficult.

Fortunately, information theory suggests a natural alternative
that is connected with minimizing (27) but is more fundamental.
Recall from Section II-A that orthogonal designs are deficient
in the maximum mutual information they support for
or . We therefore choose to maximize the mu-
tual information between and in (23). This guarantees that
we are taking the smallest possible mutual information penalty
within the LD structure (16). We propose to design codes that
are “blessed” by the “logdet” formula (3).

We formalize the design criterion as follows.

The Design Method

1) Choose (typically, ).

2) Choose that solve the optimization problem

(28)

for an SNR of interest, subject to one of the following
constraints:

i)

ii) ,

iii) ,

where is given by (24) with the having independent
entries.

Note that (28) is effectively (3) with ; as mentioned
in Section III, we may take the entries of(the ’s and ’s) to
be uncorrelated with variance. Moreover, because the real and
imaginary parts of the noise vectorin (23) also have variance

, the SNR remains. We also note that (28) differs from (3)
by the outside factor because the effective channel is real-
valued and the LD code spanschannel uses.

We now make some remarks.

1) Clearly, .

2) The problem (28) can be solved subject to any of the con-
straints i)–iii). Constraint i) is simply the power constraint
(18) that ensures . Constraint ii) is more
restrictive and ensures that each of the transmitted signals

and are transmitted with the same overall power
from the antennas during the channel uses. Finally,
constraint iii) is the most stringent, since it forces the sym-
bols and to be dispersed with equal energy in all
spatial and temporal directions.
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3) Since constraints i)–iii) are successively more restric-
tive, the corresponding maximum mutual informations
obtained in (28) are necessarily successively smaller.
Nevertheless, we have found that constraint iii) generally
imposes only a small information-theoretic penalty while
having the advantage of better coding (or diversity)
gains. Using symmetry arguments one may conjecture
that the optimal solution to the problem with constraint
i) should automatically satisfy constraint ii). But we
have not experimented sufficiently with constraint i) to
confirm this; we instead usually restrict our attention to
constraints ii) and iii). We have empirically found that
of two codes with equal mutual informations, the one
satisfying the more stringent constraint gives lower error
rates. Examples of this phenomenon appear in Section IV.

4) The solution to (28) subject to any of the constraints i)–iii)
is highly nonunique: simply reordering the
gives another solution, as does pre- or post-multiplying all
the matrices by the same unitary matrix. However, there
is also another source of nonuniqueness which is more
subtle. Equation (23) shows that we can always pre-mul-
tiply the transmit vector
by a orthogonal matrix to obtain a new
vector with en-
tries that are still independent and -distributed.
Thus, we may rewrite (23) as

Defining , , and as in (22) allows us to write
the new equivalent channel as shown in (29)
at the bottom of the page. Since the entries ofand
have the same joint distribution, the maximum mutual
information obtained from the equivalent channelsand

are the same. This implies that the transformation from
the dispersion matrices to

(30)

where is an orthogonal matrix, pre-
serves the mutual information. Thus, the transformation
(30) is another source of nonuniqueness to the solution of
(28).

This nonuniqueness can be used to our advantage
because a judicious choice of the orthogonal matrix
allows us to change the dispersion code through the
transformation (30) to satisfy other criteria (such as
space–time diversity) without sacrificing mutual infor-
mation. Examples of this appear in Remark 7, where we
construct unitary from the rank-one V-BLAST
dispersion matrices (20), and in Section IV in some of
the two and three-antenna LD code constructions.

5) The constraints i)–iii) are convex in the dispersion ma-
trices since they can be rewritten as

i′)
ii ′) ,

iii ′) ,

all of which are convex. However, the cost function
is neither concave nor

convex in the variables . Therefore, it is
possible that (28) has local maxima. Nevertheless, we
have been able to solve (28) with relative ease using
gradient-based methods and it does not appear that local
maxima pose a great problem. Table I in Section IV-A
gathers the maximum mutual informations obtained via
gradient-ascent for a variety of different, , and .
The results show that maximum mutual informations
obtained are quite close to the Shannon capacity (which
is clearly an upper bound on what can be achieved) and
so they suggest that the values obtained, if not the global
maxima, are quite close to them. (For convenience,
we include the gradient of the cost function (28) in
Appendix A.)

...
...

...
...

. . .
...

...
. . .

... (29)
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6) We know that for , , , one solution
to (28), for any of the constraints i)–iii), is the orthogonal
design (19). This holds simply because the mutual infor-
mation of this particular orthogonal design achieves the
actual channel capacity . We note
that there are also many other solutions that work equally
well.

7) When and one solution to (28), subject
to either constraints i) or ii), is given by the V-BLAST
matrices (20) since these achieve the full capacity of the
multiple antenna link. The V-BLAST matrices, however,
are rank-one and therefore do not satisfy constraint iii).
But it is also possible to obtain an explicit solution to (28)
subject to iii). For , one such set of matrices is
given by

(31)

where

...
...

...
. . .

...

The above code can be constructed by starting with the
V-BLAST matrices (20) and applying the transformation
(30) with a suitable . We do not give the full here, and
only mention that, for , the transformation is

with similar expressions for the . It can be readily
checked that the matrix constructed from the coef-
ficients relating to is orthogonal.
Fig. 4 in Section IV presents a performance comparison
of the LD code (31) with V-BLAST.

8) The block length is essentially also a design variable.
Although it must be chosen shorter than the coherence
time of the channel, it can be varied to help the optimiza-
tion (28). We have found that choosing
often yields good performance.

9) Although the SNR is a design variable, we have found
that the optimization (28) is not sensitive to its value for
large ( 20 dB). Once the optimization is performed,
the resulting LD code generally works well over a wide
range of SNRs.

10) It does not appear that (28) has a simple closed-form
solution for general , , , although we see in Sec-
tion IV that, in some nontrivial cases, it can lead to so-
lutions with simple structure. We have found that the so-
lution to (28) often yields an equivalent channel matrix

that is “as orthogonal as possible.” Although complete
orthogonality appears not always to be possible, our ex-
perience with optimizing (28) shows that the difference

can be made quite
small with a proper choice of and (see Table I in Sec-
tion IV-A). Thus, there appears to be very little capacity
penalty in assuming the LD structure (16).

11) When the equivalent channel matrix is orthogonal,
maximum-likelihood decoding and the V-BLAST-like
nulling/canceling [7] perform equally well because the
estimation errors of are decoupled.

12) The design criterion (28)depends explicitly on the
number of receive antennas, both through the choice
of and through the matrix in (24). Hence, the
optimal codes, for a given, , and , are different for
different .

Nevertheless, a code designed forreceive antennas
can also easily be decoded using nulling/canceling or
sphere decoding with antennas. Hence, if we
wish to broadcast data to more than one user, we may
use a code designed for the user with the fewest receive
antennas, with a rate supported by all the users.

13) The ultimate rate of the code depends on the number of
signals sent , the block length of the code, and the size
of the constellation from which are chosen.
We assume that the constellation is-PSK or -QAM.
Then the rate in bits per channel use is easily seen to be

(32)

14) A standard gray-code assignment of bits to the symbols
of the -PSK or -QAM constellation may be used.

15) We see that the average pairwise error probability (27)
and the design criterion (28) have a similar expression. By
interchanging the expectation and log in (28), we see that
maximizing (28) has some connections to minimizing
(27).

On the other hand, our design criterion is not directly
connected with the diversity design criterion given in [9]
and [10], which is concerned with maximizing

(33)

A constellation attains full diversity if (33) is nonzero.
This criterion depends only on matrix pairs, and there-
fore does not exclude matrix designs with low spectral
efficiencies.

At high spectral efficiencies, the number of signals in
the constellation of possible matrices is roughly ex-
ponential in the channel capacity at a given SNR. This
number can be very large—in Section IV we present a
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code for and that effectively has
matrices. The relation between

the diversity criterion and the performance of such a large
constellation is very tenuous. Even if

for many pairs of , our probability of encountering
one of these matrices may still be exceedingly small, and
the constellation performance may still be excellent. For
such a large constellation it is probably more important
for the matrices in this constellation to be distributed in
the space of matrices according to the distribution that at-
tains capacity; the mutual information criterion attempts
to achieve this distribution.

As the SNR is allowed to increase, the performance of
some given space–time code with some given rate be-
comes more dependent on the diversity criterion since
making a decoding error to a “nearest neighbor” becomes
relatively more important. Chernoff bound computations
in [10] show that the pairwise error falls off as ,
where is the rank of . However, by increasing the
SNR and keeping the code (and hence rate) fixed, we are
effectively reducing the relative spectral efficiency of the
code as compared with the channel capacity. We are there-
fore led again to the conclusion that diversity plays a sec-
ondary role at high spectral efficiencies. In Section IV, we
present a comparison of codes that satisfy various combi-
nations of the mutual information and diversity criteria.
The code that satisfies both criteria performs best, fol-
lowed by the mutual information criterion only, followed
by the diversity criterion only.

16) Although the dispersion matrices can, in gen-
eral, be complex, we have found that constraining them
to be real imposes little, if any, penalty in the optimized
mutual information.

17) Our mutual information calculations and design exam-
ples assume that the channel matrixhas independent

entries, but designs for other channel distribu-
tions using the mutual information criterion are also pos-
sible.

IV. EXAMPLES OF LD CODES AND PERFORMANCE

In this section, we present simulations that compare the per-
formance of LD codes to V-BLAST and orthogonal designs
over a wide range of SNRs and various combinations of receive
and transmit antennas. All the LD codes are designed for a target
SNR of 20 dB (see Remark 9 in Section III-B).

LD Versus V-BLAST : , ,

We look first at an , system at rate and
compare V-BLAST with an LD code. In V-BLAST, ,
and the matrices are given by (20). To design an LD code we
also choose but use the matrices given by (31) that
satisfy constraint iii) in (28). To achieve , we transmit
quaternary phase-shift keying (QPSK) on . The re-
sults can be seen in Fig. 4, where the bit errors are compared.
Even though both V-BLAST and the LD code support the full
channel capacity, which is 11.28 bits/channel use at SNR20
dB, the LD code has better performance; this can probably be
attributed to the spatial and temporal dispersion of the symbols
that V-BLAST lacks.

Since we are transmitting at a rate our spectral
efficiency is low relative to the channel capacity, and we
may therefore anticipate significant coding advantages from
also satisfying the diversity criterion (33)—see Remark 15 in
Section III-B for an explanation of the relative importance of
diversity at low spectral efficiencies. The LD code (31) may be
modified as in Remark 4 in Section III-B, without changing its
mutual information, by premultiplying the transmitted signal
vector by an orthogonal matrix . In [26], a two-antenna code
is designed using the full diversity criterion. This code also
happens to support the full capacity of the channel, and we may
put it into our LD code framework by choosing to be the
block-diagonal matrix shown in (34) at the bottom of the page
(where the subscript “” denotes real part, and “” denotes
imaginary part) and where and . The result is
a code that satisfies both the mutual information criterion and
diversity criterion; it is also displayed in Fig. 4 and has the best
performance. Although the codes in the figure all satisfy the
mutual information condition, the importance of also satisfying
the diversity criterion at relatively low spectral efficiencies
is underscored. The next example shows that satisfying the
mutual information condition is most important at higher
spectral efficiencies.

LD Versus OD: ,

We show in Section II-A2 that the orthogonal design is
deficient in mutual information when . This deficiency
should be reflected in its performance with . We test its
performance when at versus the LD code
given by (31) for and . The result can be seen
in Fig. 5 which clearly shows the better performance of the LD
code over a wide range of SNRs. To achieve , we see from
(32) that the orthogonal design needs to chooseand from
a 256-QAM constellation, while the LD code can choose from a
16-QAM constellation because it has four symbols .
We note that the orthogonal design has good diversity (33) [12]

(34)
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Fig. 4. The upper two curves are the bit error performance of V-BLAST (20) with nulling/canceling (upper), and with maximum-likelihood decoding (lower).
The lower two curves are the LD code given by (31) forM = N = T = 2 andQ = 4 (upper) and the code (34) with� = e (lower). For both these codes,
sphere decoding is used to find the maximum-likelihood estimates. The rate isR = 4, and is obtained by transmitting QPSK ons ; . . . ; s .

but achieves only 7.47-bits/channel use mutual information at
20 dB, while the LD code achieves the full channel capacity

of 11.28 bits/channel use. The orthogonal design and LD code
are maximum-likelihood decoded (using the sphere decoder in
the case of the LD code). The orthogonal design is easier to de-
code than the LD code becauseand may be decoded sep-
arately, and its performance is better for SNR35 dB (where
spectral efficiency is low compared with capacity).

But we may obtain a code that is uniformly better at all SNRs
by using (34) to improve the diversity of (31) without changing
its mutual information. As shown in [26], setting
is a good choice when transmitting 16-QAM. The performance
of this constellation is also shown in Fig. 5. Its performance is
better than the unmodified LD code at high SNR. Clearly, the
best code satisfies both the mutual information and diversity
criteria, if possible.

LD Versus OD: , ,

We present a code for transmit antennas and
receive antennas and compare it with the orthogonal design pre-
sented in Section II-A3 with block length . The orthog-
onal design (13) is written in terms of and as

(35)

It turns out that this orthogonal design is a local maximum to
(28) for and . It achieves a mutual information
of 5.13 bits/channel use at 20 dB, whereas the channel
capacity is 6.41 bits/channel use.

To find an LD code with the same block length, we first ob-
serve that must obey the constraint , with
and . Therefore, , and to obtain the highest possible
mutual information we choose . After optimizing (28)
using a gradient-based search (Appendix A) and converging to
a local maximum at 20 dB, we find (36) as shown at the
bottom of the following page. This code has a mutual informa-
tion of 6.25 bits/channel use at 20 dB, which is most of the
channel capacity. The matrix has some interesting features.
First, it has orthogonal (but not orthonormal) columns; second,
its corresponding matrix is nonzero in only 12 of its 56
off-diagonal entries.

Fig. 6 compares the performance of the orthogonal design
(35) with the LD code (36) at rate . (From (32), the
rate of either code is ; we achieve by
having the orthogonal design send 256-QAM, and the LD code
send 64-QAM.) The decoding in both cases is maximum like-
lihood, which in the case of the LD code is accomplished with
the sphere decoder, and in the case of the orthogonal design is
simple because are decoupled. We also compare de-
coding with nulling/canceling, which appears to be only slightly
worse than maximum likelihood (this is perhaps because the
columns of the LD code are orthogonal—see Remark 11 in
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Fig. 5. Bit error performance of the2� 2 orthogonal design (19) and the LD code given by (31) forM = N = T = 2 andQ = 4 (dashed line) and the code
(34) with� = e (lower solid line). The rate isR = 8 implying that the orthogonal design transmits 256-QAM whereas the LD codes transmit 16-QAM.
The decoding is maximum likelihood in both cases.

Section III-B). We see from Fig. 6 that the LD code performs
uniformly better.

, LD Code From Orthogonal Dessign

The , , LD code (36) is obtained via
a gradient search and has mutual information 6.25 bits/channel
use at 20 dB. However, this is less than the full ,

capacity of , and we would like to close the gap
a little. We should be able to make an LD code with mutual
information at least as large as the mutual information of the
two-antenna orthogonal design (6), which is . We do not
resume our gradient search since the value appears to be
a local maximum, but rather try a slightly different approach.
We begin with the two-antenna orthogonal design and create a
three-antenna LD code that preserves its mutual information.

One possible code is obtained by symmetrically concate-
nating three orthogonal designs (normalized to obey the
power constraint)

(37)

When viewed as an LD code, (37) has the deficiency thatand
are only nonzero for two-channel uses and not for the full

six-channel uses. Moreover, and have rank two, rather

(36)
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Fig. 6. Block (dashed) and bit (solid) error performance of orthogonal design (35) and the LD code (36) forM = 3 antennas. The rate isR = 6 bits/channel use,
obtained in the orthogonal design by transmitting 256-QAM ons ; . . . ; s and obtained in the LD code by transmitting 64-QAM ons ; . . . ; s . The uppermost
block and bit curves are the orthogonal design, decoded with maximum likelihood. The lower two block and bit curves (very close to one another) are the LD code
decoded with nulling/canceling (upper) and maximum likelihood (lower). The comparison of block error is meaningful here because the block size in all cases is
T = 4.

than their full possible rank of three. Consequently, constraint
iii) in Section III-B is not satisfied, and as we point out in Re-
mark 3, of two codes that have the same mutual information, the
one satisfying the stronger constraint generally performs better.
It is clear that the code (37) is really only a two-antenna code
in crude disguise and performs worse than (36), even though its
mutual information is slightly higher.

To improve its performance, we seek to modify it so that con-
straint iii) is satisfied without changing its mutual information.
One possible modification is described in Remark 4 in Sec-
tion III-B. (See, in particular, the transformation involving
(30).) Let denote the discrete Fourier transform (DFT)
matrix, and choose to be the real orthogonal matrix ob-
tained by replacing each element of by the

real matrix . The transformation of
to new dispersion matrices is

(38)

The resulting matrix is shown in (39) at the bottom of the
following page. Each dispersion matrix spans all six channel
uses and is unitary . Thus, constraint
iii) is satisfied. Because the transformation (38) is a special case

of the transformation (30), the mutual information is still 6.28
bits/channel use ( 20 dB).

We see in Fig. 7 that this code performs very well: displayed
is (37) (which has the same performance as the orthog-
onal design) and the LD codes (36) and (39) for rate .
(The symbol constellation is hence QPSK.) The code (37) has
the worst performance. The LD code (36) with
has better performance, despite its lower mutual information,
because it satisfies constraint iii). The best performer, however,
is (39), because its mutual information is higher than (36) (
versus ), it satisfies constraint iii), and perhaps also because
it has a longer block length ( versus ).

Two LD Codes: , ,

Fig. 8 demonstrates the dramatic improvement of increasing
the number of transmitter antennas from to with

. An LD code was designed for , , and
that attains 11.84 bits/channel use at SNR 20 dB,

whereas the channel capacity is 12.49 bits/channel use. We do
not explicitly present the code because and there are
therefore 24 and matrices. (The reader may obtain
the code by contacting the authors.) We compare this code with
the best LD code we have for transmit antennas ((31)
modified with (34) where ).
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Fig. 7. Bit error performance forM = 3,N = 1, andR = 2. The top curve is (37), whose performance is identical to a2� 2 orthogonal design. The middle
curve is theT = 4 LD code (36), and the lower curve is theT = 6 LD code (39). In all cases, the transmitted symbols are QPSK, decoded via maximum likelihood.

LD Code: , ,

The last example is an LD code for and at
rate 16 bits/channel use displayed in Fig. 9. It is worth
noting that the capacity of an , system at 20 dB
is 24.94-bits/channel use. We therefore restrict our attention in
this figure to relatively high SNR. The LD code was designed
using gradient search applied to (28) until a local maximum was
obtained at 20 dB. The code attains a mutual information
of 23.10-bits/channel use, with and has . To
obtain , we choose from a 16-QAM con-
stellation. Because of the sheer number of matrices involved,
we again do not explicitly present the LD code here. We in-

clude this example to demonstrate that very high rates are well
within the reach of these codes, even with maximum-likelihood
decoding. The figure compares the performance of nulling/can-
celing versus maximum-likelihood decoding with the sphere de-
coder, and maximum likelihood performs far better. It is remark-
able that the sphere decoder succeeds at all in obtaining the max-
imum-likelihood estimate, since a full exhaustive search would
need to examine hypotheses.

A. Table of Mutual Informations

Table I summarizes the mutual informations of some LD
codes that we generated, including the examples from the

(39)
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Fig. 8. Bit error performance of the best LD code forT =M = N = 2 andQ = 4 ((31) modified with (34)) and an LD code forT = 6,M = 4, andN = 2.
The rate isR = 8 and is obtained by transmitting 16-QAM on each symbol. The decoding in both cases is maximum likelihood. The LD code forM = 4 achieves
11.84 bits/channel use mutual information at� = 20 dB versus the channel capacity of12:49, and benefits dramatically from the two extra transmit antennas.

TABLE I
MUTUAL INFORMATION C (�; T; M; N) OBTAINED VIA GRADIENT-

ASCENTOPTIMIZATION OF THE COST FUNCTION (28), COMPARED TO THE

ACTUAL CHANNEL CAPACITY C(�; M; N) FOR DIFFERENTVALUES OFM
AND N AT SNR� = 20 dB

previous section, and the actual channel capacities at
20 dB. As can be observed, is very close to

; there is little penalty in the linear structure of the
dispersion codes. When studying this table, we should bear in
mind that the entries for are not necessarily
the best achievable since (28) was maximized via gradient
ascent. Our maxima are therefore quite possibly local. Further-
more, the values of are for codes with block
lengths obeying . Conceivably, increasing
could also yield higher values for .

V. CONCLUSION

The linear dispersion codes we have introduced are simple
to encode and decode, apply to any combination of transmit

and receive antennas, subsume as special cases many earlier
space–time transmission schemes, and satisfy an information-
theoretic optimality property. We have argued that codes that
are deficient in mutual information can never be used to attain
capacity. We also have shown that information-theoretic opti-
mality has a theoretical connection with low pairwise error prob-
ability and good performance at high spectral efficiencies. The
LD codes are designed to be linear while having little (if any)
penalty in mutual information, and additional channel coding
across can be combined with an LD code to attain
most (if not all) of the channel capacity.

We have given some specific examples of the LD codes, and
presented a recipe for generating more codes within this linear
structure for any combination of transmit and receive antennas.
Our simulations indicate that codes generated with this recipe
compare favorably with existing space–time schemes in their
good performance and low complexity. We have argued that the
diversity criterion commonly used to design space–time codes
plays a secondary role to mutual information criterion at high
spectral efficiencies. The diversity criterion alone may lead to
code designs that cannot attain capacity.

In our simulations, we decoded the LD codes by either max-
imum likelihood or by nulling and canceling. Because of the
linear relation between and in (25), the maximum-likeli-
hood search could be accomplished efficiently using the sphere
decoding algorithm, which, for SNRs of interest, has polyno-
mial complexity in the number of antennas.
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Fig. 9. Bit error performance of an LD code forM = 8 andN = 4 with Q = 32 with nulling/canceling (upper curve) and maximum-likelihood decoding
(lower curve). The rate isR = 16 and is obtained by transmitting 16-QAM on each symbol. The LD code achieves mutual information 23.10-bits/channel use at
� = 20 dB versus the channel capacity of24:94.

We have used the average capacity (across different channel
realizations) as our design metric, rather than an outage capacity
(for one-channel realization), because channels are rarely static
for very long and because the outage capacity does not have a
simple closed-form expression. It is reasonable to expect that
codes that work well on average should also help reduce the
probability of outage events, but this remains to be explored.

It would be interesting to see if the LD codes that satisfy
(28) possess any general algebraic structure. This would lead
to better theoretical understanding of the codes, as well as to
possibly faster and better decoding algorithms. The codes (36)
and (39), for example, are local maxima of the cost function and
yet have simple structure. It would also be important to charac-
terize theoretically how close can be made
to —what is the penalty incurred by the LD struc-
ture? Our experience suggests that the penalty is small. Perhaps
the penalty approaches zero as ?

Finally, there are potentially many ways to optimize the cost
function (28), and the gradient method we chose is only one of
them. More sophisticated optimization techniques may also be
useful.

APPENDIX A
THE GRADIENT COMPUTATION

In all the simulations presented in this paper, the maxi-
mization of the cost function in (28), needed to design the LD
codes, is performed using a simple constrained-gradient-ascent
method. In this appendix, we compute the gradient of the cost
function in (28) that this method requires. More sophisticated
optimization techniques that we do not consider, such as
Newton–Raphson, scoring, and interior-point methods, can
also use this gradient.

To help compute this gradient, we rewrite the cost function
in (28) as shown in (A1) at the bottom of the page, where,

, and are defined in (22) for and
.

We wish to compute the gradient of the cost function in (A1)
with respect to the spreading matrices , , , and

. To simplify the gradient calculation, we assume the log-
arithm in (A1) is base . The gradient with respect to is
computed here explicitly—the remaining three gradients follow
similar arguments and are given at the end of the section.

...
...

...
...

...
...

. . .
... (A1)
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The th entry of the gradient of a function is

(A2)

where and are the -dimensional and -dimensional
unit column vectors with one in theth and th entries,
respectively, and zeros elsewhere. Defining the matrix
appearing in the of (A1) as , so that

; we then obtain

...
...

...

...
...

...
. . .

...

transpose higher order terms. (A3)

Applying yields (A4), shown at the
bottom of the following page, where in the last step we use

. This now leads to

...
...

...

...
...

...
. . .

...

...
. . .

...

...
...

...
. . .

...

...
. . .

...

(A5)

where we have defined the matrix as

...
...

.. .
...

(A6)

This concludes the gradient calculation with respect to .
Similar expressions can be found for the gradients with re-

spect to , , and . With

...
...

. . .
...

(A7)

these gradients are

(A8)

(A9)

(A10)

(A11)

APPENDIX B
AVERAGE PAIRWISE PROBABILITY OF ERROR

The signal model (25) is

where is a given real matrix. We compute the
pairwise error by conditioning on

pairwise pairwise
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We assume that two independent signal vectors
and are chosen with entries from independent zero-mean
real Gaussian densities with variance . The entries of the
additive noise vector are also chosen from this
density. We want the probability that a maximum-likelihood
decoder mistakes for , given that is transmitted, averaged
over and , and conditioned on .

Because has a Gaussian distribution, we equivalently want

pairwise

transmitted

(B12)

(B13)

Equation (B12) follows because and are independent
Gaussian vectors and we have replaced the difference of the
two vectors by a single vector with twice the variance.

To compute (B13), we look at the characteristic function of
the scalar

We can write

The characteristic function of is

We use the formula

for positive real , where is a real vector,
to conclude that

This implies that

pairwise

(B14)

...
...

...
...

...
...

. . .
...

transpose higher order terms

...
...

...
...

...
...

. . .
...

transpose higher order terms (A4)
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We wish to switch the order of integration, and we have to make
sure that is well-behaved as a function ofand . We can
ensure its good behavior by shifting the path of integration to

. (The formal argument for why this
does not affect the value of the integral is omitted.) We obtain

pairwise

(B15)

We now compute by first computing the eigen-
values of . The eigenvalues of are the solutions to

as a polynomial in . Using a standard determinant identity [27],
we can write this equation as

where are the eigenvalues of . Solving
this last equation yields zero eigenvalues, with the
remaining eigenvalues given by

Therefore,

and (B15) becomes

pairwise

(B16)

To get an upper bound on the pairwise error probability, we
ignore the second appearance ofin (B16) to obtain

pairwise

It follows that

pairwise (B17)

Applying a union bound to this average pairwise probability
of error yields an upper bound on probability of error of a signal
constellation. Suppose that the transmission rate is, so that
there are elements in our constellation for; then
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