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Abstract—The capacity of the multiple-input multiple-output
(MIMO) wireless channel with uniform linear arrays (ULAs)
of antennas at the transmitter and receiver is investigated. It is
assumed that the receiver knows the channel perfectly but that
the transmitter knows only the channel statistics. The analysis
is carried out using an equivalent virtual representation of the
channel that is obtained via a spatial discrete Fourier transform.
A key property of the virtual representation that is exploited is
that the components of virtual channel matrix are approximately
independent. With this approximation, the virtual representa-
tion allows for a general capacity analysis without the common
simplifying assumptions of Gaussian statistics and product-form
correlation (Kronecker model) for the channel matrix elements.
A deterministic line-of-sight (LOS) component in the channel is
also easily incorporated in much of the analysis. It is shown that in
the virtual domain, the capacity-achieving input vector consists of
independent zero-mean proper-complex Gaussian entries, whose
variances can be computed numerically using standard convex
programming algorithms based on the channel statistics. Further-
more, in the asymptotic regime of low signal-to-noise ratio (SNR),
it is shown that beamforming along one virtual transmit angle is
asymptotically optimal. Necessary and sufficient conditions for the
optimality of beamforming, and the value of the corresponding
optimal virtual angle, are also derived based on only the second
moments of the virtual channel coefficients. Numerical results
indicate that beamforming may be close to optimum even at mod-
erate values of SNR for sparse scattering environments. Finally,
the capacity is investigated in the asymptotic regime where the
numbers of receive and transmit antennas go to infinity, with their
ratio being kept constant. Using a result of Girko, an expression
for the asymptotic capacity scaling with the number of antennas
is obtained in terms of the two-dimensional spatial scattering
function of the channel. This asymptotic formula for the capacity
is shown to be accurate even for small numbers of transmit and
receive antennas in numerical examples.
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I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) wireless sys-
tems, which use antenna arrays at the transmitter and re-

ceiver, have generated considerable interest in recent years due
to their potential to provide dramatic increases in the informa-
tion rates and reliability of wireless links. The information-the-
oretic capacity of the MIMO wireless channel has been charac-
terized under various assumptions since the seminal works of
Foschini [1] and Telatar [2]. The goal of this paper is to charac-
terize the capacity under the most general and realistic assump-
tions on the channel.

In studying wireless channels, an important aspect is the
availability of channel state information (CSI) at the transmitter
and receiver. It is reasonable to assume that CSI is available at
the receiver via training. While having CSI at the transmitter
allows for better performance, this may not be possible in
practice, especially in MIMO channels, due to rapid variations
and limited feedback bandwidth. Nevertheless, it is reasonable
to assume that the channel statistics are known at the trans-
mitter since these statistics change over much larger time scales
than the channel gains. In this paper, we assume that CSI is
available at the receiver and that channel statistics are known
at the transmitter. Such a channel is commonly referred to as a
coherent channel.

The capacity of coherent MIMO channels was first analyzed
in the work of Telatar [2]. The model used by Telatar was
one where the channel matrix has independent and identically
distributed (i.i.d.) zero-mean proper-complex Gaussian entries.
Under this i.i.d. model, the optimal (capacity-achieving) input
is an i.i.d. zero-mean proper-complex Gaussian vector. While
the i.i.d. model facilitates analysis, it is an idealized model
representing rich uniform scattering that seldom occurs in
practice. It is hence of interest to study more general, realistic
models where the elements of the channel matrix are correlated.
To this end, some recent papers (see, e.g., [3], [4], [6], [7],
[9]) have investigated the capacity and corresponding optimal
input distributions for correlated proper-complex Gaussian
MIMO channel models. Common to much of this work is the
product–form correlation assumption, where the correlation be-
tween the fading of two distinct antenna pairs is the product of
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the corresponding transmit correlation and receive correlation.
This correlation model is referred to as the Kronecker model in
the literature. Unfortunately, such a correlation structure is still
quite restrictive, and can only be justified in scenarios where the
scattering is locally rich at either the transmitter or the receiver
[10]. Furthermore, the elements of the channel matrix tend to
be correlated in sparse scattering environments, precisely the
scenario where the Gaussian model for the joint statistics may
be not be reasonable.

Our goal in this paper is to provide a general analysis of
the capacity of coherent MIMO channels without the simpli-
fying assumptions of Gaussian statistics and Kronecker corre-
lation for the channel matrix elements. To this end, we exploit
an equivalent representation of MIMO channels with uniform
linear arrays (ULAs), introduced in [11], which is obtained via a
two-dimensional discrete spatial Fourier transform. This virtual
representation directly relates the channel matrix to the physical
scattering environment; each element of the virtual channel ma-
trix corresponds to the effective channel gain obtained when the
transmit and receive arrays are set to beamform in fixed (vir-
tual) directions. The second moment of each entry in the vir-
tual matrix reflects the channel power gain at the corresponding
transmit–receive angle pair.

A key property of the virtual representation that we exploit is
that the elements of the virtual channel matrix can be assumed to
have independent entries without much loss of accuracy. There
are two major consequences of this independence. First, the
complex joint statistical structure of the original channel is cap-
tured succinctly in the marginals of the virtual channel coef-
ficients. This obviously facilitates estimation of the channel at
the receiver, making our assumption that the channel statistics
are available at the transmitter reasonable. Secondly, and more
importantly, the independence of the virtual channel coefficient
greatly facilitates the analysis of the channel capacity as we will
demonstrate in this paper.

We first show that the capacity-achieving input vector in the
virtual domain is zero-mean proper-complex Gaussian with in-
dependent entries. The variances of these optimal inputs rep-
resent the amount of power assigned to the corresponding vir-
tual transmit angles, and they can be obtained numerically using
standard convex programming algorithms. If only one of these
variances is nonzero, then the optimal transmit strategy is to
beamform along the corresponding virtual angle. In the low
signal-to-noise ratio (SNR) regime, we show that beamforming
to the virtual transmit angle with the largest effective channel
gain is asymptotically optimal. Furthermore, for arbitrary SNR
levels, we provide necessary and sufficient conditions for the
optimality of beamforming based on only the second moments
of the virtual channel coefficients.

We then move on to study the capacity in the asymptotic
regime where the numbers of transmit and receive antennas go
to infinity, with their ratio being kept constant. In this regime,
the quantity of interest is the asymptotic capacity normalized by
the number of antennas, which characterizes the scaling of the
capacity with the number of antennas. A closed-form formula
for the asymptotic normalized capacity for the i.i.d. Gaussian
channel model was obtained by Telatar in [2]; and in recent
work by Kamath and Hughes [12], it was shown that this asymp-

totic formula is extremely accurate even for small numbers of
transmit and receive antennas. The asymptotic capacity anal-
ysis for the Kronecker correlation model discussed above was
given in [4]. Also, in recent work [13], the asymptotic capacity
of wide-band correlated channels was investigated using the vir-
tual representation for the special case of Gaussian -diagonal
channels, where the virtual channel coefficients are equal along

leading diagonals and zero elsewhere. While the -diag-
onal Gaussian channel model does not belong to the class of
Kronecker models, it is clearly a special case of the model con-
sidered in this paper where the virtual channel coefficients are
allowed to have fairly general statistics. In this paper, we use the
virtual channel representation to obtain a general formula for
the asymptotic normalized capacity, which is expressed directly
in terms of the two-dimensional spatial scattering function of
the channel. We also show through numerical results that this
asymptotic formula is quite accurate for small numbers of an-
tennas even when the scattering is sparse.

A. Notation and Organization

We use the following notation. For deterministic objects, we
use upper case letters for matrices, lower case letters for scalars,
and underlined lower case letters for vectors. An exception is
the symbol which is a scalar that is used to denote capacity.
Random objects are identified by corresponding bold-faced let-
ters. For example, we use to denote a random matrix, to
denote the realization of , to denote a random vector, and

to denote a random scalar. To indicate the entries of matrices,
we use subscripts. For example, denotes the component at
the th row and th column of the random matrix .

We use to denote the proper-complex Gaussian
distribution with mean and variance , and to de-
note the proper-complex Gaussian vector distribution with mean

and covariance matrix .
We use to denote the trace of a matrix, and and

to denote the Hermitian transpose and the transpose of a matrix,
respectively. The symbol denotes the Euclidean norm of a
vector. The symbol denotes the identity matrix.

The remainder of this paper is organized as follows. In
Section II, we introduce the virtual representation of the
channel. In Section III, we characterize the optimal input
distribution in the virtual domain, and discuss techniques for
computing the resulting capacity. In Section IV, we exploit the
virtual representation further in analyzing the asymptotic ca-
pacity of the channel for large numbers of transmit and receive
antennas. In Section V, we provide a set of numerical results
that illustrate the theoretical results of the previous sections.
Finally, in Section VI, we give some concluding remarks.

II. CHANNEL MODEL AND VIRTUAL REPRESENTATION

We consider the now standard model for a frequency flat,
slow-fading MIMO channel with transmit and receive an-
tennas. In complex baseband, the received signal vector cor-
responding to one symbol interval is given by

(1)
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where is the -dim transmit vector, is the channel
matrix, and is complex additive white Gaussian noise. We
normalize the noise so that , and assume an av-
erage input power constraint of . It is natural to
assume that the entries of the channel matrix are identically
distributed since each pair of transmit and receive antennas sees
the same scattering environment. We may further normalize the
channel gains to unity so that , for all . With
all the above normalization, represents the effective SNR at
each receive antenna. We also make the reasonable assumption
that the channel changes in a stationary and ergodic manner
from symbol to symbol.

For a purely diffuse rich scattering environment with no dom-
inant (specular) paths, the entries of are well modeled as i.i.d.
zero-mean proper-complex Gaussian random variables. In gen-
eral, the entries of may not be modeled well as Gaussian, may
have nonzero mean and may be dependent. In the following, we
explore the statistical structure of in more detail based on a
physical model for the channel.

A. Physical Channel Model

As we mentioned earlier, we will restrict our attention to
MIMO channels with ULAs of antennas at the transmitter and
receiver. Let and denote the antenna spacing at the trans-
mitter and receiver, respectively. The channel can be described
in terms of all the paths joining the transmitter and receiver as
shown in Fig. 1. If the receiver is in the line of sight (LOS) of
the transmitter, there is a single path corresponding to the LOS.
In addition, there would be reflections from other scatterers in
the environment. Physics dictates that each such scatterer (since
it cannot be perfectly smooth) produces a continuum of paths
joining the transmitter and receiver. Nevertheless, it is conve-
nient to first consider the following discrete path model to de-
scribe the channel before we generalize it to the continuous path
case:

(2)

where is the path gain of the LOS path (if one exists), and
are the path gains associated with the non-LOS paths.

The path gains are normalized so that . The
LOS path typically has a gain that is larger than the sum of all the
non-LOS path gains, and the ratio of to is called the
Rice factor. The phase of the LOS path can be tracked accurately
at the receiver and is hence well modeled as deterministic, and
without loss of generality, we may set the LOS path phase to .
The randomness of the channel is due to the randomness of the
non-LOS path phases . The vectors and are
the normalized array steering and response vectors, which are
given by

Fig. 1. Physical model for MIMO channel.

The variable is related to the physical propagation angle as

(3)

with being the wavelength of propagation, and .
Note that can be thought of as a scaled angle. In particular, if
we assume that , there is a one-to-one mapping between
the physical angle1 and . For

, there may be more than one (but less than ) physical
angle that maps to each . We refer to

as a virtual angle and use it to describe the spatial scattering
environment in place of in the remainder of this paper.

We may now generalize the model of (2) to a continuum of
paths as follows:

(4)

where the function represents the random angular
spreading function, i.e., the random complex channel gain den-
sity at virtual transmit angle and receive angle . We note
that it is often useful to approximate the continuous path model
of (4) by a discrete path model for statistical characterization
(see Section II-C).

B. Virtual Representation

Consider the matrices and that are
given in terms of the array steering and response vectors as

and where (similarly, )
are equally spaced angles in the range . That is,

and a similar equation holds for the angles . As noted in [11],
the matrices and are unitary discrete Fourier transform
matrices.

1The physical angle can be restricted to the range [��=2=; �=2] without loss
of generality since paths corresponding to angles in the ranges [��;��=2] and
[�=2; �] can be mapped into equivalent paths in the range [��=2; �=2].
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Fig. 2. Virtual representation of MIMO channel.

A two-dimensional spatial Fourier representation of the
channel is obtained via the matrices and as follows:

(5)

The matrix is referred to as a virtual representation [11] of
the channel matrix , with the understanding that it corresponds
to transmitting and receiving in fixed, virtual directions deter-
mined by the spatial resolution of the array. Fig. 2 shows the
virtual representation of a physical MIMO channel.

We note that there are alternative ways to obtain a represen-
tation for by pre- and post-multiplication by other unitary
matrices. What we show in the following is that using the spe-
cific unitary matrices and leads to some very interesting
and useful properties for the representation .

The elements of the virtual channel matrix are related to the
spreading function as

(6)

where

with

and where . A similar equation holds
for . Thus, (6) states that the virtual channel matrix ele-
ments are samples (at the fixed virtual angles) of a smoothed
version of the angular spreading function and the LOS com-
ponent. Furthermore, the smoothing kernel gets narrower2 with
increasing and . Due to this sampling property, the virtual
matrix can be considered as an “image”of the physical scattering
environment. We exploit this property of the virtual representa-
tion to approximate the statistics of the channel matrix.

C. Virtual Path Partitioning and Channel Statistics

For sufficiently large and , each virtual channel ma-
trix element can be considered to be an aggregation of
disjoint sets of paths with transmit and receive angles in the
neighborhood of the fixed angles and , respectively, for

2The null-to-null main-lobe width of f (�) is 2=n .

, [11]. In particular, the LOS path
will contribute to only one of the virtual channel components,
and we use and to denote the indices of this coefficient. Thus,
for sufficiently large and , we can approximate

(7)
for , , with having the term

added to the double integral. We reiterate that for , there
may be more than one physical path at each virtual angle , and
for , there can be no paths at angles .

For the purposes of understanding the statistics of , we may
further simplify the right-hand side of (7) using a discrete path
approximation. Let denote the set of non-LOS paths that
contribute to . Then we can write

for (8)

with having the term added to the summation.
To proceed we make the following reasonable and now stan-

dard assumption about the physical scattering environment [14].

Assumption 1: The path phases are independent
random variables that are uniformly distributed on .

This assumption along with the path partitioning of (8) imme-
diately imply the following result that will be crucial in charac-
terizing the channel capacity.

Lemma 1: The statistics of the virtual coefficients satisfy the
following properties.

(P1) The elements of are independent random variables.
(P2) For , , is a zero-mean proper-complex

random variable with a symmetric distribution around
the origin. In particular, has the same distribution
as .

(P3) The LOS term is a proper-complex random vari-
able, with mean and a sym-
metric distribution around the mean.

Note that the elements of are not necessarily well modeled
as jointly Gaussian, particularly for large and where only
a small fraction of the paths contribute to each coefficient. How-
ever, the fact that the elements of are well modeled as being
independent implies that the joint distribution of (and hence
the joint distribution of ) is completely characterized by the
marginals of the elements . Furthermore, the independence
of the elements of greatly facilitates the capacity analysis as
we will demonstrate in Sections III and IV.

D. Second-Order Statistics of Virtual Channel Matrix

Assumption 1 imposes the following second-order statistical
structure on :

(9)

where denotes the Dirac delta function and
is called the angular scattering function for the non-LOS
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Fig. 3. Example scattering function and corresponding variance matrix. The
shaded regions in 	(� ; � ) correspond to scattering clusters in the physical
environment.

paths, which reflects the channel power density for various
transmit–receive angle pairs. The function is well
modeled as bounded and piecewise continuous with

We now explore the second-order statistics of the elements of
and their relationship to the scattering function. From Lemma 1
we know that elements of are independent and have zero
mean (except for the LOS component). It is easily shown that
the variances of the elements are given by

(10)

where the approximation in (10) gets better with increasing
and , and for sufficiently large and we have

(11)

Fig. 3 illustrates the relationship between and .
The variation in the elements of can be used as a measure

of the correlation in the original channel matrix . If has
only a small fraction of dominant entries, will have highly
correlated elements. On the other hand, if has roughly uni-
form entries, then will have roughly uncorrelated elements
with equal variances.

Remark 1: We note that the Kronecker correlation structure
used in the analysis of [4], [6], [7], [9] is obtained in the rare
special case where the scattering function is in product
form, i.e., . The analysis given in this

paper is valid for general and without the Gaussian
assumption for the statistics.

We now present some basic properties of the variance matrix
. First, since the original channel matrix is normalized to

have unit power entries, it follows from (5) that the variance
matrix satisfies

(12)

Also, based on (10), it easily follows that a “tile” approximation
to converges to as . In particular, define
the piecewise constant function

for

for and , where is as given in
(10). Then

(13)

uniformly for .We will exploit this convergence
when we study the asymptotic capacity in Section IV.

Remark 2: The convergence result of (13) obviously also
holds if we set as in the approximation
of (11).

III. OPTIMAL INPUT DISTRIBUTION AND CAPACITY

Based on (5), we can rewrite the input–output relationship (1)
in the virtual domain as

(14)

where , , and . Due to the unitarity
of , the input power constraint in the virtual domain is un-
changed, i.e., .

Our main goal in this paper is to analyze the channel capacity
using the model given in (14). As mentioned in Section I, we
make the coherent channel assumption throughout the paper.

Referring to (1), the results of [2, Sec. 4] show that the (er-
godic) capacity of the MIMO channel described in the previous
section is achieved by a zero-mean proper-complex Gaussian
input vector with a covariance matrix that satisfies

. The capacity is hence given by

(15)

If the entries of are i.i.d. (as in [2]), then the optimal is the
identity matrix. In the general correlated case that we consider
here, the optimal is difficult to characterize, and we hence
turn to the virtual domain to facilitate the analysis.

In the remainder of this section, we present several results
characterizing the optimal input distribution. In order to keep
the notation from getting cumbersome, the main results are pre-
sented for the case where there is no LOS path in the channel.
Extensions to the case with an LOS path are discussed in re-
marks following the main results.
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A. Characterization of Optimal Input Distribution

From (14), it is clear that the optimal input in the virtual do-
main is also a zero-mean proper complex Gaussian input vector

with a covariance matrix that satisfies . For
such a choice of input, the mutual information between channel
input and output in the virtual domain is given by

(16)

The capacity of (15) can be rewritten as

(17)

Note that for a given in the virtual domain, the actual input
covariance is given by .

By (17), the problem of finding the capacity reduces to the
problem of finding the optimal . We characterize the optimal

in the following result.

Theorem 1: Suppose that the matrix has independent
entries with each entry being a proper-complex random
variable (not necessarily Gaussian), with having the same
distribution as (as in Lemma 1). Then the optimal
that maximizes the mutual information (16) is unique and it is
diagonal.

Proof: The proof follows a technique that was introduced
in [5] for proving a similar result for the multiple-input single-
output (MISO) proper-complex Gaussian channel. The details
are given in Appendix I.

Remark 3: If there is a LOS path that contributes to element
, then , and hence the th column of , does not have a

symmetric distribution around zero. However, as can been seen
in (32) in Appendix I, the crucial step in the proof of Theorem 1
requires only one column in any pair of columns of to have
a symmetric distribution around zero. Thus, the proof given in
Appendix I easily extends to the LOS case.

Since the optimal covariance matrix is a diagonal matrix
, the capacity-achieving input vector in the virtual domain has

independent entries, i.e., the optimal input signals transmitted
at the different virtual directions are independent. For diagonal
input covariance , diagonal element represents the power
assigned to the th virtual transmit angle. We are still left with
the problem of finding the ’s that achieve the capacity. But
this is a problem of optimizing a concave function over a convex
set and can be solved numerically using the statistics of . An
example is given in Section V.

Note also that the actual optimal input vector has correlated
entries in general with covariance matrix that is given by

B. Asymptotically Optimal Power Allocation at Low SNR

While it is possible to compute numerically, further sim-
plification in the optimization occurs in the asymptotic regime
where the SNR is small. The following result shows that in this
regime, beamforming along one of the virtual transmit angles is
optimal.

Theorem 2: The first-order low-SNR expansion of the mu-
tual information as a function of the diagonal covariance matrix

is optimized by with all the elements equal to zero except
, where is the index identified by

If the maximizing index is not unique, define the index set

Then is such that

for

and for

i.e., the power is arbitrarily assigned to the diagonal elements
corresponding to those maximizing indexes without changing
the capacity as long as the total power is .

Proof: See Appendix II.

Remark 4: Theorem 2 continues to hold if there is a LOS
path that contributes to element , with the modification that
the beamforming virtual angle is identified by

where is the mean of . Since the
LOS path typically dominates all the non-LOS in gain, beam-
forming to angle will become optimal at low SNR.

The preceding theorem suggests that as the SNR approaches
zero, the optimal input strategy favors allocating all the transmit
power to the virtual transmit angle with the largest channel gains
over spreading the power among all directions. Referring back
to (3), we note that beamforming to a given virtual angle cor-
responds to beamforming to a single physical angle as long
as the antenna spacing is less than . In general, beam-
forming to a given could correspond to transmitting power in
more than one direction , with being a rank- matrix.

If beamforming to virtual angle is optimal, then the capacity
simplifies to

This beamforming strategy is also considerably easier to imple-
ment than a general input strategy, because the MIMO channel
can be treated as an effective scalar channel for which one-di-
mensional codes can be designed to achieve capacity.
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C. Necessary and Sufficient Condition for Beamforming to
be Optimal

We now sharpen the result of Theorem 2 to precisely charac-
terize the threshold on the SNR below which beamforming is
optimal.

Theorem 3: A necessary and sufficient condition for beam-
forming to the th virtual angle to be optimal is given by

(18)

where . The functions

are defined as

for , . Among the conditions in (18)
corresponding to , at most one can be satisfied.

Proof: The proof of this result follows steps similar to
those used in [6, Theorem 2] for the Gaussian product-form cor-
relation model. The details are given in Appendix III.

It is interesting to compare the results of Theorems 2 and 3 for
the special case where two columns (say and ) of the variance
matrix are identical, and these columns have the maximum
sum. According to Theorem 2, for asymptotically small SNR,
it is optimal to assign power in an arbitrary manner among the
virtual transmit angles and . In particular, it is asymptotically
optimal to beamform to virtual angle (or ). However, in The-
orem 3, if the beamforming condition (18) for angle is satis-
fied, it will also be satisfied for angle . This is not possible by
the uniqueness clause in Theorem 3. Hence, the asymptotic be-
havior of Theorem 2 does not necessarily hold for any nonzero
SNR.

Remark 5: Theorem 3 can easily be modified to incorporate
the case where there is an LOS path by simply adding to

. As we commented earlier in Remark 4, beamforming to
angle will be optimal below a threshold SNR.

We end this section by noting that the optimal virtual angle for
beamforming can be determined using only the second moments
of the virtual coefficients. In contrast, determining the optimal
input distribution in situations where beamforming is not op-
timal requires the entire distribution of the virtual coefficients.

IV. ASYMPTOTIC CAPACITY FOR A LARGE

NUMBER OF ANTENNAS

In this section, we study the capacity in the asymptotic regime
where the numbers of receive and transmit antennas go to in-
finity, with their ratio being kept constant. The results given in
this section are restricted to the case where there is no LOS path
connecting the transmitter and receiver.

Based on the results of the previous section, we can write the
ergodic capacity of the MIMO channel as

(19)

where is the optimal diagonal input covariance matrix. In
scenarios where beamforming in the th virtual transmit angle
is optimal, the capacity further simplifies to

(20)

The expectation in (19) (or (20)) is easily evaluated numerically
in general, and in some special cases, closed-form expressions
may also be obtained. But to gain further analytical insight into
the capacity of the channel, we turn to the asymptotic scenario
where the number of antennas is large.

Let and go to infinity with their ratio being kept
constant at (say). To simplify notation, let . Then

, and we are interested in the limit as .
Since can possibly grow without bound under this limit, we
normalize by . The normalized capacity is given by

(21)

Our goal is to evaluate , which we denote by .
Note that captures how the capacity scales with the number

of antennas. In particular, if , then the capacity
scales linearly with as it does in the case of the i.i.d. channel.

From (21) it is clear that the evaluation of requires the
characterization of the limiting value of the optimal diagonal
input covariance matrix . However, this is a rather difficult
task considering that, in general, it is not possible to obtain
an explicit equation for for finite . For this reason, we
relax our requirement that input distribution be optimal, and
instead consider computing the limit of the right-hand side of
(21) with being replaced by some reasonable diagonal input
covariance that can be characterized explicitly.3 In this case,
we need to interpret as simply the information rate that is
achievable by using the input covariance . To proceed with
the analysis, we need to impose some regularity conditions on

.

Assumption 2: For each , define the function
by

for

where . Then is bounded for each ,
and converges uniformly to a limiting bounded function
as .

Clearly, has to satisfy the power constraint

Remark 6: A natural question to ask is whether satisfies
Assumption 2. It is clear that the assumption will not hold for

if the optimal transmit power along any of the virtual an-
gles grows without bound as . It seems reasonable that
such unbounded input power allocations should be ruled out
by the piecewise continuity and boundedness of the scattering

3For example, we can consider � = I corresponding to i.i.d. inputs in both
the virtual and actual domains.



VEERAVALLI et al.: CORRELATED MIMO WIRELESS CHANNELS 2065

function ; however, we have not been able to establish a rig-
orous result along these lines.

The asymptotic evaluation of is facilitated by relating the
limiting value of to the limiting eigenvalue distribution of

. To this end, we first give the following definition.

Definition 1: The Stieltjes transform of an
Hermitian matrix is defined as

We now have the following theorem that follows quite easily
from a similar result on the sum capacity of code-division mul-
tiple-access (CDMA) systems with random spreading [16]. A
sketch of the proof is given in Appendix V.

Theorem 4: Assume that the Stieltjes transform of
converges in probability to a deterministic limit denoted by
as . Then the asymptotic normalized capacity is given
by

(22)

Theorem 4 can be used to evaluate the asymptotic capacity if

we can determine the limiting Stieltjes transform of .
The latter limit requires the application of a result of Girko
[17, Corollary 10.1.2] which is restated in Theorem 5. We note
that this proof technique using Girko’s result was also used in
[4] in analyzing the asymptotic mutual information for i.i.d.
zero-mean complex-Gaussian inputs for the special case of the
Kronecker Gaussian channel model.

Theorem 5 (Girko): Let be a matrix with
zero-mean independent entries. Define the variance function
from to by

for

Assume that the variance function is uniformly bounded
and converges uniformly to a bounded function . Then

(23)

where the convergence is in probability and where sat-
isfies the equation

As a special case, setting and in (23), the Stieltjes
transform of converges in probability to the deterministic
limit

In order to apply Theorem 5, we give the following lemma
whose proof follows easily from (13) and Assumption 2.

Lemma 2: For each , define by

for

where and . Then, as ,
converges uniformly to the limiting bounded function

(24)

Using Lemma 2 in Theorem 5, we have the following result that
characterizes the asymptotic capacity.

Theorem 6: As , the Stieltjes transform
converges in probability to a deterministic limit

(25)

where satisfies the equation

(26)

with defined in (24).
Using (22), (24)–(26), the asymptotic normalized capacity

can be computed numerically for any input covariance sat-
isfying Assumption 2 and any bounded spatial scattering func-
tion . Sample numerical results are presented in Section V.

The asymptotic normalized capacity provides a conve-
nient measure with which to compare various scattering envi-
ronments. It also provides an analytical approximation to the
capacity of finite antenna channels. In particular, if ,
then we can approximate the capacity of the MIMO
channel by

(27)

We will investigate the accuracy of this approximation in
Section V.

We end this section by noting that while the computation of
the nonasymptotic capacity requires detailed information about
the marginals of the virtual channel elements, the computation
of the asymptotic capacity requires only second-order statistics
(the scattering function).

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide a set of examples that illustrate the
theoretical results of the previous sections.

A. Optimal Input Distribution and Beamforming

We begin with an example illustrating the results of
Section III. Consider a system with five transmit and five re-
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Fig. 4. Comparison of information rates obtained by using the optimal inputs, i.i.d. inputs, and beamforming along the best virtual transmit direction for the
variance matrix shown in (28).

ceive antennas, where the is a zero-mean complex-Gaussian
channel with variance matrix given by

(28)

Note that we have normalized the entries so that
. Such a variance matrix could represent a physical environ-

ment with two very small scatterers and two bigger scatterers
and one large scattering cluster. The optimal input variances

can easily be obtained numerically for this example. Fig. 4
plots the capacity achieved by using the optimal input distri-
bution and compares it with the information rate obtained by
using i.i.d. inputs, i.e., . It is clear from the figure that
the information rate is improved by using the optimal inputs;
however, the improvement in the capacity becomes less signifi-
cant as SNR increases.4 Note also that the improvement in infor-
mation rate by optimizing the input distribution depends on the
scattering function. If the scattering function is sufficiently rich,
or if it is close to being symmetric along each of virtual transmit
angles, then i.i.d. inputs may achieve very good performance.

Using Theorem 3 we can easily determine that beamforming
along the third virtual transmit direction is optimal for SNRs
below 0.29 dB. Fig. 4 also plots the information rate obtained
by beamforming along the third virtual transmit direction for
SNRs ranging from 0 to 20 dB. As can be seen in the figure,
beamforming is indeed optimal for SNRs below 0.29 dB, and it
remains close to optimal for SNRs below 5 dB.

4It is easy to show for this example that i.i.d. inputs are indeed asymptotically
optimal as the SNR goes to infinity (see [19] for a proof). This would not be the
case if the variance matrix V had one or more all-zero columns.

B. Effect of Correlation on Capacity

We now provide an example comparing the capacity of the
standard i.i.d. MIMO channel, for which has all entries equal
to , with the capacity of the correlated MIMO channel with
variance matrix given in (28). It is interesting to see in Fig. 5,
that for SNRs below 2 dB, the correlated channel has a larger ca-
pacity than the i.i.d. channel. This is somewhat surprising given
that it is generally believed that rich scattering environments are
needed for optimal use of multiple antennas. The reason for the
crossover of course is that the multiplexing gain offered by the
i.i.d. channel manifests itself only at sufficiently high SNRs. We
note further that the capacity of the correlated channel can be ap-
proached by using beamforming inputs at low SNRs as we saw
previously in Fig. 4.

C. Accuracy of Asymptotics

In the following, we compute the asymptotic normalized ca-
pacity of Section IV for a specific example and investigate the
accuracy of these asymptotics. Consider the scattering function
shown in Fig. 6, which corresponds to a moderately correlated
channel since the support of the scattering function is moder-
ately limited in transmit and receive angles. For a MIMO system
with transmit and receive antennas operating in this scat-
tering environment, let the variance matrix be . To simplify
the calculations, we set (see Remark 2).
Then, based on symmetry arguments, we immediately see that
the optimal input variances are given by

if for some
otherwise.

Thus, satisfies Assumption 2 and the corresponding limiting
function is given by

if
otherwise.
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Fig. 5. Comparison of capacities of the i.i.d. and correlated channel with V given in (28).

Fig. 6. Spatial scattering function.

Plugging and in (22), (24)–(26), we can nu-
merically evaluate the asymptotic normalized capacity for
various values of and SNR . We can then use
(27) to approximate the capacity of any given MIMO
system operating in this scattering environment. Fig. 7 plots the
direct numerical evaluation of the capacity for a zero-mean com-
plex Gaussian channel along with the asymptotic approximation
for various values of and . As can be seen in this figure,
the asymptotic approximation is quite accurate even for a
MIMO system.

VI. CONCLUSION

We have exploited the virtual representation of the MIMO
wireless channel with ULAs to study its capacity without

the common simplifying assumptions of Gaussian statistics
and Kronecker correlation for the channel matrix elements.
In particular, the channel capacity is achieved by transmit-
ting independent zero-mean proper-complex Gaussian input
symbols along the virtual transmit angles. In other words,
the optimal input covariance matrix is always diagonal in the
virtual (Fourier) domain.

Correlated MIMO channels possess fewer degrees of freedom
compared to i.i.d. channels and these degrees of freedom are
captured by the dominant virtual channel coefficients. Our re-
sults indicate that the effective number of dominant virtual co-
efficients depends on the SNR as well. In general, as the SNR
decreases, fewer parallel channels can be used for reliable com-
munication, thereby effectively reducing the multiplexing gain
of the MIMO system. This is also consistent with recent results
on minimum mean-square error (MMSE) estimation of corre-
lated MIMO channels [8] which show that it is efficient to only
estimate the channel coefficients corresponding to a decreasing
set of dominant virtual transmit angles as the SNR decreases.
In particular, we have shown in this paper that beamforming to
one of the virtual transmit angles becomes optimal at low SNRs.
Our results also suggest that for moderately correlated channels,
beamforming may be nearly optimal for a large range of prac-
tical SNRs. In such scenarios, the MIMO channel can be effec-
tively treated as a scalar channel and space–time coding is not
required.

Some further comments regarding beamforming are in order
in scenarios where it is not optimal but nearly optimal. First,
the best virtual angle for beamforming can be determined using
only the second moments of the virtual coefficients. In contrast,
determining the optimal input distribution requires the entire
distribution of the virtual coefficients. Second, the best angle
for beamforming can be determined at the receiver and fed back
to the transmitter using bits. This is considerably less
than the amount of information that needs to be fed back to the
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Fig. 7. Comparison of the exact and asymptotic approximations for the capacity for the scattering function shown in Fig. 6.

transmitter for optimal signaling. This indicates that beam-
forming would be more robust to errors in channel estimation at
the receiver. It is of interest to further study this robustness and
compare optimal signaling and beamforming in the presence
of estimation errors.

The virtual representation also allows for the application of
Girko’s random matrix result to compute the asymptotic nor-
malized capacity. We have expressed the asymptotic capacity
directly in terms of the two-dimensional spatial scattering
function of the channel. Thus, while the computation of the
nonasymptotic capacity requires detailed information about the
marginals of the virtual channel elements, the computation of
the asymptotic capacity requires only second-order statistics.
Our numerical results show that these asymptotics are accu-
rate for moderate numbers of transmit and receive antennas.
This further indicates that the variances of the virtual channel
elements may be sufficient in accurately characterizing the ca-
pacity even for non-Gaussian channels. The asymptotic results
were obtained under the restriction that there is no LOS path
connecting the transmitter and receiver. It is clearly of interest
to generalize these results to the LOS path case.

The virtual representation can be extended to the most gen-
eral setting of time- and frequency-selective MIMO channels
[18], and in future work we plan to investigate the wide-band
channel capacity in both coherent and noncoherent settings. We
have taken a first step in this direction in [13], where we in-
vestigated the coherent capacity scaling in wide-band correlated
MIMO Rayleigh channels for the special case of the -diagonal
channel model. Furthermore, in [13], we related the capacity
scaling to the number of physical propagation paths and iden-
tified situations in which capacity scaling can or cannot occur.
It is clearly of interest to extend these results to general MIMO
channels.

We end with some comments on the restriction of the vir-
tual representation framework to ULAs and possible extensions.
We first note that the Kronecker model, while being restrictive

in terms of its assumptions on the channel statistics, applies in
principle to arbitrary array geometries. Recently, extensions of
the virtual modeling approach have been proposed that apply
to arbitrary array geometries without the Kronecker restriction
[10], [19], [20]. The basic idea is similar to the virtual repre-
sentation if we replace the discrete Fourier transform (DFT)
matrices (eigenfunctions for ULAs) in the virtual representa-
tion with the transmit and receive eigenmatrices for arbitrary
channels. The papers [10], [19] investigate the physical con-
ditions under which the resulting transformed channel matrix
has uncorrelated entries, whereas in [20] the uncorrelatedness
is simply assumed. It is worth noting that such a transforma-
tion is environment dependent for arbitrary array geometries
(the transmit and receive eigenfunctions change with the envi-
ronment), whereas for ULAs, the DFT eigenfunctions are fixed
regardless of the environment. Furthermore, while the general
approach only guarantees uncorrelatedness of the transformed
channel coefficients, the elements of the virtual representation
for ULAs are also approximately independent due to the virtual
path partitioning. Thus, in order to apply the capacity analysis
of this paper to arbitrary array geometries, we would need to
make the restriction that the channel matrix has proper-complex
Gaussian entries.

APPENDIX I
PROOF OF THEOREM 1

The proof follows the technique in [5, Theorem 3.1]. This
technique was also used in [6, Theorem 3].

We define two sets of matrices

is positive semidefinite, and

is diagonal, and

We first consider the optimization of the mutual information
(16) with restricted to the set . Since the set is convex
and compact, and the function is differentiable and strictly
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concave over that set, there exists a unique that maximizes
over . By [15, Ch. 7.4, Theorem 2], satisfies the

following necessary condition:

(29)

where

The left-hand side of (29) can be computed as follows:

where we used the general formula

with real scalar being such that matrix is positive
definite [21, Example A.3, p. 643]. Then the condition (29)
becomes

(30)

. We now need to show that remains optimal even
when the optimization is performed over the set . Since
is strictly concave over the convex set , it is sufficient to show
that

To this end, consider a . We split into
, where is a diagonal matrix with components equal to

diagonal entries of , and contains the off-diagonal entries
of . Then

Since , the first term in the preceding equation is less
than zero by (30). To evaluate the second term, we denote the

columns of matrix by . Then the second term
can be written as

(31)

where is the th diagonal entry of .
In the above sum, consider a particular term

Since has independent entries, its columns are independent.
Thus, conditioned on , the distribution of is un-
changed. Since each element of the matrix

is an odd function of , i.e., if is replaced by , each
entry of the matrix changes to its antisymmetric value, and by
Lemma 1, the inner expectation

(32)

Hence, the particular term we considered in the sum on the right-
hand side of (31) is zero. Following the same reason, all the
terms in the sum are zero. Therefore,

which concludes our proof.

APPENDIX II
PROOF OF THEOREM 2

Let denote the eigenvalues of .



2070 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

Using the assumption that has independent components,
we can compute

Hence,

(33)

Then the mutual information is given by

We want to maximize the first-order low-SNR expansion term
of subject to the constraint

and for

It is straightforward to see that the optimizing is the beam-
forming solution with all the power allocated to the transmit
virtual angle with the largest value. If the largest

is not unique, the power can be spread over those
virtual angles corresponding to the largest without
affecting the capacity.

APPENDIX III
PROOF OF THEOREM 3

We note that the steps of the proof are similar to those given
in [6, Theorem 2].

We first consider the condition for beamforming to the first
transmit virtual angle to be optimal, and then generalize the con-
dition to the other cases.

The matrix can be parameterized in the following way:

(34)

where and

for and (35)

The mutual information can then be expressed in terms of
as

(36)

The following lemma, which follows directly by the concavity
of function, establishes a useful property of .

Lemma 3: The function in (36) is a strict concave func-
tion over for all that satisfies the condition
(35).

Based on Lemma 3, a necessary and sufficient condition for
beamforming to the first transmit virtual angle being optimal is
given by

(37)

for all such that (35) is satisfied. The following lemma,
whose proof is given in Appendix IV, provides an expression
for the derivative on the left-hand side of (37).

Lemma 4:

Thus, to satisfy condition (37), we need

for all . The first term on the left-hand side of the inequality
is maximized when where is the index with the
largest value for . We can hence write the
necessary and sufficient condition equivalently as follows:

where .

Thus far, we have given the necessary and sufficient condition
for beamforming to the first virtual angle to be optimal. It is
straightforward to generalize the condition to the case where
beamforming to the th virtual angle is optimal as shown in (18).

We are now left to show that at most one of the conditions
in (18) can be satisfied. Without loss of generality, assume that
the condition for beamforming to the first angle is satisfied. Then

which corresponds to in (34).
Beamforming to the th angle with corresponds to ,

, and for all . For such , since we know
that the function is strictly concave, there cannot be another
optimal solution other than . Hence, beamforming to the
other virtual angles cannot be optimal.
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APPENDIX IV
PROOF OF LEMMA 4

We compute as shown in the equation at the bottom
of the page, where . In the equation

below, consider . Since the column has inde-

pendent entries

for

Now define

and note that . Then

and we have

where .

APPENDIX V
PROOF OF THEOREM 4

Replacing with in (21), we get

To streamline the proof, we assume that is an integer for all
, with the understanding that proof is straightforwardly mod-

ified when this assumption does not hold. Also, we denote the
dependence of certain quantities on explicitly using the sub-
script .

Consider the sequence of random variables defined
by

i.e., . Now let denote the eigenvalues of

, and let . Then

(38)

(39)

Let

(40)

where is the Stieltjes transform of . Based on
(39) and (40), we have

where the last equality follow from the Fubini theorem, since
. Taking limits as

The exchange of the limit and the integral follows from the
Dominated Convergence Theorem because of the following
boundedness of :
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where the last equality follows from (33). Now using (12) and
Assumption 2, it is clear that the right-hand side of the pre-
cedeing inequality is uniformly bounded for all and . Thus,

Finally, we have

by using the convergence assumed in the statement of the
theorem and the fact that .
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