Spring 2007 ECE 6962 Advanced topics in communication Homework 1

Assign date: $1 / 16 / 07$ Due date: $1 / 30 / 07$ (Tuesday) at the beginning of class.

1. Small Scale Fading. Consider the delay profile with the 13 paths, and the following parameters. The sequence of squared path gains $\left(\alpha_{0}^{2}, \alpha_{1}^{2}, \cdots, \alpha_{12}^{2}\right)$ is given by

$$
(0.5,0.025,0.075,0.1,0.075,0.025,0.025,0.075,0.025,0.025,0.02,0.02,0.01)
$$

and the corresponding sequence of path delays $\left(\tau_{0}, \tau_{1}, \cdots, \tau_{12}\right)$ is given by:

$$
(0,1.2,1.4,1.6,1.8,2.0,3.4,3.6,3.8,4.0,5.2,5.4,5.6) \mu s
$$

(a) Carefully sketch the delay profile $|h(t ; \xi)|$ with the heights of the δ functions drawn approximately to scale to match the path gains.
(b) Is there an LOS path? If so, what is the Rice factor?
(c) Argue that a signal with bandwidth $W=20 \mathrm{KHz}$ sees the channel as a flat fading channel, and write down an expression for the pdf $p_{\alpha}(\alpha)$ of the effective channel gain α.
(d) Argue that a signal with bandwidth $W=1 \mathrm{MHz}$ sees the channel as a frequency selective channel, and draw the tapped delay line model for $\frac{1}{W}$-spaced taps.
(e) Suppose the carrier frequency $f_{c}=1 \mathrm{GHz}$, the mobile velocity is $60 \mathrm{~km} / \mathrm{hr}$, and the symbol rate is 10^{5} symbols/s. Find the coherence time. Is the fading slow?
2. Simulating Ricean flat fading. Using the direct approach we discussed in class to simulate a Ricean flat fading process with Rice factor $\kappa=1$. Assume that the LOS component arrives at angle $\theta_{0}=\pi / 4$, and that the diffuse components are uniformly distributed in angle and power (isotropic). Let the total number of diffuse components be 12 , and assume $f_{m}=60 \mathrm{~Hz}$.

Plot the channel gain $|V(t)|$ in dB as a function of t, for t ranging from 0 to 250 ms .
3. Ricean Random Variables. Assume $X \sim N\left(a, \sigma^{2}\right)$ and $Y \sim N\left(b, \sigma^{2}\right)$ are independent Gaussian random variables, where a and b are deterministic constants. Define R and Θ by:

$$
R=\sqrt{X^{2}+Y^{2}}, \text { and } \Theta=\tan ^{-1}\left(\frac{Y}{X}\right)
$$

(Assume $\Theta \in[-\pi, \pi]$.) Find the joint pdf of R and Θ and from this the marginal pdf of R. Express the latter in term of the modified Bessel function of the first kind:

$$
I_{0}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (x \cos \phi) d \phi
$$

The pdf of R in this case is called Ricean.
4. Auto-correlation function (ACF) of flat fading process $\{V(t)\}$. Consider the flat fading process $\{V(t)\}$ for purely diffuse (Rayleigh) fading. We showed in class that for fixed $t, V(t)$ is a zero mean, unit variance proper complex Gaussian (PCG) random variable with a Rayleigh envelope. Since $\{V(t)\}$ is Gaussian, all that is needed to characterize it completely (statistically) is its ACF.
(a) Use the approximation $\phi_{n}(t+\tau)-\phi_{n}(t) \approx 2 \pi f_{m} \tau \cos \theta_{n}$ to show that

$$
R_{V}(t+\tau, t) \approx \sum_{n} \beta_{n}^{2} e^{j 2 \pi f_{m} \tau \cos \theta_{n}}
$$

Is $\{V(t)\}$ is a stationary process?
(b) Consider the situation where the propagation environment is such that power β_{n} is received roughly uniformly from all directions. We may approximate such isotropic scattering by continuum of paths and let

$$
R_{V}(\tau)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j 2 \pi f_{m} \tau \cos \theta} d \theta
$$

Show that $R_{V}(\tau)$ equals $J_{0}\left(2 \pi f_{m} \tau\right)$, where $J_{0}(\cdot)$ is the zero-th order Bessel function of the first kind.

$$
J_{0}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (x \cos \theta) d \theta
$$

