Signal Processing Techniques for

Software Radios

2nd Edition

Behrouz Farhang-Boroujeny

Department of Electrical and Computer Engineering
University of Utah
To Diana
for her continuous support
understanding and love
throughout my career
Contents

1 Introduction

1.1 Software Radio .. 1
1.2 A Brief History of Modems 3
1.3 Signal Processing in Modems 5

2 Fourier Analysis and Linear Time-Invariant Systems 9

2.1 Fourier Series .. 9
2.2 Fourier Transform 12
2.3 Linear Time-Invariant Systems 17
 2.3.1 Convolution integral 18
 2.3.2 Transfer function 19
2.4 Energy and Power Spectral Density 21
 2.4.1 Energy-type signals 21
 2.4.2 Power-type signals 21
 2.4.3 Random signals 22
 2.4.4 Passing a random signal through an LTI system . 25
2.5 Problems ... 25

3 Digital Transmission Systems 27

3.1 Pulse Amplitude Modulation 27
3.2 Pulse-Shape Designs for Band-Limited Communications .. 29
 3.2.1 Raised-cosine filter 32
 3.2.2 Matched filtering and square-root raised-cosine filter 33
 3.2.3 Causality 36
3.3 Modulation Techniques 37
 3.3.1 Carrier-amplitude modulation 38
 3.3.2 Quadrature amplitude modulation 40
 3.3.3 Carrier-phase modulation 44
3.4 Binary to Symbol Mapping 46
3.5 Differential Encoding and Decoding 47
3.6 Baseband Equivalent of a Passband Channel .. 48
3.7 Problems ... 53

4 Sampling and Discrete Time Systems .. 57
4.1 Sampling ... 57
 4.1.1 Reconstruction of \(x(t) \) from the samples \(x(nT_s) \) 58
 4.1.2 Aliasing .. 58
 4.1.3 Antialiasing filter ... 60
 4.1.4 Nyquist criterion for intersymbol interference free communication 60
 4.1.5 Sampling in the Frequency Domain 60
4.2 Numerical Computation of the Fourier Transform: Discrete Fourier Transform (DFT) ... 61
 4.2.1 Derivation of DFT .. 62
 4.2.2 Properties of DFT .. 64
 4.2.3 Fast Fourier transform (FFT) 65
 4.2.4 Time and frequency scales 66
 4.2.5 Improving the frequency resolution of the spectrum via zero padding 68
4.3 Discrete-Time Signals and Systems ... 68
 4.3.1 The z-transform and Fourier transform of discrete-time signals ... 68
 4.3.2 Energy and power spectral density 70
 4.3.3 Passing a signal through an LTI system 74
 4.3.4 Precautionary notes ... 74
4.4 Digital Filters .. 75
 4.4.1 Filter specifications .. 75
 4.4.2 Filter design using windowing method 77
 4.4.3 Equiripple filters ... 85
 4.4.4 Nyquist (M) and square-root Nyquist (M) filters 86
4.5 Problems ... 92

5 Multirate Signal Processing .. 99
5.1 \(M \)-fold Decimator and \(L \)-fold Expander 100
 5.1.1 \(M \)-fold decimator ... 100
 5.1.2 \(L \)-fold expander ... 102
 5.1.3 The nature of decimator and expander blocks 104
5.2 Rate Conversion .. 104
 5.2.1 \(L \)-fold interpolation ... 105
 5.2.2 \(M \)-fold decimation ... 107
 5.2.3 \(L/M \)-fold rate change ... 107
5.3 Commutative Rules .. 110
5.4 The Polyphase Representations ... 114
5.5 Efficient Structures for Decimation and Interpolation Filters 115
 5.5.1 Polyphase structure for decimator filters 115
 5.5.2 Polyphase structure for interpolator filters 118
 5.5.3 Commutator models 119
 5.5.4 \(L/M \)-fold resampling 120
 5.5.5 The polyphase identity 123
5.6 Multistage Implementation 124
 5.6.1 Interpolated FIR (IFIR) technique 124
 5.6.2 Multistage realization of decimation and interpola-
tion filters .. 128
5.7 Cascaded Integrator-Comb Filters 131
 5.7.1 \(L \)-fold CIC interpolator 131
 5.7.2 \(M \)-fold CIC decimator 134
5.8 Application Examples .. 134
 5.8.1 Timing recovery 135
 5.8.2 All digital modulator 140
 5.8.3 All digital demodulator 143
 5.8.4 Parallel polyphase filtering for very fast sampling rates 146
5.9 Problems ... 147

6 An Overview of Transceiver Systems 153
 6.1 Building Blocks .. 153
 6.2 MATLAB Simulation of Digital Transmission Systems 155
 6.3 Baseband PAM transceiver 156
 6.4 Eye Patterns in PAM Systems 158
 6.5 QAM Transceiver ... 161
 6.6 Eye Patterns in QAM Systems 161
 6.7 The Impact of Frequency Offset on the Baseband Equivalent
of Passband Channels ... 165
 6.8 Problems ... 168

7 Adaptive Systems 173
 7.1 Wiener Filter ... 175
 7.1.1 The real-valued case 176
 7.1.2 Principle of orthogonality 180
 7.1.3 Extension to the complex-valued case 182
 7.2 LMS Algorithm .. 185
 7.2.1 Range of \(\mu \), stability and misadjustment 187
 7.2.2 Normalized LMS algorithm 189
 7.2.3 Affine projection LMS algorithm 190
 7.3 Method of Least-Squares 191
 7.3.1 Formulation of the Least-Squares Estimation 192
10.3 Data Aided Timing Recovery
Algorithms ... 297
10.3.1 Mueller and Muller’s method 297
10.3.2 Decision directed method 300
10.4 Problems ... 301

11 Channel Equalization 309
11.1 Continuous-Time Channel Model 309
11.2 Discrete-Time Channel Model 310
11.2.1 Symbol-spaced equalizer 311
11.2.2 Fractionally-spaced equalizer 311
11.2.3 Symbol-spaced versus fractionally-spaced equalizer 313
11.3 Performance Study of Equalizers 313
11.3.1 Wiener-Hopf equations 314
11.3.2 Numerical examples 319
11.4 Adaptation Algorithms 326
11.5 Cyclic Equalization 329
11.5.1 Symbol-spaced cyclic equalizer 329
11.5.2 Fractionally-spaced cyclic equalizer 338
11.5.3 Alignment of $s[n]$ and $y[n]$ 339
11.6 Joint Timing Recovery, Carrier Recovery, and Channel Equalization 339
11.7 Maximum Likelihood Detection 340
11.8 Problems ... 340

12 Putting It Together 345
12.1 Transmitter .. 345
12.1.1 Source ... 345
12.1.2 Packet format 346
12.1.3 Bit-to-symbol conversion 346
12.1.4 Transmit signal 347
12.2 Receiver (Project) 347

13 Multicarrier Communications (OFDM) 355
13.1 The Principle of OFDM 358
13.2 Simulating an OFDM System 363
13.3 Timing Recovery 366
13.4 Carrier Acquisition and Tracking 368
13.4.1 The impact of carrier offset 369
13.4.2 Carrier acquisition 372
13.4.3 Carrier Tracking 373
13.5 Interpolation and Decimation Filters 385
13.5.1 Filtering at the transmitter 388
13.5.2 Filtering at the receiver 391
13.5.3 Modulation and Demodulation 393
13.6 Peak to Average Power Ratio 394
13.7 IEEE 802.11 . 401
 13.7.1 Packet format . 401
 13.7.2 Implementation tips 403
13.8 Problems . 405

14 Multicarrier Filter Bank 409
 14.1 Staggered Multitone (SMT) 412
 14.1.1 The channel impact and equalization 418
 14.2 Cosine Modulated Multitone (CMT) 419
 14.2.1 Vestigial side-band modulation 419
 14.2.2 Aggregating VSB subcarrier channels 425
 14.2.3 The channel impact and equalization 428
 14.3 Filtered Multitone (FMT) 429
 14.4 Polyphase Implementation of Filter Banks 429
 14.4.1 Polyphase synthesis filter bank 429
 14.4.2 Polyphase analysis filter bank 437
 14.4.3 Synthesis and analysis at baseband 439
 14.4.4 Synthesis and analysis at an IF band 441
 14.5 Polyphase Structures for SMT 441
 14.5.1 Polyphase synthesis filter bank 441
 14.5.2 Polyphase analysis filter bank 445
 14.6 Polyphase Structures for CMT 445
 14.6.1 Polyphase synthesis filter bank 446
 14.6.2 Polyphase analysis filter bank 451
 14.7 Polyphase Structures for FMT 454
 14.7.1 Polyphase synthesis filter bank 455
 14.7.2 Polyphase analysis filter bank 458
 14.8 Timing and Carrier Synchronization 460
 14.8.1 The long training preamble 462
 14.8.2 Carrier fine tuning 462
 14.8.3 The optimum timing phase 462
 14.8.4 Channel estimation and equalization 463
 14.9 Problems . 463
Preface

Advancement in digital signal processing algorithms as well as programmable digital signal processing platforms, being FPGA, a digital signal processor, or both, have led to the notion of Software Defined Radio. The term software radio refers to a piece of equipment that consists of a programmable digital signal processor core, and the necessary air interfaces (consisting of DACs, ADCs, analog circuitries, and antennae) to build a complete communication system. The ultimate goal is to reduce the analog parts to a bare minimum and put as much load as possible on the programmable part of the system. Ideally, ADC and DAC blocks should be moved as close as possible to the antennae. Hence, operations such as modulation/demodulation and various filtering operations are all performed in digital domain using software programs. Thus, through replacement of software, the same equipment (software radio platform) can be used to implement a range of radios for various applications.

This book puts together a collection of signal processing algorithms, filter design methods, and signal processing techniques (tricks) to provide the practicing engineers with the tools necessary for efficient implementation of software radios. The book is divided in two parts. Chapters 2 to 5 and Chapter 7 develop the theoretical foundation based on which various functions in a physical layer of software radio are implemented. The rest of the book discusses and presents implementation details of data modems.

A short review of Fourier analysis and linear time-invariant systems, as a brain refresher, is presented in Chapter 2. Chapter 3 introduces digital transmission systems and establishes most of the notations that are used throughout the book. The related background theory of digital signal processing is presented in Chapter 4. Design of various pulse-shaping filters has been given a special treatment in this chapter. Chapter 5 contains a detailed presentation of multirate signal processing and a number of application examples related to software radios. A brief theory of adaptive filters along with commonly used adaptive filtering algorithms is presented in Chapter 7.

To demonstrate the implementation of various algorithms on a software radio platform and also to demonstrate their performance, MATLAB scripts (programs) are presented throughout the book. The choice of MAT-
LAB, as against any other programming language, has a number of reasons. First, MATLAB is widely used in both industry and academia. It is thus assumed that most of the readers of this book have some level of familiarity with MATLAB. Second, the vast graphic functions available in MATLAB facilitate visual presentation of the results. Third, MATLAB is simple enough to allow even those who are not familiar with it still follow most of the presented scripts and functions.

The book come with an accompanying (downloadable) CD that contains all the MATLAB codes that are developed throughout the book as well as a number of test files that the reader needs for doing some of the end of the chapter problems and particularly to complete the design project that is introduced in Chapter 12 (see below). To download the CD, please visit the author’s website at http://www.ece.utah.edu/~farhang/.

The second part of the book begins with Chapter 6. This is an introductory chapter to the rest of the book. The main goal here is to set-up the basic MATLAB scripts that one needs in realizing any transceiver (modem). Eye-patterns as visualization tools in study of quality of the demodulated and (possibly) equalized signals are introduced in this chapter. In addition, the chapter provides a top view of digital communication systems and touches on the channel impairments, such as, noise, frequency offset and multipath effects.

Chapter 8 introduces phase-locked loop (PLL) and provides an in depth theoretical study as well as design of PLLs. The developed theory will be put in use in Chapter 10, where a number of carrier recovery and carrier tracking schemes are presented.

Chapter 10 is devoted to symbol timing recovery. The chapter begins with a study of statistical properties of digital data signals and finds that they are cyclostationary processes. In particular, we find that the ensemble average of the squared value of any digital data signal is a periodic function of time whose frequency matches the baud rate of the received data symbols. We will take advantage of this property in development of a number of symbol synchronization/timing recovery methods.

Channel equalization is discussed in Chapter 11. We distinguish between equalizers in which the spacing between adjacent taps is equal to data symbols and those that have smaller tap-spacing. The former is called a symbol-spaced equalizer and the latter is a fractionally-spaced equalizer, because of obvious reasons. Symbol-spaced and fractionally-spaced equalizers are contrasted against each other by deriving cost functions that can be evaluated for numerical comparisons. This chapter also covers the subject of cyclic equalization in detail. Cyclic equalization is a clever, yet simple method for synchronization of a receiver with its transmitter counterpart.

Chapter 12, titled “Putting it together”, aims at bringing together what has been learnt in the previous chapters, in the context of a hands on project. A transmitter is introduced at the beginning of the chapter and the reader is guided to develop various receivers to extract the transmitted
information. The reader does not know what information has been transmitted. However, it turns out to be very rewarding when he/she observes a meaningful text which shows correct detection of the transmitted information. The author’s experiment with this project in classrooms has been a very fun and rewarding exercise. According to students, this is where they really learn what has been covered in the previous chapters.

The topics covered in Chapter 2 through 12 mostly relate to single carrier communication systems. However, the modern broadband communication systems use multicarrier techniques for effective transmission at very high bit rates. Chapters 13 and 14, that are the new additions to this edition of this book present two classes of multicarrier methods. The widely adopted multicarrier method in the current standards, known as orthogonal frequency division multiplexing (OFDM), is presented in Chapter 13. An alternative class of multicarrier methods that use filter banks is the subject of Chapter 14. Although, multicarrier filter banks are not yet fully developed and have received less attention in the industry, they have a number of useful properties that, compared with OFDM, make them a better choice in the applications of multiuser multicarrier networks. The authors intention of presenting the multicarrier filter banks in this book is to promote this important class of multicarrier systems and to motivate further research in this important area.

As a class text, this book can be taught in a number of different ways. In author’s opinion, the goal should be to reach and cover most of the last chapter of the book (Chapter 12 / the project) before the class ends. It might be a big challenge if one attempts to fully cover the whole book in one semester. A realistic approach will be to teach fundamental parts plus some selected topics and aim for reaching Chapter 12 three or four weeks before the end of the semester, so that students will have enough time to complete the class project. What I consider as fundamental parts are:

- **Chapter 2 (Fourier Analysis and Linear Time-Invariant Systems):** Most of this chapter should have been covered in the previous classes. It can be left as self-study for students.

- **Chapter 3 (Digital Transmission Systems):** Depending on the program that students have gone through, they may or may not have seen the content of this chapter.

- **Chapter 4 (Sampling and Discrete Time Systems):** Assuming students have gone through a DSP class, they should have already seen the first three sections of this chapter. It may be thus necessary to only teach Section 4.4 (Digital Filters). I consider Sections 4.4.1 through 4.4.3 as fundamental. One can leave out Section 4.4.4.

- **Chapter 5 (Multirate Signal Processing):** This is a relatively long chapter on multirate signal processing. Although the beauty of the
signal processing materials, here, are very tempting to teach every-
thing, it may work better if one takes certain material out of the
classroom and let them remain as self-study material for the students.
The essential sections are 5.1 through 5.5.

- Chapter 6 (An Overview of Transceiver Systems): With the exception
 of Section 6.7 that may be left as self-study for interested students,
 this chapter should be fully covered.

- Chapter 7 (Adaptive Systems): It is not necessary to cover all details
 of this chapter. What I consider as essential are Sections 7.1 and 7.2.

- Chapter 8 (Phase-Locked Loop): It is not necessary to go through all
 the details of this chapter. I usually spend one hour in highlighting
 the pertinent points of phase-locked loops.

- Chapter 9 (Carrier Acquisition and Tracking): All sections in this
 chapter are interesting for most of the students and fun to teach.
 However, if time does not permit, take out Section 9.2.2.

- Chapter 10 (Timing Recovery): All sections in this chapter are also
 interesting for most of the students and fun to teach. However, if
 time does not permit, take out Sections 10.2.2 and 10.2.3.

- Chapter 11 (Channel Equalization): Most of this chapter should be
 covered. One may only take out some details of the derivations.

- Chapter 12 (Putting It Together): Not much to teach here. Leave it
 to students to go through it as a class project.

An alternative method of teaching this book is to present the whole book
in a two semester/quarter class.

Once again, the author wishes to remind the readers of this book, particu-
larly, the course instructors that this is an on going book project. Please
send your suggestion and corrections for improving this text to the author
at the below e-mail.

Behrouz Farhang-Boroujeny
farhang@ece.utah.edu
Acknowledgments

I wish to thank Professor Jonathon Chambers of the Advanced Signal Processing Group, Department of Electronic and Electrical Engineering at Loughborough University, UK, for diligent and careful reading of the first print of this book and making numerous invaluable suggestions.

I also wish to thank the members of the Software Defined Radio (SDR) Forum Educational Working Group for their encouragement. Special thanks go to Dr. Robert W. McGwier of the Institute for Defense Analysis for using the initial draft of this book in couple of classes that he taught at the College of New Jersey and University of Maryland. His inspiring comments on the usefulness of the material have been a big motive for a faster development of this book.

I am grateful to my students at the University of Utah who have enthusiastically given me their invaluable feedback in improving the content of this book.

Behrouz Farhang-Boroujeny
Chapter 1

Introduction

1.1 Software Radio

The term software-defined radio (SDR), or simply software radio, refers to a radio communication system that can be configured to receive a wide range of modulated digital signals across a large frequency spectrum by means of a programmable hardware platform. An SDR platform may be based on a general-purpose processor, a special-purpose digital signal processor, a field-programmable-gate-array (FPGA), or any combination of these. In addition, an SDR platform includes an air interface consisting of (reconfigurable) radio frequency (RF) front-end circuitries and antennae.

Figure 1.1 presents a block diagram of an SDR receiver platform. The transmitter counterpart of this platform is somewhat similar, with the order of the blocks reversed. The RF front-end circuitries consist of a low-noise amplifier (LNA) with an automatically controllable gain, and often a (programmable) RF to IF (intermediate frequency) demodulator. The antenna may be a single antenna or an array of antennae that may be configured (through software) for a desirable directivity. In addition, an SDR platform may be equipped with an array of antennae that can be configured for reception of RF signals from a very wide spectrum, e.g., 2 MHz to 5 GHz. It is also desirable to have control over the bandwidth of the RF/IF signals in order to remove irrelevant spurious signals and noise before conversion from analog to digital. A compromise choice on the bandwidth has to be made to trade the system flexibility versus performance and/or cost.

![Figure 1.1: An SDR receiver platform.](image_url)
Clearly, maximum flexibility/reconfigurability is the ultimate goal in any SDR system. This is achieved by inserting an analog-to-digital converter (ADC) in the chain of the blocks in Figure 1.1 as close as possible to the antenna. In practice, one has a limited control on reconfiguring the blocks to the left of ADC, i.e., the analog circuitries/elements. On the other hand, since in an SDR all the blocks after ADC are implemented in software or on reconfigurable devices, such as FPGA, the user has almost full freedom to tailor these blocks for different applications. Hence, ideally, the ADC should be located right after the cascade of the antenna and the LNA. In cases where carrier frequency is relatively high and thus ADC operation at RF is not feasible or is too expensive to implement, the ADC is put at an IF stage in the receiver chain.

In Figure 1.1, demodulation may be performed in a single step, through direct conversion of RF signal to baseband, or through a superheterodyne structure where down-conversion occurs through one or more IF stages. In traditional communication systems, where all blocks are implemented using analog circuitries, the use of superheterodyne structure has proven useful because it simplifies the filtering operations required to extract the desired signal. In software radios, also, the use of superheterodyne structure is found beneficial. Here, significant reduction in computational complexity is achieved through use of multirate signal processing techniques. Other elements that are not explicitly shown, but have to be included as sub-blocks in the demodulator block in Figure 1.1, are carrier frequency and phase recovery, symbol timing recovery, and channel equalizer. A brief review of these blocks is presented in Section 1.3, below.

Other blocks in the receiver chain are:

- **Forward error correcting (FEC):** Redundant bits are often added to the raw data bits prior to transmission. This is called channel coding. At the receiver, the FEC decoder takes into account the presence of redundant bits and corrects the bit errors that may have occurred as a result of channel impairments. The FEC decoder capability depends on the amount of the redundant bits that have been added to the raw data and the way such bits have been included (i.e., the type of channel code). To name, convolutional codes, turbo codes and low-density parity check (LDPC) codes are the common codes in use today. The combination of modulator/demodulator and FEC encoder/decoder in communication link is often referred to as physical layer, or, in short, PHY.

- **Medium access control (MAC):** MAC is the next processing layer that sits at the top of PHY. The tasks under MAC layer include data framing and the associated synchronization structures and control, resource allocation and MAC addressing, and payload encapsulation with possible fragmentation/defragmentation structures.
• **Network stack:** In addition to PHY and MAC, an operational network involves a number of other layers. These may include, but not necessary all, network layer, transport layer, session layer, and presentation layer. The network layer is responsible for determining the route(s) that data from each node/user in the network should take to reach its destination safely. The basic function of the transport layer is to accept data from the session layer, split it into smaller units if needed, pass these units to the network layer, and ensure that the units arrive correctly at the destination. The session layer allows different nodes/users to establish sessions between them. The major services offered by the session layer include keeping track of whose turn is to transmit and preventing two parties from attempting the same critical operation at the same time. In order to ensure that various nodes with different data representations can communicate, standard data structures are applied at the presentation layer before passing a user data to the session layer.

• **User application layer:** The application layer uses a variety of protocols depending on the requested services. For instance the familiar HTTP (HyperText Transfer Protocol) is the protocol used when one attempts to access the internet. Other popular protocols are FTP (File Transfer Protocol) and SMTP (Simple Mail Transfer Protocol). The latter is what we use for our e-mail exchanges.

The content of this book is limited to the details of the demodulation block in Figure 1.1 and its counterpart (the modulator) at the transmitter. The term modem is often used to refer to the combination of modulator and demodulator blocks in a communication system.

1.2 A Brief History of Modems

The history of modems may be dated back to the era of teletype and telegraph data transmission as early as 1919. Transmission in this era was mostly through wired lines and performed at baseband, i.e., no modulation was performed. Data rates were in the range of 100 bits/s or lower.

The invention of digital computers in the early 1950s and the resulting applications led to significant interest in higher speed data transmission over telephone lines. The earliest telephone-line modems used frequency-shift keying (FSK) to achieve speeds of 300 bits/s (Bell 103) and later 1200 bits/s (Bell 202). The concepts of phase-shift keying (PSK) and quadrature amplitude modulation (QAM) were also developed in 1950s and 1960s and by the end of 1960s modems that were capable of transmitting information at a rate of 2400 bits/s (Bell 201) or higher had been commercialized. The Bell 201 achieved a transmission rate of 2400 bits/s using 4-PSK signaling over a bandwidth of 1200 Hz. The Milgo 4400/48 was the first commer-
cialized 4800 bits/s modem. It was based on 8-PSK signaling and had a bandwidth span of 1600 Hz. To be able to cover such bandwidth (which was considered wide for voice grade telephone lines, at the time), the Milgo 4400/48 modems were equipped with manually adjustable equalizers. The development of automatic equalizers in 1960s soon led to the introduction of modems with bandwidth of 2400 Hz, essentially the full telephone line bandwidth. In 1971, the Codex 9600C which could transmit at a rate of 9600 bits/s, using 16-QAM signaling, was introduced to the market. The rest of 1970s was spent by researchers to fine-tune the latter developments. Sophisticated carrier recovery and timing recovery loops, pulse shaping filters, equalization methods, and channel coding techniques were developed during these years.

Further developments on telephone line modems, achieving transmission rates greater than 9600 bits/s, occurred in 1980s and 1990s. Telephone line modems that could transmit at 56000 bits/s were marketed by early 2000s.

Some developments on radio (wireless) modems were also made in parallel with telephone line modems, though, initially, at a much lower pace. Compared to telephone line modems literature, the reports on radio modems prior to 1980 are rather sporadic. It appears that most of the theoretical developments on modems have been done in the context of telephone line channels. However, the developments are also applicable to radio channels and, thus, are widely deployed in radio modems as well.

Widespread development of radio modems was started with the introduction of cellular and cordless telephone networks in early and mid 1980s. The first-generation of the wireless devices was based on analog technology with FM modulation. The new era of digital communications started in late 1980s and early 1990s as second-generation (2G) wireless cellular phone began to gain popularity. Digital transmission was the enabling technology for integration of speech and data services. Data services include facsimile, paging, local area networks and internet access. The local area networks and internet access, in particular, have been the driving force for further development of the digital wireless systems in 1990s and more recent years. The third generation (3G) of wireless communication systems that emerged by the turn of the millennium includes a variety of standards, such as, IEEE 802.15/WPAN (Wireless Personal Area Networks), IEEE 802.11/WiFi/WLAN (Wireless Local Area Networks), and IEEE 802.16/WiMAX/WMAN (Wireless Metropolitan Area Networks). They cover variety of network sizes and support data rates in the orders of Mega bits per second and higher. Variety of signaling/modulation techniques have been considered in these standards, ranging from binary phase-shift keying (BPSK) to large QAM constellations, as well as single carrier and multicarrier modulations. Moreover, since wireless channels, in general, should be shared among different users, variety of accessing methods such as time-division multiple access (TDMA), frequency-division multiple access (FDMA), and code-division multiple access (CDMA) have been consid-
ered. More recent advancements are MIMO communications where space diversity adds to time, frequency and code diversity to improve on the link reliability as well as transmission rate. Some of the recent standards (e.g. IEEE 802.11n and 802.16e) suggest data rates in the range of 100 Mega bits per second or higher. Another interesting emerging technology is cognitive radio. Cognitive radios, yet to be developed, will be intelligent systems that will be aware of spectral activities in their environment and pick their transmission band and rate according to available resources.

1.3 Signal Processing in Modems

This text presents a collection of signal processing techniques that are commonly used in implementation of data modems and, thus, are not tied to any specific standard. Figures 1.2 and 1.3, respectively, present detailed block diagrams of the transmitter and receiver of a modem.

The transmitter blocks and their functional role are as follows:

- **Encoding**: In order to implement a communication system robust against channel impairments, redundant bits are added to raw data bits. The redundancies are considered at the receiver to correct errors that may have occurred as a result of the channel distortion and/or noise. As noted above, the process of adding redundant bits to the raw data bits is called channel coding. In this text, to keep our attention on signal processing aspects of modems only, the topic of coding is completely left out. It is believed that this treatment is appropriate as coding and signal processing in modems are mostly orthogonal. In
addition, many excellent texts on the topic of coding are available, e.g., (Lin and Costello, 2004).

- **Bit-to-symbol mapping:** Information bits (usually, after channel coding) are mapped to a sequence of symbols from a pre-selected alphabet, for transmission. This allows one to bundle a few bits in each symbol and thus increase the bandwidth efficiency of transmission channel, i.e., transmit more bits per unit of bandwidth. It is also possible to combine coding and bit-to-symbol mapping to improve on the system performance. This is called *trellis coding*. Again, to limit our discussion to signal processing aspects of modems, this text only considers simple mapping of (possibly, coded) bits to symbols.

An alphabet, in general, is a set of complex numbers. The common alphabets are (i) a set of equally distanced points on a circle as in Figure 1.4(a); and (ii) a set of points in a square-grid as in Figure 1.4(b). These are called constellations. Also shown in Figures 1.4(a) and (b) are one possible choice of bit-to-symbol mapping for each alphabet. The alphabet shown in Figure 1.4(a) is called phase-shift keying (PSK), because information bits are mapped into a set of phase angles; here, there are eight phase angles $2\pi k/8$, for $k = 0, 1, \cdots, 7$. The alphabet shown in Figure 1.4(b) is called quadrature amplitude modulation (QAM), for obvious reasons that will become clear as we go through later chapters of this text.

![Figure 1.4: Examples of symbol alphabets; (a) phase-shift keying (PSK), and (b) quadrature amplitude modulation (QAM). s_R and s_I are real and imaginary parts of a complex-valued symbol $s.$](image)

- **Pulse-shaping:** In any communication system, it is always desirable (and necessary) to minimize the transmission bandwidth. The pulse-
Sec. 1.3 Signal Processing in Modems

shaping is used to limit the bandwidth of symbol sequences. This, effectively, is a filtering operation. Pulse-shaping filters are covered in Chapters 3 and 4.

- **Modulation:** The output of the pulse-shaping filter is a baseband signal which usually is not appropriate for transmission. In wireless channels, one often needs to shift the baseband signal to an assigned RF channel (a passband) before directing it to an antenna for transmission. The process of shifting a baseband signal to a radio channel is called modulation. As was noted above, modulation may be done in a number of steps through a superheterodyne structure, i.e., by first moving the spectrum from baseband to one or more IF bands and then to the desired RF band. When the latter operations are performed in digital domain, on an SDR platform, as the signal is moved to higher frequency bands, its sampling rate should be increased proportionately. Hence, modulation in an SDR is effectively a multirate signal processing. Chapter 5 is devoted to the theory of multirate signal processing. Examples that show the effective application of multirate techniques in SDRs, including modulation and demodulation, are also presented in this chapter.

On the other hand, the receiver blocks and their functional role are as follows:

- **Demodulation:** This is the dual of the modulation block at the transmitter. The goal is to shift the desired signal from the RF band to the baseband. Here, also, following the superheterodyne principle, the demodulation may be performed by shifting the spectrum of the desired signal first to an IF band, and then to the baseband. At various stages of this process, filters are used to remove undesired signals and noise. Particularly, a filter that is matched to the transmitter pulse-shaping filter is used at the last stage of the demodulation process to clean up the acquired baseband signal and to maximize the signal-to-noise ratio (SNR) at this final stage. This, which is called matched filter (MF), may also be combined with a channel equalizer whose role is to combat channel distortion (see below).

- **Carrier Recovery:** A demodulation operation is always more complex than its modulation counterpart, because the receiver has to tune the carrier that it uses for demodulation to match that of the transmitter. The receiver begins with a local free running oscillator. A mechanism, called phase-locked loop (PLL), is then used to fine-tune the local oscillator to match the frequency and phase of the carrier of the received signal. The subject of PLL is covered in Chapter 8 and a number of practical carrier recovery and tracking algorithms are presented in Chapter 9.
• **Timing Recovery:** The receiver must also synchronize itself with the rate of data symbols embedded in the incoming signal. Timing information is often extracted by noting that digital data signals are cyclostationary, meaning that their statistical properties exhibit some cyclic properties. The period of these cycles matches the symbol rate. Hence, a PLL that locks to this cyclic behavior can be used for symbol timing synchronization and thus symbol timing recovery. The topic of timing recovery is covered in Chapter 10.

• **Equalization:** Often, the presence of channel introduces distortion in data signals. In wireless channels, the main source of distortion is multipath. When data rate is high, the presence of multipath results in interference among neighboring data symbols. This is called inter-symbol interference (ISI). To combat ISI, a filter that compensates for the distortion introduced by channel is used. This is called equalization. An equalizer should be trained to learn about the channel and to adjust its parameters to realize a filter equivalent to the inverse of the channel. The theory of adaptive equalizers is developed in Chapter 11. This chapter also provides some tips on additional mechanisms that are needed for other synchronization tasks for correct operation of modems. This chapter as well as Chapters 9 and 10 benefit significantly from the theory of adaptive filters that is presented in Chapter 7.
Chapter 2

Fourier Analysis and Linear Time-Invariant Systems

In this chapter, we briefly review the basic tools from the theory of signals and linear time-invariant (LTI) systems that are used in the analysis and design of communication systems. An LTI system is characterized in the time domain by its impulse response and in the frequency domain by its transfer function. Moreover, the impulse response and transfer function of an LTI system are related through Fourier transform. At the same time, the Fourier transform is an analysis tool that is used to expand a signal as a sum of spectral components; a finite or infinite set of sinusoidal waveforms. This leads to the notion of signal spectra. Since signal spectra and transfer functions are fundamental to the design and analysis of communication systems, most of the discussions in this chapter are related to these topics.

2.1 Fourier Series

According to the theory of Fourier, a periodic signal $x_{T_0}(t)$ with period of T_0 and frequency of $f_0 = 1/T_0$ can be expressed as

$$x_{T_0}(t) = \sum_{n=-\infty}^{\infty} x_n e^{j2\pi nf_0 t}$$ \hspace{1cm} (2.1)

where $j = \sqrt{-1}$ and the x_n’s are the Fourier series coefficients of the signal $x_{T_0}(t)$. The Fourier coefficients x_n’s can be evaluated by performing the integral

$$x_n = \frac{1}{T_0} \int_{\alpha}^{\alpha+T_0} x_{T_0}(t)e^{-j2\pi nf_0 t} dt$$ \hspace{1cm} (2.2)
where α is an arbitrary constant that determines the start of the period and is chosen such that to simplify the evaluation of the integral.

According to (2.1), the periodic signal $x_{T_0}(t)$ can be synthesized by adding (complex) sine-waves of frequencies $0, \pm f_0, \pm 2f_0, \cdots$. The coefficient x_0 which associates with the frequency of 0 is called DC (directly coupled) component of $x_{T_0}(t)$. The frequency f_0 is called the fundamental frequency of $x_{T_0}(t)$, and accordingly x_1 and x_{-1} are referred to as the fundamental components of $x_{T_0}(t)$. Accordingly, f_0 is called the fundamental frequency. The remaining terms are referred to as harmonics.

When $x_{T_0}(t)$ is real-valued, we have

\[
x_{-n} = \frac{1}{T_0} \int_{\alpha}^{\alpha+T_0} x_{T_0}(t) e^{j2\pi nf_0 t} \, dt
= \frac{1}{T_0} \left[\int_{\alpha}^{\alpha+T_0} x_{T_0}(t) e^{-j2\pi nf_0 t} \, dt \right]^* = x_n^*.
\] (2.3)

which implies

\[
|x_n| = |x_{-n}| \quad \text{and} \quad \angle x_n = -\angle x_{-n}.
\] (2.4)

That is, the magnitude of x_n is an even function of n and its phase is an odd function of n. In other words, the Fourier series coefficients of a real-valued signal $x_{T_0}(t)$ have Hermitian symmetry.

The Fourier series expansion of (2.1) is known as the exponential Fourier series and is applicable to both real- and complex-valued periodic signals. When $x_{T_0}(t)$ is real-valued, another form of Fourier series, known as trigonometric Fourier series, may be applied. In the trigonometric Fourier series, $x_{T_0}(t)$ is expanded as

\[
x_{T_0}(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(2\pi nf_0 t) + b_n \sin(2\pi nf_0 t)].
\] (2.5)

This can be obtained by using the Euler’s formula and substituting

\[
e^{j2\pi nf_0 t} = \cos(2\pi nf_0 t) + j \sin(2\pi nf_0 t)
\] (2.6)
in (2.1), and defining

\[
a_n = x_n + x_{-n} = 2\Re\{x_n\}
\] (2.7)

and

\[
b_n = j(x_n - x_{-n}) = -2\Im\{x_n\}.
\] (2.8)
Also, applying the Euler’s formula to expand \(e^{-j2\pi nf_0 t}\) in (2.2) and using (2.7) and (2.8), we obtain

\[
a_n = \frac{2}{T_0} \int_{\alpha}^{\alpha+T_0} x_{T_0}(t) \cos(2\pi nf_0 t) dt \tag{2.9}
\]

and

\[
b_n = \frac{2}{T_0} \int_{\alpha}^{\alpha+T_0} x_{T_0}(t) \sin(2\pi nf_0 t) dt. \tag{2.10}
\]

Example 2.1:

Find the Fourier series coefficients of the signal \(x_{T_0}(t)\) shown in Figure 2.1.

![Figure 2.1: An example of a periodic signal.](image)

Solution:

Here, \(T_0 = 2\) and, thus, \(f_0 = 0.5\). Choosing \(\alpha = -T_0/2 = -1\), we have

\[
x_n = \frac{1}{2} \int_{-1}^{1} x_{T_0}(t) e^{-j2\pi nf_0 t} dt
\]

\[
= \frac{1}{2} \int_{-0.5}^{0.5} e^{-j\pi nt} dt
\]

\[
= \frac{1}{-j2\pi n} (e^{-j\pi n/2} - e^{j\pi n/2})
\]

\[
= \frac{1}{2} \sin(n\pi/2) / \pi n/2
\]

\[
= \frac{1}{2} \text{sinc}(n/2) \tag{2.11}
\]

where \(\text{sinc}(x)\) is defined as

\[
\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}. \tag{2.12}
\]

From (2.11) and recalling (2.7) and (2.8), we obtain

\[
a_n = \text{sinc}(n/2) \quad \text{and} \quad b_n = 0.
\]

Hence,

\[
x_{T_0}(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \text{sinc}(n/2) \cos(\pi nt). \tag{2.13}
\]
Fourier Analysis and Linear Time-Invariant Systems Chap. 2

Figure 2.2 presents a set of approximations of $x_{T_0}(t)$ over one period and for various number of the terms in (2.13).

![Figure 2.2: Fourier series approximations to rectangular pulse of Figure 2.1.](image)

The magnitude spectra of $x_{T_0}(t)$ are presented in Figure 2.3.

Note that, in the above example, $x_{T_0}(t)$ has a rather wide spectrum, i.e., the signal energy remains significant over a large number of harmonics. The presence of many harmonics here is a direct consequence of the sharp edges in the rectangular waveform. Pulse shapes/signals with smoother edges have spectra that are confined within a more limited band. Examples are raised-cosine pulse shapes that are discussed in the next chapter for data transmission over band-limited channels.

2.2 Fourier Transform

The Fourier transform can be thought as an extension to the Fourier series when the period $T_0 \to \infty$. In this case, the Fourier series coefficients are defined over continuous points on the frequency axis. This is because in the Fourier series, the spacing between spectral lines (i.e., x_n’s) is $f_0 = 1/T_0$ and when $T_0 \to \infty$, $f_0 \to 0$. Also, because of the divide by T_0 in (2.2), x_n approaches zero, assuming that the integral on the right-hand side of (2.2) is finite. To resolve this problem, the Fourier transform of a non-periodic signal is defined as

$$\mathcal{F}[x(t)] = X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \quad (2.14)$$
and, accordingly, the inverse Fourier transform of \(X(f)\) is \(x(t)\) and is given by
\[
\mathcal{F}^{-1}[X(f)] = x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df. \tag{2.15}
\]

Similar to (2.1), we may have the following interpretation of (2.15). A signal \(x(t)\) can be constructed by adding an infinite set of sine-waves. Here, the sine-wave components are the continuous in frequency set \([X(f) df]e^{j2\pi ft}\), for \(-\infty < f < \infty\). When \(x(t)\) is real-valued, the positive and negative frequency components \([X(f) df]e^{j2\pi ft}\) and \([X(-f) df]e^{-j2\pi ft}\) are complex conjugate of each other. This implies that
\[
X(-f) = X^*(f). \tag{2.16}
\]

The equality (2.16) is the dual of (2.3). Moreover, when \(x(t)\) is real-valued
\[
\mathcal{F}[x(-t)] = \int_{-\infty}^{\infty} x(-t) e^{-j2\pi ft} dt
= \int_{-\infty}^{\infty} x(t) e^{j2\pi ft} dt
= \left[\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt \right]^*
= X^*(f) \tag{2.17}
\]
where the second line is obtained by replacing \(t\) with \(-t\).
When \(x(t) \) is complex-valued, (2.16) no longer holds, and
\[
\mathcal{F}[x^*(-t)] = X^*(f).
\] (2.18)

Clearly, when \(x(t) \) is real-valued, (2.18) reduces to (2.17).

The Fourier transform has a number of properties which prove very useful in the study of signals and LTI systems. The most important properties of the Fourier transform are summarized as follows.

1. **Linearity:** The Fourier transform of a linear combination of two or more signals is the linear combination of the corresponding Fourier transforms, e.g., for constants \(\alpha \) and \(\beta \),
\[
\mathcal{F}[\alpha x(t) + \beta y(t)] = \alpha \mathcal{F}[x(t)] + \beta \mathcal{F}[y(t)].
\] (2.19)

2. **Duality:** If \(X(f) = \mathcal{F}[x(t)] \), then
\[
\mathcal{F}[X(t)] = x(-f).
\] (2.20)

3. **Conjugate symmetry:** When \(x(t) \) is real-valued,
\[
X(f) = X^*(-f).
\] (2.21)

4. **Modulation:** If \(X(f) = \mathcal{F}[x(t)] \), then
\[
\mathcal{F}[e^{j2\pi f_0 t} x(t)] = X(f - f_0).
\] (2.22)

In other words, multiplication of a signal \(x(t) \) by a complex sinusoidal \(e^{j2\pi f_0 t} \) in the time domain corresponds to a frequency shift \(f_0 \) in the frequency domain.

Also, using (2.22), and recalling that \(\cos(2\pi f_0 t) = \frac{1}{2}(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}) \), we obtain
\[
\mathcal{F}[x(t) \cos(2\pi f_0 t)] = \frac{1}{2}[X(f - f_0) + X(f + f_0)].
\] (2.23)

5. **Time shifting:** If \(\mathcal{F}[x(t)] = X(f) \), then
\[
\mathcal{F}[x(t - t_0)] = e^{-j2\pi f_0 t_0} X(f).
\] (2.24)

This which may be thought as a dual of the modulation property, implies that a shift in the time domain results in a linear phase shift in the frequency domain.

6. **Time scaling:** If \(\mathcal{F}[x(t)] = X(f) \) and \(a \neq 0 \) is a constant, then
\[
\mathcal{F}[x(at)] = \frac{1}{|a|} X \left(\frac{f}{a} \right).
\] (2.25)

This property has the following interpretation. An expansion in the time domain results in a contraction in the frequency domain, and vice versa.
7. Differentiation: If $F[x(t)] = X(f)$, then
\[F \left[\frac{d^n x(t)}{dt^n} \right] = (j2\pi f)^n X(f). \] (2.26)

8. Convolution: Convolution in the time domain is equivalent to multiplication in the frequency domain:
\[F[x(t) \ast y(t)] = X(f)Y(f). \] (2.27)

Similarly, multiplication in the time domain is equivalent to convolution in the frequency domain:
\[F[x(t)y(t)] = X(f) \ast Y(f). \] (2.28)

Note: If you need to refresh your memory on the definition and the significance of convolution, this appears in the Section 2.3.

9. Parseval’s relation: If $F[x(t)] = X(f)$ and $F[y(t)] = Y(f)$, then
\[\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df. \] (2.29)

For the particular case when $y(t) = x(t)$, this simplifies to
\[\int_{-\infty}^{\infty} |x(t)|^2dt = \int_{-\infty}^{\infty} |X(f)|^2df \] (2.30)

which is known as Rayleigh’s relation.

Table 2.1 presents a list of the frequently used Fourier transform pairs. In this table, $\delta(t)$ is the delta function which by definition is non-zero only for $t = 0$ and satisfies
\[\int_{-\infty}^{\infty} \delta(t)dt = 1. \] (2.31)

Also, $u(t)$ and $\text{sgn}(t)$ are the step and signum functions which, respectively, are defined as
\[u(t) = \begin{cases} 0, & t < 0 \\ 0.5, & t = 0 \\ 1, & t > 0 \end{cases} \] (2.32)

and
\[\text{sgn}(t) = \begin{cases} -1, & t < 0 \\ 0, & t = 0 \\ 1, & t > 0 \end{cases} \] (2.33)

Other functions that appear in Table 2.1 are the rectangular and triangular pulse shapes $\Pi(t)$ and $\Lambda(t)$, respectively. These are defined as
\[\Pi(t) = \begin{cases} 1, & |t| < 0.5 \\ 0, & \text{otherwise} \end{cases} \] (2.34)
and

$$\Lambda(t) = \begin{cases}
1 + t, & -1 < t \leq 0 \\
1 - t, & 0 < t < 1 \\
0, & \text{otherwise}.
\end{cases} \quad (2.35)$$

Table 2.1: Table of Fourier transform pairs.

<table>
<thead>
<tr>
<th>(x(t))</th>
<th>(X(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\delta(t))</td>
<td>(1)</td>
</tr>
<tr>
<td>2. (1)</td>
<td>(\delta(f))</td>
</tr>
<tr>
<td>3. (\delta(t - t_0))</td>
<td>(e^{-j2\pi ft_0})</td>
</tr>
<tr>
<td>4. (e^{j2\pi f_0 t})</td>
<td>(\delta(f - f_0))</td>
</tr>
<tr>
<td>5. (\cos(2\pi f_0 t))</td>
<td>(\frac{1}{2}[\delta(f - f_0) + \delta(f + f_0)])</td>
</tr>
<tr>
<td>6. (\sin(2\pi f_0 t))</td>
<td>(\frac{1}{2j}[\delta(f - f_0) - \delta(f + f_0)])</td>
</tr>
<tr>
<td>7. (e^{-\alpha t} u(t), \ \alpha > 0)</td>
<td>(\frac{1}{\alpha + j2\pi f})</td>
</tr>
<tr>
<td>8. (t^n e^{-\alpha t} u(t), \ \alpha > 0)</td>
<td>(\frac{n!}{(\alpha + j2\pi f)^{n+1}})</td>
</tr>
<tr>
<td>9. (e^{-\alpha</td>
<td>t</td>
</tr>
<tr>
<td>10. (e^{-\pi t^2})</td>
<td>(e^{-\pi f^2})</td>
</tr>
<tr>
<td>11. (u(t))</td>
<td>(\frac{1}{j\pi f})</td>
</tr>
<tr>
<td>12. (\text{sgn}(t))</td>
<td>(\frac{1}{j\pi f})</td>
</tr>
<tr>
<td>13. (\Pi(t))</td>
<td>(\text{sinc}(f))</td>
</tr>
<tr>
<td>14. (\text{sinc}(t))</td>
<td>(\Pi(f))</td>
</tr>
<tr>
<td>15. (\Lambda(t))</td>
<td>(\text{sinc}^2(f))</td>
</tr>
<tr>
<td>16. (\text{sinc}^2(t))</td>
<td>(\Lambda(f))</td>
</tr>
<tr>
<td>17. (\sum_{n=-\infty}^{\infty} \delta(t - nT_0)) (f_0\sum_{n=-\infty}^{\infty} \delta(f - nf_0), \ f_0 = \frac{1}{T_0})</td>
<td></td>
</tr>
</tbody>
</table>

Most of the pairs in Table 2.1 can be derived straightforwardly by direct application of the definition of Fourier transform and its properties. For instance,

$$\mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi ft} dt = \int_{-\infty}^{\infty} \delta(t) dt = 1 \quad (2.36)$$

where the second line follows since \(\delta(t)\) is non-zero only when \(t = 0\), and for \(t = 0\), \(e^{-j2\pi ft} = 1\). Once we have this result, line 2 in the table follows from the duality property. Moreover, applying the time shifting property to \(\mathcal{F}[\delta(t)] = 1\), we obtain \(\mathcal{F}[\delta(t - t_0)] = e^{-j2\pi ft_0}\) (line 3 in the table).
And using the duality property, from this result, we obtain \(F[e^{j2\pi f_0 t}] = \delta(f - f_0) \) (line 4 in the table).

Another important Fourier pair in Table 2.1 is the one in line 17. This can be shown as follows. We recall that a periodic signal \(x_{T_0}(t) \) can be expanded as

\[
x_{T_0}(t) = \sum_{n=-\infty}^{\infty} x_n e^{j2\pi n f_0 t}.
\] (2.37)

Using the linear property of the Fourier transform and line 4 of Table 2.1, from (2.37), we obtain

\[
X_{T_0}(f) = \sum_{n=-\infty}^{\infty} x_n \delta(f - nf_0).
\] (2.38)

This shows that the Fourier transform of a periodic signal with period of \(T_0 = 1/f_0 \) consists of impulses at the multiples of the fundamental frequency \(f_0 \). A special case of this is when

\[
x_{T_0}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_0).
\] (2.39)

In this case, we have

\[
x_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \delta(t)e^{-j2\pi f_0 t} dt = \frac{1}{T_0} = f_0.
\] (2.40)

Substituting this result in (2.38), leads to the Fourier pair in line 17 of Table 2.1. This result is used in Chapter 4 in the derivation of the sampling theorem.

Other important Fourier pairs in Table 2.1 are those in lines 13 to 16. Line 13 can be shown simply by direct evaluation of the Fourier transform of \(\Pi(t) \). Line 14, then, follows by invoking the duality property of the Fourier transform. Derivations of lines 15 and 16 are presented after reviewing the convolution integral in the next section.

2.3 Linear Time-Invariant Systems

A system, in general, is characterized by a rule (or a set of rules) that determine how the system input and output are related. Let \(x(t) \) and \(y(t) \) denote the system input and output, respectively, and \(T[\cdot] \) be the rule relating them, viz. \(y(t) = T[x(t)] \). A system \(T[\cdot] \) is linear if for any pair of inputs \(x_1(t) \) and \(x_2(t) \) and arbitrary constants \(\alpha \) and \(\beta \),

\[
T[\alpha x_1(t) + \beta x_2(t)] = \alpha T[x_1(t)] + \beta T[x_2(t)].
\] (2.41)
Moreover, if the system \(y(t) = T[x(t)] \) is time-invariant, then

\[
y(t - t_0) = T[x(t - t_0)].
\]

(2.42)

A system that satisfies both (2.41) and (2.42) is called linear time-invariant (LTI). Many systems in practice, including most of the communication systems, are LTI. The most important property of the LTI systems is that any LTI system is completely characterized by its impulse response. This is formalized through the convolution integral.

2.3.1 Convolution integral

Consider an LTI system with the impulse response \(h(t) \). Also, consider the arbitrary signal \(x(t) \) shown in Figure 2.4. The signal \(x(t) \) may be partitioned into a set of pulses each of width \(\Delta t \) as in Figure 2.4. For a small \(\Delta t \), each of these pulses may be approximated by an impulse with the size of \(x(t_n)\Delta t \). Accordingly, we have

\[
x(t) \approx \sum_{n=-\infty}^{\infty} [x(t_n)\Delta t]\delta(t - t_n).
\]

(2.43)

Passing both sides of (2.43) through an LTI system \(h(t) \) and recalling the linearity and time shifting properties, we obtain

\[
y(t) \approx \sum_{n=-\infty}^{\infty} [x(t_n)\Delta t]h(t - t_n).
\]

(2.44)

Replacing \(t_n \) by \(\tau \) and \(\Delta t \) by \(d\tau \rightarrow 0 \), and, accordingly, the summation by an integral, we obtain

\[
y(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau.
\]

(2.45)

This which is called convolution integral can also be rearranged as

\[
y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau)d\tau.
\]

(2.46)

The notation \(y(t) = x(t) \ast h(t) = h(t) \ast x(t) \) is often used instead of the integral (2.45) or (2.46).

Example 2.2:

Evaluate the convolution \(\Pi(t) \ast \Pi(t) \) and show that it is equal to \(\Lambda(t) \).

Solution:

\[
\Pi(t) \ast \Pi(t) = \int_{-\infty}^{\infty} \Pi(\tau)\Pi(t - \tau)d\tau
\]
2.3 Linear Time-Invariant Systems

Figure 2.4: An arbitrary signal and its approximation by a sequence of rectangular pulses.

\[
\begin{align*}
&= \begin{cases}
\int_{t-0.5}^{t+0.5} dt, & -1 < t \leq 0 \\
\int_{t-0.5}^{0.5} dt, & 0 < t < 1 \\
0, & \text{otherwise}
\end{cases}
\end{align*}
\]

(2.47)

\[
\begin{align*}
&= \begin{cases}
1 + t, & -1 < t \leq 0 \\
1 - t, & 0 < t < 1 \\
0, & \text{otherwise.}
\end{cases}
\end{align*}
\]

(2.48)

2.3.2 Transfer function

From (2.45) and (2.46), we note that the input-output relationship of an LTI system is fully specified by its impulse response. In the particular case where \(x(t) = e^{j2\pi ft} \), using (2.46), we obtain

\[
y(t) = \int_{-\infty}^{\infty} h(\tau) e^{j2\pi ft} e^{-j2\pi \tau} d\tau \\
= \left[\int_{-\infty}^{\infty} h(\tau) e^{-j2\pi \tau} d\tau \right] e^{j2\pi ft} \\
= H(f) x(t)
\]

(2.49)

where \(H(f) = \int_{-\infty}^{\infty} h(\tau) e^{-j2\pi ft} d\tau \) is the Fourier transform of \(h(t) \). The significance of this result is that it shows when a complex sinusoid \(e^{j2\pi ft} \) is applied to an LTI system, the LTI system acts like an amplifier or attenuator
with the gain of $H(f)$. Accordingly, $H(f)$ is referred to as the system transfer function.

On the other hand, according to the inverse Fourier transform relation \((2.15)\), $x(t)$ can be constructed by adding the sinusoidal components $\[X(f)df\]e^{j2\pi ft}$, for $-\infty < f < \infty$. Applying the above result, the system response to each of these components is $H(f)[X(f)df]e^{j2\pi ft}$. Moreover, adding these components gives the system output, viz.,

$$y(t) = \int_{-\infty}^{\infty} H(f)X(f)e^{j2\pi ft}df. \quad (2.50)$$

From \((2.50)\), we obtain

$$Y(f) = H(f)X(f) \quad (2.51)$$

which implies that $\mathcal{F}[h(t)*x(t)] = H(f)X(f)$. This also proves the convolution property of the Fourier transform.

Another interesting observation can be made by studying the response of an LTI system with the transfer function $H(f)$ and real impulse response $h(t)$ to the real-valued sine-wave $A \cos(2\pi ft + \phi)$. Using the Euler’s formula, we have

$$A \cos(2\pi ft + \phi) = \frac{A}{2}e^{j(2\pi ft + \phi)} + \frac{A}{2}e^{-j(2\pi ft + \phi)} \quad (2.52)$$

Since the system is linear, the output $y(t)$ is the sum of the responses to the two input components:

$$y(t) = \frac{A}{2}H(f)e^{j(2\pi ft + \phi)} + \frac{A}{2}H(-f)e^{-j(2\pi ft + \phi)}$$

$$= \frac{A}{2}H(f)e^{j(2\pi ft + \phi)} + \frac{A}{2}H^*(f)e^{-j(2\pi ft + \phi)}$$

$$= \frac{A}{2}H(f)|e^{j\angle H(f)}e^{j(2\pi ft + \phi)} + \frac{A}{2}|H(f)|e^{-j\angle H(f)}e^{-j(2\pi ft + \phi)}$$

$$= A|H(f)|\cos(2\pi ft + \phi + \angle H(f)) \quad (2.53)$$

where the second identity follows since for a system with real impulse response $h(t)$, $H(-f) = H^*(f)$. As seen, the system output is a sine-wave with the same frequency, but with modified amplitude and phase according to the transfer function $H(f)$.

Example 2.3:

Using the result of Example 2.2, show the correctness of lines 15 and 16 of Table 2.1.

Solution:

Since $\mathcal{F}[\Pi(t)] = \text{sinc}(f)$ and $\Lambda(t) = \Pi(t) * \Pi(t)$, we get

$$\mathcal{F}[\Lambda(t)] = \mathcal{F}[\Pi(t)]\mathcal{F}[\Pi(t)] = \text{sinc}(f)\text{sinc}(f) = \text{sinc}^2(f).$$

This is line 15 of Table 2.1.

Line 16 of Table 2.1 follows from this by invoking the duality property of the Fourier transform.
2.4 Energy and Power Spectral Density

2.4.1 Energy-type signals
A signal $x(t)$ is called an *energy-type signal* if

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt \quad (2.54)$$

is finite. The *energy spectral density* of an energy-type signal is defined as

$$\Phi_{xx}(f) = |X(f)|^2. \quad (2.55)$$

In light of the Rayleigh’s relation (2.30), $\Phi_{xx}(f)$ gives the distribution of energy of the energy signal $x(t)$ around the frequency f. On the other hand, the *autocorrelation function* of the energy signal $x(t)$ is defined as

$$\phi_{xx}(\tau) = \int_{-\infty}^{\infty} x(t + \tau)x^*(t)dt = x(\tau) \ast x^*(-\tau). \quad (2.56)$$

Taking Fourier transform on both sides of (2.56), and using (2.18) and convolution property of the Fourier transform, one finds that

$$\Phi_{xx}(f) = \mathcal{F}[\phi_{xx}(\tau)]. \quad (2.57)$$

This suggests an alternative method of obtaining the energy spectral density of an energy signal: evaluate the autocorrelation function of $x(t)$, using (2.56) and, then, apply Fourier transform to the result.

2.4.2 Power-type signals
When E_x is not finite, but

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \quad (2.58)$$

is finite, $x(t)$ is called a *power-type signal*. For a power-type signal $x(t)$, we define the *time-average autocorrelation function*

$$\phi_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t + \tau)x^*(t)dt \quad (2.59)$$

and the *power-spectral density*

$$\Phi_{xx}(f) = \mathcal{F}[\phi_{xx}(\tau)]. \quad (2.60)$$

Note that we use similar notations to refer to the autocorrelation and spectral density of energy-type and power-type signals.
2.4.3 Random signals

When a signal \(x(t)\) is a sample realization of a random process \(X(t)\), the autocorrelation function, for a pair of time variables \(t\) and \(\tau\), is defined as

\[
\phi_{xx}(t + \tau, t) = E[x(t + \tau)x^*(t)] \tag{2.61}
\]

where \(E[\cdot]\) denotes the ensemble average over infinite number of realizations of \(X(t)\).

When a random process \(X(t)\) is stationary, the ensemble average (2.61) is independent of \(t\). In such a case, \(\phi_{xx}(t + \tau, t)\) is replaced by \(\phi_{xx}(\tau)\) and accordingly (2.61) is replaced by

\[
\phi_{xx}(\tau) = E[x(t + \tau)x^*(t)]. \tag{2.62}
\]

Moreover, when the random process \(X(t)\) satisfies certain conditions, the ensemble average (2.62) may be replaced by a time average such as (2.59) over one realization of \(X(t)\). In such a case, we say \(X(t)\) is an ergodic process.

When a signal is non-stationary, Wiener-Khinchin theorem suggests the following formula for computation of the power spectral density of \(X(t)\):

\[
\Phi_{xx}(f) = \mathcal{F}[\bar{\phi}_{xx}(\tau)] \tag{2.63}
\]

where

\[
\bar{\phi}_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \phi_{xx}(t + \tau, t) dt \tag{2.64}
\]

i.e., the time-average of \(\phi_{xx}(t + \tau, t)\).

It follows from (2.63) that

\[
\bar{\phi}_{xx}(\tau) = \mathcal{F}^{-1}[\Phi_{xx}(f)] = \int_{-\infty}^{\infty} \Phi_{xx}(f)e^{j2\pi f \tau} df. \tag{2.65}
\]

Letting \(\tau = 0\), this reduces to

\[
\bar{\phi}_{xx}(0) = \int_{-\infty}^{\infty} \Phi_{xx}(f) df. \tag{2.66}
\]

Also, using (2.61) and (2.64), we get

\[
\bar{\phi}_{xx}(0) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[|x(t)|^2] dt. \tag{2.67}
\]

Combining (2.66) and (2.67), we obtain

\[
\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[|x(t)|^2] dt = \int_{-\infty}^{\infty} \Phi_{xx}(f) df. \tag{2.68}
\]

This which has similarity with the Rayleigh’s relation (2.30) shows that the average power of \(x(t)\) over time and its various realizations, i.e., its ensemble average, can be calculated by integrating its spectrum. Because of this similarity, we refer to (2.68) as Rayleigh’s relation for random processes.
An example of non-stationary signals

Most of the discussion throughout this text deals with signals that originate from digital data sequences. A realization of such signals finds the following form

\[x(t) = \sum_{n=-\infty}^{\infty} s[n]p(t - nT_b) \]

(2.69)

where \(s[n] \)'s are information symbols, \(p(t) \) is a pulse-shape, and \(T_b \) is the symbol/baud interval. Here, one finds that \(\phi_{xx}(t + \tau, t) \) is not independent of \(t \), thus, \(X(t) \) is non-stationary. However, \(\phi_{xx}(t + \tau, t) \) is periodic in \(t \) with a period of \(T_b \). Accordingly, \(X(t) \) is referred to as a cyclostationary process.

Here, we should use (2.63) to obtain the power spectral density of \(x(t) \).

Using the periodicity property of \(\phi_{xx}(t + \tau, t) \), we evaluate its mean over one period, viz.,

\[\bar{\phi}_{xx}(\tau) = \frac{1}{T_b} \int_{-T_b/2}^{T_b/2} \phi_{xx}(t + \tau, t) dt. \]

(2.70)

Substituting (2.69) in (2.61) and assuming that the pulse-shape \(p(t) \) is real-valued, we obtain

\[\phi_{xx}(t + \tau, t) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \phi_{ss}[n+m, n]p(t+\tau-(n+m)T_b)p(t-nT_b) \]

(2.71)

where

\[\phi_{ss}[n+m, n] = E[s[n+m]s^*[n]] \]

(2.72)

is the autocorrelation function of the sequence \(s[n] \). Assuming that \(s[n] \) is stationary, thus \(\phi_{ss}[n+m, n] \) is independent of \(n \) and hence may be written as \(\phi_{ss}[m] \), (2.71) reduces to

\[\phi_{xx}(t + \tau, t) = \sum_{m=-\infty}^{\infty} \phi_{ss}[m] \sum_{n=-\infty}^{\infty} p(t+\tau-(n+m)T_b)p(t-nT_b). \]

(2.73)

Next, substituting (2.73) in (2.70), we get

\[
\begin{align*}
\bar{\phi}_{xx}(\tau) &= \sum_{m=-\infty}^{\infty} \phi_{ss}[m] \sum_{n=-\infty}^{\infty} \frac{1}{T_b} \int_{-T_b/2}^{T_b/2} p(t+\tau-(n+m)T_b)p(t-nT_b)dt \\
&= \sum_{m=-\infty}^{\infty} \phi_{ss}[m] \sum_{n=-\infty}^{\infty} \frac{1}{T_b} \int_{nT_b-T_b/2}^{nT_b+T_b/2} p(t+\tau-mT_b)p(t)dt \\
&= \frac{1}{T_b} \sum_{m=-\infty}^{\infty} \phi_{ss}[m] \int_{-\infty}^{\infty} p(t+\tau-mT_b)p(t)dt \\
&= \frac{1}{T_b} \sum_{m=-\infty}^{\infty} \phi_{ss}[m] \phi_{pp}(\tau-mT_b).
\end{align*}
\]

(2.74)
Taking Fourier transform on both sides of (2.74), we obtain

\[
\Phi_{xx}(f) = \int_{-\infty}^{\infty} \overline{\phi_{xx}(\tau)} e^{-j2\pi f \tau} d\tau
\]

\[
= \frac{1}{T_b} \sum_{m=-\infty}^{\infty} \phi_{ss}[m] \int_{-\infty}^{\infty} \phi_{pp}(\tau - m T_b) e^{-j2\pi f \tau} d\tau
\]

\[
= \frac{1}{T_b} \sum_{m=-\infty}^{\infty} \phi_{ss}[m] e^{-j2\pi f m T_b} \int_{-\infty}^{\infty} \phi_{pp}(\tau - m T_b) e^{-j2\pi f (\tau - m T_b)} d\tau
\]

\[
= \frac{1}{T_b} \Phi_{ss}(e^{j2\pi f}) |P(f)|^2
\]

(2.75)

where \(P(f) = \mathcal{F}[p(t)] \) and

\[
\Phi_{ss}(e^{j2\pi f}) = \sum_{m=-\infty}^{\infty} \phi_{ss}[m] e^{-j2\pi f m T_b}.
\]

(2.76)

When the data symbols \(s[n] \) are independent of one another, have zero mean and variance of \(\sigma_s^2 = E[|s[n]|^2] \),

\[
\phi_{ss}[m] = \begin{cases}
\sigma_s^2, & m = 0 \\
0, & m \neq 0.
\end{cases}
\]

(2.77)

Using (2.77), (2.76) reduces to

\[
\Phi_{ss}(e^{j2\pi f}) = \sigma_s^2.
\]

(2.78)

Substituting (2.78) in (2.75), we get

\[
\Phi_{xx}(f) = \frac{\sigma_s^2}{T_b} |P(f)|^2.
\]

(2.79)

Example 2.4:

In (2.69), let \(s[n] \) be a sequence of independent random binary numbers taking values of +1 and -1 with the same probabilities, and \(p(t) = \Pi(t/T_b) \). Find the power spectral density \(\Phi_{xx}(f) \).

Solution:

Since \(P(f) = \mathcal{F}[\Pi(t/T_b)] = T_b \text{sinc}(f T_b) \) and \(\sigma_s^2 = 1 \), we have

\[
\Phi_{xx}(f) = \frac{1}{T_b} (T_b \text{sinc}(f T_b))^2 = T_b \text{sinc}^2(f T_b).
\]
2.4.4 Passing a random signal through an LTI system

When a signal passes through an LTI system with the transfer function $H(f)$, each frequency component in the signal is affected by an amplifying/attenuating gain which is determined by the value of $H(f)$ at the corresponding frequency. Accordingly, the energy/power spectral density of the system output, $y(t)$, is obtained as

$$\Phi_{yy}(f) = \Phi_{xx}(f) |H(f)|^2.$$ \hspace{1cm} (2.80)

2.5 Problems

1. Find the exponential Fourier series and the trigonometric Fourier series of the following periodic functions.

 (a) $x_1(t) = \sum_{n=-\infty}^{\infty} \Pi \left(\frac{t - 5n}{2} \right)$.

 (b) $x_2(t) = \sum_{n=-\infty}^{\infty} \Lambda \left(\frac{t - 5n}{2} \right)$.

2. Using the trigonometric Fourier series derived in Problem 1, develop a computer program (MATLAB is our preferred choice) to confirm the correctness of the series.

3. Using the tabulated Fourier transform pairs in Table 2.1 and the Fourier transform properties find the Fourier transforms of:

 (a) $x_1(t) = \Pi \left(\frac{t}{2} \right)$.

 (b) $x_2(t) = \Pi \left(\frac{t - 1}{2} \right)$.

 (c) $x_3(t) = \text{sinc}(2(t + 3))$.

 (d) $x_4(t) = t^2 e^{-3t} u(t)$.

 (e) $x_5(t) = \cos(2\pi t)$.

4. (a) Using the results in line 3 of Table 2.1, find the Fourier transform of $x(t) = \delta(t - t_0) + \delta(t + t_0)$.

 (b) Using the result of Part (a) and the duality property, prove line 5 of Table 2.1.

5. Using the result of line 4 of Table 2.1, prove lines 5 and 6 of the same table.

6. Prove the identity (2.18).
7. Prove line 7 of Table 2.1 and explain why the condition $\alpha > 0$ is required. Also, show that when $\alpha > 0$, \[\frac{1}{\alpha - j2\pi f} = \mathcal{F}[e^{\alpha t}u(-t)]. \]

8. Using the result of Problem 7, prove line 9 of Table 2.1.

9. Apply the duality property of the Fourier transform to obtain the following results of Table 2.1.

 (a) Line 4 from line 3.
 (b) Line 14 from line 13.
 (c) Line 16 from line 15.

10. Using line 12 of Table 2.1 and the duality property, find the Fourier transform of $x(t) = \frac{1}{t}$.

11. Consider the energy signal $x(t) = \Pi(t)$. Find the energy spectral density of $x(t)$ using (2.55) and (2.57) and show that both lead to the same result.

12. Consider the baseband communication channel shown in Figure 2.5, where $s[n]$ is a sequence of transmitted symbols with

\[\phi_{ss}[m] = \begin{cases} \sigma_s^2, & m = 0 \\ 0, & m \neq 0 \end{cases} \]

$p(t)$ is the impulse response of the transmit filter, and $c(t)$ is the channel impulse response. Find the power spectral density of the received signal $y(t)$, when

 (a) $c(t) = \delta(t)$ (ideal channel).
 (b) $c(t) = a_0\delta(t-\tau_0) + a_1\delta(t-\tau_1)$ (a 2-path channel).

\[s(t) = \sum_{n=-\infty}^{\infty} s[n]\delta(t-nT_b) \]

\[p(t) \quad x(t) \quad c(t) \quad y(t) \]

Figure 2.5: A baseband communication channel.
Chapter 3

Digital Transmission Systems

This chapter is devoted to a review of digital transmission systems. Several aspects of digital transmission through band-limited channels are discussed. We begin with introducing the concept of digital pulse amplitude modulation (PAM) and the role of pulse-shaping in limiting the bandwidth of PAM signals. We also discuss the problem of joint design of transmitter and receiver filters for optimum detection. In later sections of the chapter, various carrier modulations are reviewed. The chapter ends with a discussion of baseband equivalent of passband channels.

3.1 Pulse Amplitude Modulation

In baseband digital PAM, a sequence of (coded) information bits is first partitioned into blocks of \(M \) bits. For example, when \(M = 2 \), the sequence 1, 0, 1, 1, 0, 0, 1, 1, 0 is partitioned as \{1,0\}, \{1,1\}, \{0,1\}, \{0,0\}, \{1,1\}, \{1,0\}. Then, each group is mapped to a symbol \(s[n] \) whose amplitude is determined by the bits in the group. In the latter example, since two bits can take four different combinations, the data symbols will have four different amplitudes. Table 3.1 presents two possible mappings of a pair of bits to four levels of PAM symbols. In the direct mapping, the ordered pairs \{0,0\}, \{0,1\}, \{1,0\} and \{1,1\} are mapped to the amplitude levels \(-3\), \(-1\), \(+1\) and \(+3\), respectively. In the Gray mapping, on the other hand, the mapping is done so that there is only one bit change in going from each PAM symbol to one of its adjacent neighbors. Since most of the errors caused by noise are likely due to detection of an adjacent symbol in place of the actual transmitted symbol, Gray mapping minimizes the bit-error-rate (BER) of the system.

Mathematically, a PAM signal at the output of the transmitter has the
Table 3.1: Two possible mapping of a pair of bits to PAM symbols.

<table>
<thead>
<tr>
<th></th>
<th>Direct mapping</th>
<th>Gray mapping</th>
<th>PAM symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>−3</td>
</tr>
<tr>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>−1</td>
</tr>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,1</td>
<td>+1</td>
</tr>
<tr>
<td>1,1</td>
<td>1,0</td>
<td>1,0</td>
<td>+3</td>
</tr>
</tbody>
</table>

form

\[x(t) = \sum_{n=-\infty}^{\infty} s[n]p(t - nT_b) \]

(3.1)

where \(s[n] \) are PAM symbols, \(T_b \) is the symbol/baud duration, and \(p(t) \) is the symbol pulse-shape. Figure 3.1 presents a block schematic that provides an instructive view of (3.1). Here, the data source is modeled as a sequence of impulses whose amplitudes are determined by the PAM symbols, \(s[n] \). The symbol pulse-shape \(p(t) \) is the impulse response of an LTI system that takes \(s(t) \) as its input and generates \(x(t) \) at its output.

\[s(t) = \sum_{n=-\infty}^{\infty} s[n]\delta(t - nT_b) \rightarrow p(t) \rightarrow x(t) \]

Figure 3.1: Generation of a PAM signal.

A naive choice for \(p(t) \) is a rectangular pulse with a width of \(T_b \) and height of one, i.e., \(p(t) = \Pi(t/T_b) \). Figure 3.2 presents an example of the transmit signal \(x(t) \) when \(p(t) = \Pi(t/T_b) \). In practice, the pulse-shape \(p(t) = \Pi(t/T_b) \) is non-attractive because the presence of the sharp pulse edges in the time domain translate to an excessively wide bandwidth in the frequency domain. This point can be seen easily by evaluating the Fourier transform of \(x(t) \). When data symbols \(s[n] \) are statistically independent, the power spectrum of \(s(t) \) is given by

\[\Phi_{ss}(f) = \frac{\sigma_s^2}{T_b} \]

(3.2)

Hence, the power spectrum of \(x(t) \) is obtained as (see (2.79))

\[\Phi_{xx}(f) = \frac{\sigma_s^2}{T_b} |P(f)|^2 \]

(3.3)

where \(P(f) \) is the Fourier transform of \(p(t) \). Since \(p(t) = \Pi(t/T_b) \) has the Fourier transform \(P(f) = T_b \text{sinc}(fT_b) \) (this can be easily shown by
recalling line 13 of Table 2.1 and using the time-scaling property of the Fourier transform), from (3.3), we obtain

$$\Phi_{xx}(f) = \sigma^2_s T_b \text{sinc}^2(fT_b) \quad (3.4)$$

Figure 3.3 presents a plot of $10 \log_{10}(\Phi_{xx}(f)/\sigma^2_s T_b)$ as function of f. As seen, this spectrum has very poor side lobes that remain significant over a wide range of frequencies. The first side lobe is only 13 dB below the main lobe. The rest of the side lobes decrease in magnitude, but very gradually.

Figure 3.2: An example of a four level PAM signal with $p(t) = \Pi(t/T_b)$.

3.2 Pulse-Shape Designs for Band-Limited Communications

As noted above, the choice of $p(t) = \Pi(t/T_b)$ as a pulse-shape is inappropriate as it leads to a transmitted signal with a very wide bandwidth. In practice, the available frequency bands for transmission of digital data streams are limited and should be kept to a minimum. Therefore, pulse-shapes whose Fourier transforms have a narrow width are of interest and used in practice. The pulse-shape $p(t)$ should also have an additional property that is known as Nyquist criterion for intersymbol interference (ISI) free communication or, simply, Nyquist criterion. A pulse-shape $p(t)$ is called Nyquist, i.e., it satisfies the Nyquist criterion, if

$$p(nT_b) = \begin{cases}
 1, & n = 0 \\
 0, & \text{otherwise}.
\end{cases} \quad (3.5)$$

When this holds,

$$x(nT_b) = s[n]. \quad (3.6)$$
That is, the sampled values of $x(t)$ at the time instants $t = nT_b$ are the data symbols $s[n]$. In other words, a Nyquist pulse results in a transmit signal $x(t)$ that if sampled at proper time instants gives sample values that are equal to the transmitted symbols.

The Fourier transform of a Nyquist pulse $p(t)$ satisfies the following identity

$$
\sum_{k=-\infty}^{\infty} P\left(f - \frac{k}{T_b}\right) = T_b.
$$

(3.7)

This identity which may also be referred to as Nyquist criterion will be proved in the next chapter after stating the Nyquist sampling theorem (see Section 4.1.4). Figure 3.4 visualizes this property of the Nyquist pulse. Important to note here is that the mid-frequency point of the transition band of $P(f)$ is at $f = f_b/2$ and the response of $P(f)$ has odd symmetry with respect to the point $(f_b/2, T_b/2)$. Accordingly, $P(f)$ finds its minimum bandwidth when the width of its transition band approaches zero. Figure 3.5 presents the response of such a filter in both the frequency domain and the time domain. This is known as the brick-wall filter.

We note that for the brick-wall filter, $P(f) = T_b\Pi\left(\frac{f}{f_b}\right)$. Taking the inverse Fourier transform of $P(f)$, we obtain $p(t) = \text{sinc}(t/T_b)$. A plot of this pulse-shape is presented in Figure 3.5(b). As one would expect, $p(t)$ satisfies the Nyquist criterion (3.5), i.e., it is equal to 1 at $t = 0$ and finds value of zero at non-zero multiples of T_b.

Unfortunately, the zero width of the transition band of the brick-wall filter makes it unrealizable. Therefore, Nyquist filters with non-zero, but reasonable, transition bandwidth are designed and used in practice.
Figure 3.4: Visualization of the Nyquist pulse in the frequency domain.

Figure 3.5: The Nyquist pulse with minimum bandwidth. (a) The frequency domain response. (b) The time domain response.
3.2.1 Raised-cosine filter

A widely used Nyquist filter is the so called ‘raised-cosine filter’. In its non-causal form, the raised-cosine filter is characterized by the frequency response

\[
P_{rc}(f) = \begin{cases} T_b, & |f| \leq \frac{1-\alpha}{2T_b} \\ \frac{T_b}{2} \left\{ 1 + \cos \left[\frac{\pi T_b}{\alpha} \left(|f| - \frac{1-\alpha}{2T_b} \right) \right] \right\}, & \frac{1-\alpha}{2T_b} \leq |f| \leq \frac{1+\alpha}{2T_b} \\ 0, & \text{otherwise} \end{cases}
\]

(3.8)

where \(0 \leq \alpha \leq 1\), called roll-off factor, is a filter parameter that is related to its response as in Figure 3.6. As seen, the larger \(\alpha\), the wider is the bandwidth of the filter. For \(\alpha = 0\), the raised-cosine filter will become the brick-wall filter. The band edge \(1/2T_b = f_b/2\) is called Nyquist frequency.\(^1\) For \(\alpha > 0\), the bandwidth occupied by \(P_{rc}(f)\) beyond the Nyquist frequency is called excess bandwidth. The excess bandwidth is usually expressed as a percentage of the Nyquist frequency. For example, when \(\alpha = 0.25\), the excess bandwidth is 25%, and when \(\alpha = 1\), the excess bandwidth is 100%.

\[\text{Figure 3.6: Magnitude response of the raised-cosine filter.}\]

Taking the inverse Fourier transform of \(P_{rc}(f)\), the impulse response of the raised-cosine filter is obtained as

\[
p_{rc}(t) = \frac{\sin(\pi t/T_b) \cos(\pi \alpha t/T_b)}{\pi t/T_b} \frac{\cos(\pi \alpha t/T_b)}{1 - 4\alpha^2 t^2/T_b^2}.
\]

(3.9)

A method of obtaining (3.9) is outlined in Problem 6.

Figure 3.7 presents plots of \(p_{rc}(t)\) for values of \(\alpha = 0.25, 0.5, 0.75, \text{and } 1\). We note that as \(\alpha\) increases, the size of the side lobes of \(p_{rc}(t)\) decreases.

\(^1\)Note that the ‘Nyquist frequency’ that is defined here is different from the ‘Nyquist rate’ that is defined in the next chapter.
Clearly, having smaller side lobes is advantageous as it results in smaller level of ISI when the sampling time at the receiver is not perfect. However, this is at the cost of additional (excess) bandwidth.

Figure 3.7: Plots of impulse response $p_{rc}(t)$ of the raised-cosine filter for various choices of α.

Strictly speaking the raised-cosine pulse-shape has a duration that extends from $-\infty$ to $+\infty$. As will be discussed in the next chapter, in software radio, a preferred choice for implementation of the pulse-shaping filters is to use a finite impulse response (FIR) filter. In the next chapter, we discuss the impact of truncating the impulse response of the raised-cosine filter to a finite duration. We will also discuss direct methods of designing Nyquist FIR filters with band limited frequency response.

3.2.2 Matched filtering and square-root raised-cosine filter

In the above discussion, two unrealistic assumptions were made implicitly. Firstly, we ignored the fact that any signal that passes through a communication channel is subject to a distortion caused by the channel response. Secondly, additive noise exists in any communication channel and that further distorts the received signal. Figure 3.8 presents a communication system where the channel as well as the additive noise are included. Moreover, the pulse-shaping filter $p(t)$ is divided in to a transmit filter, $p_T(t)$, and a receive filter, $p_R(t)$. In the following, we ignore the channel and explore a
possible choice of the pair $p_T(t)$ and $p_R(t)$ that maximizes the SNR at the output of the receive filter $p_R(t)$.

$$s(t) = \sum_{n=-\infty}^{\infty} s[n]\delta(t-nT_b)$$

Figure 3.8: Block diagram of a baseband communication system.

In the absence of the channel, from Figure 3.8, we obtain

$$y(t) = s(t) \star (p_T(t) \star p_R(t)) + \nu(t) \star p_R(t). \quad (3.10)$$

Assuming that $p_T(t) \star p_R(t)$ is a Nyquist pulse (like $p(t)$, above) and $y(t)$ is sampled at the correct time instants, each sample of $y(t)$ will have contribution from one of the data symbols. We thus concentrate on transmission of one isolated symbol; say, we choose $s(t) = s_n(t) = s[n]\delta(t-nT_b)$. The received signal corresponding to this input is

$$y_n(t) = s[n]\delta(t-nT_b) \star (p_T(t) \star p_R(t)) + \nu(t) \star p_R(t). \quad (3.11)$$

Next, we note that

$$\mathcal{F}[s[n]\delta(t-nT_b) \star (p_T(t) \star p_R(t))] = s[n]P_T(f)P_R(f)e^{-j2\pi nT_b f}. \quad (3.12)$$

Evaluating the inverse Fourier transform of the right-hand side of (3.12) for the time instant $t = nT_b$, we obtain

$$y^s_n(nT_b) = \int_{-\infty}^{\infty} (s[n]P_T(f)P_R(f)e^{-j2\pi nT_b f}) e^{j2\pi nT_b f} df$$

$$= s[n] \int_{-\infty}^{\infty} P_T(f)P_R(f) df. \quad (3.13)$$

We also assume that $t = nT_b$ is the time instant when the Nyquist pulse-shape $\delta(t-nT_b) \star (p_T(t) \star p_R(t))$ is at its peak and thus $t = nT_b$ is the correct sampling time for $s[n]$. We thus argue that $y^s_n(nT_b)$ is the sampled signal value for $s[n]$, and accordingly at $t = nT_b$ the signal energy part of $y_n(t)$ is

$$|y^s_n(nT_b)|^2 = |s[n]|^2 \left| \int_{-\infty}^{\infty} P_T(f)P_R(f) df \right|^2. \quad (3.14)$$
On the other hand, assuming that $\nu(t)$ is a white noise with the power spectral density $N_0/2$, the power of the noise part of $y_n(t)$, for any t, is obtained as

$$E[|y_n^\nu(t)|^2] = \frac{N_0}{2} \int_{-\infty}^{\infty} |P_R(f)|^2 df.$$ \hspace{1cm} (3.15)

Using (3.14) and (3.15), the signal-to-noise ratio (SNR) of the received signal at the output of the receive filter $p_R(t)$, at $t = nT_b$, is obtained as

$$\text{SNR}_o = \frac{|y_n^s(nT_b)|^2}{E[|y_n^\nu(nT_b)|^2]} = \frac{|s[n]|^2}{\frac{N_0}{2} \int_{-\infty}^{\infty} |P_R(f)|^2 df}.$$ \hspace{1cm} (3.16)

We wish to find the pair of filters $P_T(f)$ and $P_R(f)$ such that SNR_o is maximized. For that we recall the Cauchy-Schwarz inequality, which states for any pair of energy functions $G_1(f)$ and $G_2(f)$

$$\left| \int_{-\infty}^{\infty} G_1(f)G_2(f) df \right|^2 \leq \int_{-\infty}^{\infty} |G_1(f)|^2 df \int_{-\infty}^{\infty} |G_2(f)|^2 df,$$

and the equality holds when $G_2(f) = CG_1^*(f)$ for any arbitrary constant C.

Using the Cauchy-Schwarz inequality in (3.16), one finds that to maximize the SNR at the output of the receiver filter, $P_T(f)$ and $P_R(f)$ should be chosen such that

$$P_R(f) = CP_T^*(f).$$ \hspace{1cm} (3.18)

The pair of filters that are related according to (3.18) are referred to as \textit{matched filters}.

Without any loss of generality, we let $C = 1$ and note that the identity $P_R(f) = P_T^*(f)$ implies that

$$\mathcal{F}[p_T(t) \ast p_R(t)] = |P_T(f)|^2 = |P_R(f)|^2.$$ \hspace{1cm} (3.19)

Since $p_T(t) \ast p_R(t)$ has to be a Nyquist pulse, if we choose it to be a raised-cosine pulse-shape, (3.19) implies that

$$|P_T(f)| = |P_R(f)| = \sqrt{P_{rc}(f)}.$$ \hspace{1cm} (3.20)

For obvious reasons, when $P_T(f)$ and $P_R(f)$ are chosen according to (3.20), they are called square-root raised-cosine filters. We use the subscript ‘sr-rc’ to refer to such filters, e.g., $|P_{sr-rc}(f)| = \sqrt{P_{rc}(f)}$.

Another interesting observation is made by noting that $P_R(f) = P_T^*(f)$ implies that $p_R(t) = p_T(-t)$ and

$$p(t) = p_T(t) \ast p_R(t) = \int_{-\infty}^{\infty} p_T(\tau)p_R(t-\tau)d\tau$$
\[
\int_{-\infty}^{\infty} p_T(\tau)p_R(\tau - t) d\tau = \int_{-\infty}^{\infty} p_T(\tau)p_T(\tau - t) d\tau.
\] (3.21)

The last line of (3.21) shows that the pulse-shape \(p(t) = p_T(t) \ast p_R(t) \) is the autocorrelation function of the transmit pulse-shape \(p_T(t) \). Moreover, the time where the matched filtered signal is sampled corresponds to the peak of \(p(t) \) and this happens at \(t = 0 \). In addition, at \(t = 0 \), we have

\[
p(0) = \int_{-\infty}^{\infty} p_T(\tau)p_R(0 - \tau) d\tau = \int_{-\infty}^{\infty} |p_T(\tau)|^2 d\tau.
\] (3.22)

This shows that at \(t = 0 \) the time reverse of \(p_R(t) \) matches \(p_T(t) \) perfectly and thus they correlate to a peak; another reason for the name matched filter.

Taking the inverse Fourier transform of \(P_{sr-rc}(f) \), the impulse response of the square-root raised-cosine filter is obtained as

\[
p_{sr-rc}(t) = \frac{1}{\sqrt{T_b}} \sin \left(\frac{(1 - \alpha)\pi t}{T_b} \right) + \frac{4\alpha t}{T_b} \cos \left(\frac{(1 + \alpha)\pi t}{T_b} \right) \frac{\pi t}{T_b} \left(1 - \frac{4\alpha t}{T_b} \right)^2.
\] (3.23)

Figure 3.9 presents a set of plots of square-root raised-cosine pulse-shapes for various choices of the parameter \(\alpha \). We note that unlike the raised-cosine pulse-shapes which had regular zero-crossings at the multiples of \(T_b \), the square-root raised-cosine pulse-shapes have no such regular zero-crossings.

3.2.3 Causality

In the above, for the simplicity of discussion, the raised-cosine filter \(P_{rc}(f) \) as well as the square-root raised-cosine filter \(P_{sr-rc}(f) \) were defined to be zero-phase. As a consequence, the impulse responses \(p_{rc}(t) \) and \(p_{sr-rc}(t) \) are found to be non-causal, i.e., they are non-zero prior to \(t = 0 \). Such filters are clearly not realizable. To obtain realizable filters, \(p_{rc}(t) \) and \(p_{sr-rc}(t) \) must be truncated to a finite duration and shifted to right so that they begin from or after \(t = 0 \). The time shift of the impulse responses do not affect the Nyquist property of the filters, though, it delays the filters outputs. However, the truncation of the impulse responses affects the responses of the filters. In particular, \(P_T(f) \) and \(P_R(f) \) will no longer be zero for \(f > \frac{1+\alpha}{2T_b} \). Moreover, \(p(t) = p_T(t) \ast p_R(t) \) will satisfy the Nyquist criterion only approximately. In the next chapter, filter design techniques that aim at maximizing the stopband attenuation while the Nyquist condition is perfectly satisfied will be introduced.
3.3 Modulation Techniques

In the baseband digital PAM that was introduced in Section 3.1, digital information is transmitted through a channel that is centered around \(f = 0 \). However, most communication channels only allow transmission of signals over some passbands. For example, radio propagation through wireless channels can only be established over frequency bands that are in the Mega or Giga Hertz range. Hence, a baseband signal has to be shifted to the desired passband before transmission. At the receiver, on the other hand, the received signal should be shifted back to the baseband before extracting the transmitted information. The processes of shifting a baseband signal to passband and vice versa are called modulation and demodulation, respectively.

In this section, we review three modulation methods: (i) carrier-amplitude modulation; (ii) carrier-phase modulation; and (iii) quadrature amplitude modulation. We also show that the first two methods can be thought of as special cases of the third method and thus put more emphasis on the latter method.
3.3.1 Carrier-amplitude modulation

Consider the baseband signal

$$x(t) = \sum_{n=-\infty}^{\infty} s[n]p_T(t - nT_b)$$ \hspace{1cm} (3.24)

and note that it can be written as

$$x(t) = \sum_{n=-\infty}^{\infty} x_n(t)$$ \hspace{1cm} (3.25)

where

$$x_n(t) = s[n]p_T(t - nT_b)$$ \hspace{1cm} (3.26)

is the nth component of $x(t)$ corresponding to the data symbol $s[n]$. The spectrum of $x_n(t)$ is thus obtained as

$$|X_n(f)| = |s[n]| \cdot |P_T(f)|.$$ \hspace{1cm} (3.27)

Figure 3.10(a) presents a plot of the spectrum of $x_n(t)$ which is assumed to be contained within the frequency range $-B \leq f \leq B$.

The carrier-amplitude modulated (AM) of $x(t)$ is obtained as in Figure 3.11 by multiplying/modulating the carrier wave $\cos(2\pi f_c t)$ with the baseband signal $x(t)$, viz.,

$$x_{AM} = x(t)\cos(2\pi f_c t).$$ \hspace{1cm} (3.28)

Accordingly, the nth component of the modulated signal is

$$x_{AM,n}(t) = x_n(t)\cos(2\pi f_c t).$$ \hspace{1cm} (3.29)

Recalling (2.23), the spectrum of $x_{AM,n}(t)$ is obtained as

$$|X_{AM,n}(f)| = \frac{|s[n]|}{2} |P_T(f - f_c)| + |P_T(f + f_c)|.$$ \hspace{1cm} (3.30)

This which clearly shows a shift of the spectrum to around $\pm f_c$ is presented in Figure 3.10(b).

Assuming that the channel has a flat gain, the received signal may be written as

$$y_{AM}(t) = Ax(t)\cos(2\pi f_c t + \phi) + \nu(t)$$ \hspace{1cm} (3.31)

where A is the amplitude of the channel gain, ϕ is the carrier phase shift induced by the channel, and $\nu(t)$ is the channel noise.

To recover $x(t)$, $y_{AM}(t)$ is passed through a modulator circuit similar to the one in Figure 3.11. Ignoring the channel noise, the modulator output is

$$y_{AM}(t)\cos(2\pi f_c t + \phi) = A x(t) \cos^2(2\pi f_c t + \phi)$$

$$= \frac{A}{2} x(t) + \frac{A}{2} x(t) \cos(4\pi f_c t + 2\phi).$$ \hspace{1cm} (3.32)
Figure 3.10: Plots of spectra of (a) $x_n(t)$, (b) $x_{AM,n}(t)$, and (c) $x_{AM,n}(t)\cos(2\pi f_c t)$.

Figure 3.11: Amplitude modulation of a sinusoidal carrier by a baseband PAM signal.
Figure 3.10(c) depicts the result of this operation in the frequency domain. Clearly the second term on the right-hand side of (3.32) is \(x(t) \) modulated to the carrier frequency \(2f_c \). This can be removed by passing \(y_{AM}(t) \cos(2\pi f_c t + \phi) \) through a lowpass filter. By choosing the lowpass filter to be the matched filter \(p_R(t) = \frac{2}{T}p_T(-t) \), the filter output will satisfy the Nyquist condition and also maximizes the SNR.

Note that successful recovery of \(x(t) \) at the receiver requires the knowledge of the carrier frequency, \(f_c \), and the carrier phase, \(\phi \). The estimates of \(f_c \) and \(\phi \) are obtained from \(x_{AM}(t) \) using a phase-locked loop (PLL). Hence, the receiver for an AM signal has the structure shown in Figure 3.12. The subject of PLL is covered in Chapter 8.

![Figure 3.12: Demodulation of a carrier-amplitude modulated signal.](image)

3.3.2 Quadrature amplitude modulation

In quadrature amplitude modulation (QAM) two PAM signals are transmitted simultaneously over the same carrier/frequency band, by modulating \(\cos(2\pi f_c t) \) and \(\sin(2\pi f_c t) \). The terminology ‘quadrature’ refers to the fact that \(\cos(2\pi f_c t) \) and \(\sin(2\pi f_c t) \) are in the quadrature phase with respect to each other, i.e., have a phase difference of \(\frac{2\pi}{4} = \frac{\pi}{2} \). Separation of the two PAM signals at the receiver, as explained below, is possible because of the orthogonality of \(\cos(2\pi f_c t) \) and \(\sin(2\pi f_c t) \), i.e., since \(\int \sin(2\pi f_c t) \cos(2\pi f_c t) dt = 0 \).

A quadrature-amplitude-modulated signal has the form

\[
x_{QAM}(t) = x_R(t) \cos(2\pi f_c t) - x_1(t) \sin(2\pi f_c t)
\]

(3.33)

where \(x_R(t) \) and \(x_1(t) \) are the baseband PAM signals similar to \(x(t) \) in (3.24). Assuming the channel has a flat gain, as in the case of AM, the received signal is obtained as

\[
y_{QAM}(t) = Ax_R(t) \cos(2\pi f_c t + \phi) - Ax_1(t) \sin(2\pi f_c t + \phi) + \nu(t).
\]

(3.34)

Ignoring the channel noise, \(\nu(t) \), and observing the following equalities, one can easily see that \(x_R(t) \) and \(x_1(t) \) may be extracted from \(x_{QAM}(t) \), by
modulating $\cos(2\pi f_c t + \phi)$ and $-\sin(2\pi f_c t + \phi)$, respectively, with $x_{QAM}(t)$ and lowpass filtering the results:

$$y_{QAM}(t) \cos(2\pi f_c t + \phi) = \frac{A}{2} x_R(t) + \frac{A}{2} x_R(t) \cos(4\pi f_c t + 2\phi) - \frac{A}{2} x_1(t) \sin(4\pi f_c t + 2\phi)$$ \hspace{1cm} (3.35)

$$y_{QAM}(t) \times (-\sin(2\pi f_c t + \phi)) = \frac{A}{2} x_1(t) - \frac{A}{2} x_1(t) \cos(4\pi f_c t + 2\phi) - \frac{A}{2} x_R(t) \sin(4\pi f_c t + 2\phi).$$ \hspace{1cm} (3.36)

To summarize, the block diagrams of a QAM modulator and a QAM demodulator are shown in Figures 3.13 and 3.14, respectively.

Figure 3.13: QAM modulator.

Bandwidth efficiency

A key point that needs special attention is that both $x_{AM}(t)$ and $x_{QAM}(t)$ take up the same amount of bandwidth, assuming that the symbol rate in $x_R(t)$ and $x_1(t)$ of Figure 3.13 is the same as that in $x(t)$ of Figure 3.11. However, the rate of information transmission in QAM is twice as much as that of AM, obviously because each of $x_R(t)$ and $x_1(t)$ in (3.33) carry the same amount of information as $x(t)$ in (3.28). It is thus seen that from bandwidth point of view, QAM is twice more efficient than AM. On the other hand, since $x(t)$ is a real-valued signal, $X(f)$ possesses the conjugate symmetry property that is given in (2.21). One can take advantage of this symmetry of $X(f)$ and establish a transmission of $x(t)$ within half
of the bandwidth used by $x_{\text{AM}}(t)$, and thus achieve the same bandwidth efficiency as QAM. This concept is demonstrated in Figures 3.15(a), (b) and (c), where the positive and negative frequency portions of $X(f)$ are identified as lower and upper bands, they are separated and shifted to the carrier band for modulation, and later shifted back to the baseband for reconstruction of $x(t)$. This method that effectively transmits only one side of the spectrum $X(f)$ is called single-side band (SSB) modulation. On the same basis, the AM modulation that was introduced in Section 3.3.1 is called double-side band (DSB) modulation.

Although, SSB may have the same bandwidth efficiency as QAM, it is rarely used for digital data transmission. This is because the process of filtering one of the side-bands of the spectrum is rather expensive and thus makes the SSB modulator costly. In addition, perfect filtering is not possible. This, in practice, results in SSB signals whose bandwidth is more than one-half of that of QAM signals. Such signals are called vestigial-side band (VSB) modulated signals.

To summarize, because of the bandwidth inefficiency of DSB-AM and the complexity of implementation of SSB-AM, digital AM is rarely used. Hence, most of the digital transmission systems are QAM-based and in the rest of this book we limit our discussion to this type of systems.

QAM formulation based on complex signals

A convenient formulation of quadrature amplitude modulated signals is obtained through complex representation of the underlying signals. To begin with, the pair of PAM symbols $s_{R}[n]$ and $s_{I}[n]$ are combined in a complex-valued symbol

$$s[n] = s_{R}[n] + js_{I}[n]$$ \hspace{1cm} (3.37)
Figure 3.15: Single side band modulation. (a) Baseband spectrum. (b) Modulated spectrum. (c) Demodulated spectrum.
where \(s_R[n] \) and \(s_I[n] \) are real and imaginary parts of \(s[n] \), respectively. The corresponding band-limited baseband signal is thus obtained as

\[
x(t) = \sum_{n=-\infty}^{\infty} s[n] p_T(t - nT_b) = x_R(t) + jx_I(t).
\] (3.38)

The modulated signal \(x_{QAM}(t) \) is then constructed by modulating the complex carrier \(e^{j2\pi f_c t} \) and taking the real part of the result, viz.,

\[
x_{QAM}(t) = \Re\left[x(t)e^{j2\pi f_c t} \right] = x_R(t) \cos(2\pi f_c t) - x_I(t) \sin(2\pi f_c t).
\] (3.39)

Demodulation of \(x(t) \) to baseband can be established by modulating \(e^{-j2\pi f_c t} \) with \(x_{QAM}(t) \) and lowpass-filtering of the result. This is easily confirmed by noting that

\[
x_{QAM}(t) e^{-j2\pi f_c t} = \frac{1}{2} \left[x(t) e^{j2\pi f_c t} + x^*(t) e^{-j2\pi f_c t} \right].
\] (3.40)

Thus,

\[
x_{QAM}(t) e^{-j2\pi f_c t} = \frac{1}{2} \left[x(t) + x^*(t) e^{-j4\pi f_c t} \right].
\] (3.41)

and the second term on the right-hand side of (3.41) is removed by a lowpass filter.

In the light of the above formulation, it is common to represent the complex-valued QAM symbols in a complex plane. Two examples of QAM symbols (also, known as constellations) are presented in Figures 3.16(a) and (b). Figure 3.16(a) is a 4-QAM constellation where each symbol carries 2 bits of information. Figure 3.16(b), on the other hand, shows a 16-QAM constellation. In this case, each symbol carries 4 bits of information.

3.3.3 Carrier-phase modulation

In carrier-phase modulation (PM) the information symbols determine the phase of the carrier. A carrier-phase modulated signal thus finds the following form

\[
x_{PM}(t) = \sum_{n=-\infty}^{\infty} p_T(t - nT_b) \cos(2\pi f_c t + \theta_n)
\] (3.42)

where \(\theta_n \) are the information carrying phase angles. Expanding \(\cos(2\pi f_c t + \theta_n) \), (3.42) can be rearranged as

\[
x_{PM}(t) = x_R(t) \cos(2\pi f_c t) - x_I(t) \sin(2\pi f_c t)
\] (3.43)
where

\[x_R(t) = \sum_{n=-\infty}^{\infty} p_T(t - nT_b) \cos \theta_n \]

(3.44)

and

\[x_I(t) = \sum_{n=-\infty}^{\infty} p_T(t - nT_b) \sin \theta_n. \]

(3.45)

If we let \(\cos \theta_n = s_R[n] \) and \(\sin \theta_n = s_I[n] \), this, clearly, shows that PM may be thought as a special case of QAM where constellation points are on a circle, at the angles \(\theta_1, \theta_2, \cdots \). Hence, the modulator and demodulator block diagrams that were introduced in Figures 3.13 and 3.14 are applicable to PM as well. Figures 3.17(a), (b), (c) and (d) show examples of PM constellations for 2-ary, 4-ary, 8-ary and 16-ary signalling. Comparing Figures 3.16 and 3.17, it may be noted that 4-ary PM and 4-QAM have the same constellation. They are often referred to as quadrature phase-shift keying (QPSK). This is the name that we also use in the rest of this book.

In the case of the 2-ary PM, the angle \(\theta_n \) only takes values of 0 and \(\pi \). In this case, \(\sin \theta_n = 0 \), for any \(n \), and \(\cos \theta_n = \pm 1 \). Using these in (3.44) and (3.45), we get

\[x_R(t) = \sum_{n=-\infty}^{\infty} s[n] p_T(t - nT_b) \]

(3.46)
respectively. Using these, (3.43) reduces to the same form as (3.28). This shows that 2-ary PM is simply a 2-level/binary AM signal. The common term for 2-ary PM/AM signal is binary phase-shift keying (BPSK).

![Figure 3.17: Examples of constellations of phase modulators. (a) 2-ary PM or BPSK. (b) 4-ary PM or QPSK. (c) 8-ary PM. (d) 16-ary PM.](image)

It is also important to note that the number of bits carried by each symbol in 2-ary PM/BPSK is 1 bit, in 4-ary PM/QPSK is 2 bits, in 8-ary PM is 3 bits, and in 16-ary PM is 4 bits.

3.4 Binary to Symbol Mapping

One of the first tasks in any transmitter is to map the (coded) information bits to data symbols for transmission. Mapping is straightforward and is done as follows. Without any loss of generality, let us consider the case where data symbols are to be selected from a 16-QAM set. Since each 16-QAM symbol takes 16 different combinations, it can carry 4 bits of information. Accordingly, the sequence of information bits is first partitioned
to groups of 4 bits each, and each group is mapped to a 16-QAM symbol. Although any mapping that uniquely assigns each combination of 4 bits to one of the 16 possible choices of the QAM symbols may be acceptable, it is more common to use Gray mapping, where mapping is done such that adjacent symbols differ by only one bit; also, see the discussion in Section 3.1.

Figure 3.18 shows a possible Gray mapping of 4 binary bits to a 16-QAM constellation. One simple method of thinking about this mapping is to imagine that the first two bits determine $s_R[n]$ and the other two bits determine $s_I[n]$, and for mappings along $s_R[n]$ and $s_I[n]$ axes we have used Table 3.1.

![Gray mapping of 4 binary bits to a 16-QAM constellation](image)

Figure 3.18: A Gray mapping of 4 binary bits to a 16-QAM constellation.

3.5 Differential Encoding and Decoding

In practice, a receiver is usually trained to match its carrier phase and frequency with those of the received signal for a (near) perfect demodulation. Furthermore, pilot symbols that are known to the receiver are often transmitted at the beginning of each communication session for the receiver training. However, there are also situations where the receiver has to rely only on the statistics of the incoming signal and use such information to extract the carrier phase and frequency. As we will see in later chapters of this book, carrier frequency can always be found without any problem. However, there will always be some ambiguity in phase. For instance, if the transmit symbols belong to QPSK constellation, for an integer k, a change
of \(k\pi/2 \) in the carrier phase has no noticeable effect on the observed constellation points. This can be easily seen if we refer to Figure 3.16(b) and note that any rotation of \(k\pi/2 \) has no impact on the constellation. Hence, unless the receiver knows exactly what has been transmitted, it will remain ambiguous about the phase by some integer factor of \(\pi/2 \). Clearly, this conclusion remains the same for other square QAM constellations as well, e.g., 16-QAM. For PM symbols, the phase ambiguity will depend on the constellation size. If data symbols belong to an \(M \)-ary PM, the receiver will remain ambiguous to any phase change/rotation of \(2\pi/M \).

The problem of the phase ambiguity can be solved using the method of differential encoding and decoding. Since this method works best with the phase modulated signals and can be best explained in this context, we continue our discussion while limiting ourselves to this type of modulation. Extension of the results to a special class of QAM symbols is left as problems at the end of the chapter; see Problem 8.

In the conventional PM, information bits are coded as the phase angle \(\theta_n \) of a carrier as in (3.42). The receiver, using a demodulator similar to the one in Figure 3.14, extracts an estimate of
\[
s[n] = \cos \theta_n + j \sin \theta_n = e^{j\theta_n},
\]
from which it obtains the associated information bits. In the differential PM, the information symbols are encoded as follows. The carrier phase in the time interval corresponding to the \((n-1)\)st symbol is set equal to \(\theta_{n-1} \) and in the next time interval is shifted to \(\theta_n \), and \(\theta_n \) is selected such that \(\theta_n - \theta_{n-1} \) be the phase angle representing the transmitted information. With this arrangement, the receiver will remain insensitive to any carrier phase ambiguity. This can be explained as follows. Let the carrier phase error be \(\phi \). In that case, the receiver, at the time instant \(n-1 \), detects the phase angle \(\phi + \theta_{n-1} \), and at the time instant \(n \), detects the phase angle \(\phi + \theta_n \), and hence recovers the correct phase difference \((\phi + \theta_n) - (\phi + \theta_{n-1}) = \theta_n - \theta_{n-1} \).

3.6 Baseband Equivalent of a Passband Channel

Following (3.40) and (3.41), Figure 3.19 presents the block diagram of a digital QAM communication system. In the study of communication systems, we are often interested in the compound effect of the transmit filter \(p_T(t) \), the channel \(c(t) \), and the receive filter \(p_R(t) \), i.e., the channel model between the input \(s(t) \) and the output \(y(t) \). Since both \(s(t) \) and \(y(t) \) are baseband signals, but the channel is passband, this channel model is called the baseband equivalent of the passband channel. Moreover, since \(s(t) \) and \(y(t) \) are complex signals, the impulse response of the baseband equivalent of the passband channel, in general, is complex-valued.

The transfer function between \(s(t) \) and \(x_{QAM}(t) \) is obtained as follows. Without any loss of generality, we let \(s(t) = \delta(t) \). The Fourier transform of
Sec. 3.6 Baseband Equivalent of Passband Channels

\[x_{\text{QAM}}(t) \text{ is thus obtained as} \]
\[X_{\text{QAM}}(f) = \frac{1}{2} [P_T(f - f_c) + P_T(f + f_c)]. \quad (3.48) \]

The Fourier transform of the received signal (prior to demodulation) is \(X_{\text{QAM}}(f) \) times the channel transfer function, \(C(f) = \mathcal{F}[c(t)], \) viz.,
\[X'_{\text{QAM}}(f) = \frac{1}{2} [P_T(f - f_c)C(f) + P_T(f + f_c)C(f)]. \quad (3.49) \]

Next, using (2.22), we note that
\[\mathcal{F} [x'_{\text{QAM}}(t)e^{-j2\pi f_c t}] = X'_{\text{QAM}}(f + f_c) \]
\[= \frac{1}{2} [P_T(f)C(f + f_c) + P_T(f + 2f_c)C(f + f_c)]. \quad (3.50) \]

Since the second term on the right-hand side of (3.50) is centered around \(-2f_c\), it will be removed by the (lowpass) receive filter \(p_R(t) \). The Fourier transform of \(y(t) \) is thus obtained as \(Y(f) = \frac{1}{2} P_T(f)C(f + f_c)P_R(f) \). On the other hand, since the input was an impulse, \(Y(f) \) is also the desired transfer function and thus the baseband equivalent of the passband channel has the transfer function
\[C_{\text{BB}}(f) = \frac{1}{2} P(f)C(f + f_c) \quad (3.51) \]

where \(P(f) = P_T(f)P_R(f) \). In the rest of this book, for mathematical simplicity, we ignore the coefficient \(\frac{1}{2} \) on the right-hand side of (3.51) and define the baseband equivalent of the passband channel as
\[C_{\text{BB}}(f) = P(f)C(f + f_c). \quad (3.52) \]

Finally, we obtain the impulse response of the channel between \(s(t) \) and \(y(t) \) as
\[c_{\text{BB}}(t) = \mathcal{F}^{-1}[C_{\text{BB}}(f)]. \quad (3.53) \]
Example 3.1:

A multipath passband communication channel that operates at the carrier frequency 100 MHz has two paths with the gains of 1 and 0.5 and the delays of 0 and 7.5 µs, respectively. The matched filters at the transmitter and receiver sides are square-root raised-cosine pulse-shapes designed for $T_b = 10$ µs and $\alpha = 0.5$.

(a) Derive an equation for the equivalent baseband channel transfer function $C_{BB}(f)$.

(b) Find $C_{BB}(f)$ if the delay of the second path changes to 7.5025 µs.

(c) In both cases draw the plots of the magnitude and phase response of $C_{BB}(f)$.

(d) In both cases obtain and plot the impulse response of the baseband equivalent of the passband channel.

Solution:

(a) The impulse response of the channel is $c(t) = \delta(t) + 0.5\delta(t - 7.5)$.

Hence, $C(f) = 1 + 0.5e^{-j2\pi f \times 7.5} = 1 + 0.5e^{-j15\pi f}$. Substituting this in (3.52), we obtain

$$C_{BB}(f) = \left(1 + 0.5e^{-j15\pi (f + f_c)}\right)P(f) = \left(1 + 0.5e^{-j15\pi f}\right)P(f)$$

where $P(f)$ is the raised-cosine filter (3.8) with $T_b = 10$ µs and $\alpha = 0.5$.

(b) Following the same line of derivation as in Part (a), in this case, we obtain

$$C_{BB}(f) = \left(1 + 0.5e^{-j0.5\pi e^{-j15.005\pi f}}\right)P(f)$$

$$= \left(1 - 0.5je^{-j15.005\pi f}\right)P(f).$$

(c) The plots are shown in Figure 3.20. As seen, a small change in one of the path delays can significantly affect the baseband equivalent of the channel response.

(d) Taking the inverse Fourier transforms of the results in Parts (a) and (b), we obtain:

for case (a), $c_{BB}(t) = p(t) + 0.5p(t - 7.5)$

and

for case (b), $c_{BB}(t) = p(t) - 0.5jp(t - 7.5025)$.

These are plotted in Figure 3.21. Interesting to note here is that while the case (a) leads to a real-valued impulse response, the case (b) has a complex-valued impulse response. As noted above $c_{BB}(t)$, in general, is expected to be a complex-valued time response.

Generalizing the above example, if the channel is a multipath channel that is characterized by the impulse response

$$c(t) = \sum_{i=0}^{L-1} a_i \delta(t - \tau_i)$$ \hspace{1cm} (3.54)
Figure 3.20: Magnitude and phase responses of the baseband equivalent channels of Example 3.1.
Figure 3.21: Impulse responses of the baseband equivalent channels of Example 3.1.
where L is the number of paths, and a_i and τ_i are the ith path gain and delay, the baseband equivalent of the channel will be

$$c_{\text{BB}}(t) = \sum_{i=0}^{L-1} a_i e^{-j2\pi f_c \tau_i} p(t - \tau_i).$$

(3.55)

3.7 Problems

1. A radio channel with a bandwidth of 2 MHz is available for transmission. Using 16-QAM modulation, we wish to transmit 6 Mb/s of coded information through this channel. Find the maximum roll-off factor that may be used for pulse-shaping in this system.

2. A communication system with a bandwidth of 6 MHz uses raised-cosine pulse-shapes with a roll-off factor $\alpha = 0.5$. For each of the following modulation methods find the system bit rate: (a) BPSK. (b) QPSK. (c) 16-QAM. (d) 64-QAM.

3. (a) For the 4-QAM symbols presented in Figure 3.16(a) suggest a method of Gray mapping, i.e., assigning 2 bits to each point of the constellation such that each pair of neighbor points differ in at most one bit.

 (b) Repeat (a) for the 16-QAM symbols presented in Figure 3.16(b).

 (c) Repeat (a) for the PSK symbols presented in Figure 3.17(b) and (c).

4. Consider the AM modulator shown in Figure 3.22(a). Here, the block $\Re[\cdot]$ means taking the real part of the input. Assuming that $s(t)$ is a real-valued signal with the amplitude and phase spectra shown in Figure 3.22(b), find and plot:

 (a) The amplitude and phase spectra of $x(t)$.

 (b) The amplitude and phase spectra of $y(t)$.

 (c) By comparing the results of (a) and (b) show that

 $$F[\Re[x(t)]] = \frac{1}{2} X(f) + \frac{1}{2} X^*(-f).$$

5. This problem guides you to develop a SSB modulator using a special signal processing block called Hilbert transformer. Hilbert transformer is an LTI system which is characterized by the transfer function

 $$H_{\text{Hilbert}}(f) = -j \text{sgn}(f)$$

where

$$\text{sgn}(f) = \left\{ \begin{array}{ll} +1 & f \geq 0 \\ -1 & f < 0 \end{array} \right.$$
Figure 3.22: (a) An AM modulator. (b) The amplitude and phase spectra of the input $s(t)$

In the time domain, Hilbert transformer is characterized by the impulse response $h_{\text{Hilbert}}(t) = \mathcal{F}^{-1}[H_{\text{Hilbert}}(f)] = \frac{1}{\pi t}$ which is obtained by using line 12 of Table 2.1 and invoking the duality property of the Fourier transform.

Now consider the system shown in Figure 3.23, where $\hat{p}_T(t)$ is the Hilbert transform of $p_T(t)$.

(a) By taking $s(t) = s[0]\delta(t)$ (i.e., a single symbol) and careful examination of the Fourier transform of $y(t)$, show that the system of Figure 3.23 is an SSB modulator.

(b) By using the results of (a), argue that the system of Figure 3.23 is also an SSB modulator for the more general case where $s(t) = \sum_{n=-\infty}^{\infty} s[n]\delta(t - nT_b)$.

(c) Assuming that $p_T(t)$ is a square-root raised-cosine pulse with the roll-off factor $\alpha = 0.5$, present a plot of $p_T(t)$ and a plot of $\hat{p}_T(t) = p_T(t) * \frac{1}{\pi t}$. You may use MATLAB to perform the convolution $p_T(t) * \frac{1}{\pi t}$. Discuss any potential problem that you may see with regard to the implementation of the SSB modulator of Figure 3.23.
6. (a) Present the plots of the frequency domain functions $\Pi(\frac{fT_b}{2\alpha})$ and $G(f) = \frac{\pi T_b}{2\alpha} \cos(\pi fT_b/\alpha)\Pi(\frac{fT_b}{\alpha})$, and by convolving them show that $P_{rc}(f) = T_b\Pi(\frac{fT_b}{\alpha}) \star G(f)$.

(b) Using the result of Part (a), confirm the correctness of (3.9).

7. (a) Starting with (3.8) and recalling the identity $P_{sr-rc}(f) = \sqrt{P_{rc}(f)}$, show that

\[
P_{rc}(f) = \begin{cases} \sqrt{T_b}, & |f| \leq \frac{1-\alpha}{2T_b} \\ \sqrt{T_b} \cos \left[\frac{\pi T_b}{2\alpha} \left(|f| - \frac{1-\alpha}{2T_b} \right) \right], & \frac{1-\alpha}{2T_b} \leq |f| \leq \frac{1+\alpha}{2T_b} \\ 0, & \text{otherwise} \end{cases}
\]

(b) By taking the inverse Fourier transform of the result of Part (a), confirm the correctness of (3.23).

8. The discussion on differential encoding/decoding in Section 3.5 was limited to phase modulation. In this problem, we extend the idea to PAM as well as QAM systems.

(a) Consider the case where the transmitted information is mapped in the following manner. The transmitted baseband signal is a PAM signal that can take two possible levels a and b, both positive numbers. If the current information bit is 0, the current level of PAM signal remains the same for the next symbol period, i.e., there will be no level transition. On the other hand, if the current information bit is 1 the PAM signal level changes to b, if the current level is a, or vice versa. For this transmitter, suggest a receiver system.

Hint: Think of a rectifier followed by a lowpass filter and add the rest.

(b) Star QAM (SQAM) is a special QAM that allows differential encoding and decoding. Figure 3.24 presents the constellation of a 16-SQAM. Following the discussion in Section 3.5 and the
results of Part (a), development a method of differential encoding and decoding for the 16-SQAM.

Figure 3.24: A SQAM constellation.

9. A multipath passband communication channel that operates at the carrier frequency f_c MHz has two paths with the gains of a and b and the delays of 0 and τ μs, respectively. The matched filters at the transmitter and receiver sides are square-root raised-cosine pulse-shapes designed for symbol duration of T_b μs and the roll-off factor α.

(a) Derive a general equation for the equivalent baseband channel transfer function $C_{BB}(f)$ and its time domain equivalent, $c_{BB}(t)$.

(b) Evaluate and plot $c_{BB}(t)$ for the cases where:

 i. $T_b = 1$ μs, $\alpha = 0.25$, $f_c = 200$ MHz, $a = 1$, $b = 0.7$, and $\tau = 0.3$ μs.

 ii. $T_b = 1$ μs, $\alpha = 0.25$, $f_c = 200$ MHz, $a = 1$, $b = 0.7$, and $\tau = 0.302$ μs.

 iii. $T_b = 1$ μs, $\alpha = 0.25$, $f_c = 201$ MHz, $a = 1$, $b = 0.7$, and $\tau = 0.3$ μs.

 iv. $T_b = 1$ μs, $\alpha = 0.25$, $f_c = 200$ MHz, $a = 1$, $b = 0.7$, and $\tau = 0.012$ μs.

(c) Try some other examples of your own. Can you find a combination of a, b, f_c and τ that results in a very small $c_{BB}(t)$, for all values of t, i.e., a case where the channel is in a deep fade?
Index

A posteriori estimation error, 190, 196
A priori estimation error, 196
Acquisition period, 238
Adaptive bandpass filter, 250, 251
Adaptive line enhancer, 251
Adaptive systems
 performance function, 174
 ambiguity, 174
 maximum, 174
 minimum, 174
 periodic, 174
Affine projection LMS algorithm, 190
Aliasing, 58, 92
 antialiasing filter, 60
Analog-to-digital converter (ADC), 2
Antialiasing filter, 60, 92
Application layer, 3
Autocorrelation function, 21
Automatic gain control (AGC), 154, 173, 200–202
 cost function, 201
 update equation, 201, 202
Baseband equivalent of a passband channel, 239
Baseband equivalent of a passband channel, 48–50, 53, 169
 impact of frequency offset, 165–168, 170
 impulse response, 53, 166, 167
Binary phase shift keying (BPSK), 46, 53, 238
Binary PSK with a band-limited pulse-shape, 239
Binary PSK with a rectangular pulse-shape, 238
Binary to symbol mapping, 46
 Gray mapping, 27, 28, 47, 53, 403
Bit-to-symbol mapping, 6
Blind carrier tracking algorithms, OFDM, 375–385
 frequency domain approach, 376, 384
 time domain approach, 376, 384
Brick-wall filter, 30
Broadband channel, 409
Broadband communication, 359
Carrier acquisition and tracking, OFDM, 368–385
 carrier tracking loop, 368
 impact of carrier offset, 369
Carrier acquisition, OFDM, 365, 372
Carrier compensation, 255
Carrier offset compensation, OFDM, 374
Carrier offset, OFDM
 mathematical presentation, 369
Carrier recovery, 7, 173
 eight power rule, 246
 fourth power rule, 241, 245, 246
 numerical study, 242
Carrier tracking, 238, 256, 263
Carrier tracking loop, OFDM, 368
Carrier tracking, OFDM, 365, 373–385
 blind
 cost function, 384
frequency domain approach, 376, 384
LMS algorithm, 384
time domain approach, 376, 384
update equation, 384
pilot aided, 373
cost function, 374
gradient update, 374
LMS algorithm, 374
Cascaded integrator-comb (CIC) filters, 99
M-fold decimator, 134
M-fold interpolator, 131
computational complexity, 133
Cascaded integrator-comb (CIC) filters, 131
numerical stability, 133
simplified structure, 133
Channel coding, 2
Channel distortion, 75, 173
Channel estimation, 363
Channel identification, OFDM, 373
Channel induced carrier phase, 239
Circular convolution, 65
Circular shift, 64
Coarse carrier acquisition, 247
Coarse estimation of carrier offset, OFDM, 373
cognitive radios, 5, 409, 410
Comb filter, 378, 382
adaptation, 383
alignment with an OFDM signal spectrum, 382
carrier tracking algorithm, 383
frequency response, 381
transfer function, 382
zeros of, 383
Commutative rules, 110
Constellation
QAM, 6
Constellations
PM, 46
PSK, 6
QAM, 45
Star QAM (SQAM), 56
constellations
16-ary PM, 45, 46
2-ary PM, 45, 46
4-ary PM, 45, 46
8-ary PM, 45, 46
Continuous-Time PLL, 208–210, 212–214, 216–218
analysis, 209
bandwidth, 213
damping factor, 213
first-order, 210
lock range, 211
loop filter, 210
phase transfer function, 210
stability, 210
step response, 210
linear model, 209
lock range, 209
lock-in period, 215
loop filter, 208
natural frequency, 213
noise bandwidth, 214
nominal frequency, 208
phase detector, 208
phase error
steady state value of, 210
phase error transfer function, 210
phase noise, 209, 213
phase transfer function, 209
second-order, 211
bandwidth, 213
damping factor, 213
lock range, 218
lock-in period, 216
loop filter, 211
natural frequency, 213
noise bandwidth, 214
phase error transfer function, 212, 214
phase transfer function, 211–213
proportional integral (PI), 212
ramp response, 218
response to a carrier offset, 212
response to a phase step, 211
stability, 211
step response, 216
step response, 215
 transient period, 215
voltage-controlled oscillator (VCO), 208

Convolution, 15, 18
Convolutional codes, 2

Cosine modulated multitone (CMT), 412, 419–429
channel impact, 428
equalization, 428
even symmetric square-root Nyquist filter, 424
ICI, 425
ISI, 424
subcarrier spacing, 419
vestigial sideband (VSB) modulation, 412, 419, 420, 424, 425, 428

Costas loop, 256–259, 261
delay, 274, 275
dominant poles, 274
for AM signals, 257
cost function, 257
delay, 259
linear model, 259
for QAM signals, 260
Cross-QAM constellation, 268
Cyclic prefix (CP), 409
Cyclostationary, 23

Data aided carrier tracking method, 263, 265, 266
equalizer, 264
loop filter, 264
phase detector, 264
phase tracking loop, 264
PLL, 264
Data dependent phase, 237
Decimation filter, OFDM, 365, 385–389, 391–394
Decimator, 100
transform domain analysis, 100
Decision directed method, 264
Decision directed PLL, 265
Demodulation, 7, 37
DFT matrix, 358
Differential coding, 256
Differential decoding, 47
Differential encoding, 47
Digital filters, 75
filter specifications, 75
amplitude variations, 76
band edges, 76
transition band, 76
width of the transition band, 76
finite impulse response (FIR), 68, 174
infinite impulse response (IIR), 68, 174
Discrete Fourier transform (DFT), 61
derivation of, 62
properties of, 64
Discrete wavelet multitone (DWMT), 412
Discrete-time PLL, 218–222, 224
analysis, 219
control signal, 219
design steps, 223
first-order, 220
lock range, 221
loop filter, 220
noise bandwidth, 233
phase transfer function, 221
range of the loop gain, 221
response to a carrier offset, 221
response to a step phase, 221
stability, 221
linear model, 219
loop filter, 219
phase detector, 219
phase error, 220
 steady state value, 220
phase error transfer function, 220
phase transfer function, 219
second-order, 222
design equations, 224
design steps, 223
lock range, 234
loop filter, 222
phase error transfer function, 222
phase transfer function, 222
proportional integral (PI) loop filter, 222
response to a frequency offset, 222
response to a step phase, 222
steady state phase error, 222
step response, 225
step-size parameter, 219
voltage control oscillator (VCO), 219

Fast Fourier transform (FFT), 65, 68
Filter design
 Equiripple filters, 85
 Parks-McClellan algorithm, 85
 Remez exchange procedure, 85
 estimating the order of, 86
 windowing method, 77
Filtered multitone (FMT), 410, 412, 429
Filtering at receiver, OFDM, 391
 using raised-cosine window, 392
Filtering at transmitter, OFDM, 388
 using raised-cosine window, 390
 spectrum, 390
Fine carrier acquisition and tracking, 248, 249
Forward error correcting (FEC), 2
Fourier series, 9
 coefficients, 9, 11
 exponential Fourier series, 10
 fundamental components, 10
 fundamental frequency, 10
 harmonics, 10
 Hermitian symmetry, 10
 trigonometric Fourier series, 10
Fourier transform, 9, 12
 properties, 14
 conjugate symmetry, 14
 convolution, 15
 differentiation, 15
 duality, 14
 linearity, 14
 modulation, 14
 Parseval’s relation, 15
 time shifting, 14
 timescaling, 14
 table of, 16
Fractionally spaced equalizer, 368
Fractionally-spaced equalizer, 419
Frequency acquisition, 238
Frequency division multiplexing (FDM), 355, 356

encoding, 5
Energy spectral density, 21, 70
Energy-type signal, 21, 70
Equalization, 8, 75, 359, 363
Equalizer, 154, 173
 fractionally-spaced, 311
Equalizer, OFDM
 convergence, 359
 single-tap, 361, 362, 364, 366, 367, 373, 406
Euler’s formula, 10
Excess bandwidth, 32
Expander, 102
 transform domain analysis, 103
Eye pattern, 265
 PAM signals, 158
 QAM signals, 161
 impact of carrier frequency offset, 165
 impact of carrier phase error, 164
Frequency domain equalizer, OFDM, 366, 373

Functions
- delta, 15
- rectangular, 15
- signum, 15
- step, 15
- triangular, 15

Gibbs phenomenon, 78

Gradient vector
- complex-valued case, 183
- real-valued case, 177

Guard interval, 409

IDFT matrix, 358

IEEE 802.11a
- packet format
 - long training symbols, 401, 402
 - short training symbols, 401–403

Impulse response, 9

In-band ripple, OFDM, 378

Intercarrier interference (ICI), 410

Intercarrier interference (ICI), OFDM, 370–372

Intermediate frequency (IF), 2, 140

Interpolated FIR (IFIR) technique, 124

Interpolation filter, OFDM, 365, 385–391
 - null subcarriers, 388, 389

Intersymbol interference (ISI), 243, 355, 410

Inverse Fourier transform, 13

Kaiser window, 81

Least squares (LS) algorithm, 174

Least-mean square (LMS) algorithm, 174

Linear time-invariant (LTI) systems, 17
 - passing a random signal through, 25

LMS algorithm, 185–187, 189–191
 - affine projection, 190
 - example, 188
 - implementation, 186
 - learning curve, 188, 189
 - misadjustment, 187
 - normalized, 189
 - range of μ, 187
 - recursion, 186
 - stability, 187
 - summary of, 187

Low noise amplifier (LNA), 153

Low-density parity check (LDPC)
 - codes, 2

Low-noise amplifier (LNA), 1

M-ary PM, 48

M-ary PSK, 238, 246

M-ary QAM, 238

Matched filter, 33, 154

MATLAB scripts/functions
 - AFB.m, 466
 - AFB_CMT.m, 467
 - bin2file.m, 346
 - CMT_polyphase.m, 466
 - CRExp1.m, 240
 - CRExp2.m, 245, 251, 253, 255, 256
 - CRExp2Extensions.m, 255
 - CyclicEqT_eval.m, 333
 - CycPilot.m, 336, 346
 - DDCR.m, 265
 - equalizer_eval.m, 320
 - equalizerT2_APLMS.m, 326
 - equalizerT2_NLMS.m, 326
 - equalizerT2_RLS.m, 326
 - equalizerT_APLMS.m, 326
 - equalizerT_NLMS.m, 326
 - equalizerT_RLS.m, 326
 - file2bin.m, 345
 - MLPLLtest.m, 229, 230
 - modelingLMS.m, 188
 - modelingRLS.m, 200
 - OFDM.m, 364
 - OFDM_clpng_TDC.m, 399
Index

OFDM_PAPR_eval.m, 395
OFDMMod.m, 365
pamtxrx.m, 156, 157, 168
phasedetector.m, 232
prolate.m, 84
qamtxrx.m, 161, 162, 169
SFB.m, 466
SFB_CMT.m, 467
SMT_polyphase.m, 466
spec_analysis.m, 66, 163, 168
sr_cos_p.m, 98
sr_Nyquist.m, 92
sr_Nyquist.m, 98
TR_DD.m, 301
TR_ELG.m, 290
TR_GB.m, 306
TR_MM.m, 306
TXQPSK.m, 348
MATLAB simulation
PAM transceiver, 156
QAM transceiver, 161
Matrix inversion lemma, 195
Maximum likelihood phase detection, 224, 226, 227, 229, 230, 237
alternative stochastic gradient, 228
cost function, 225
minimum of, 226
higher order PLLs, 230
improved phase update, 228
LMS algorithm for, 226
MATLAB script, 229
optimum phase, 225
phase ambiguity, 226
stochastic gradient, 228
Medium access control (MAC) layer, 2
Method of least-squares, 191–193
formulation of, 192
least-squares, 191
normal equation for, 193
Modems
Bell 103, 3
Bell 201, 3
Bell 202, 3
bit-to-symbol mapping, 6
carrier recovery, 7
Codex 9600C, 4
demodulation, 7
encoding, 5
equalization, 8
history of, 3–5
IEEE 802.11, 4
IEEE 802.11a, 373, 401
packet format, 401
pilot subcarriers, 373
training symbols, 401
IEEE 802.11a (WiFi), 368
IEEE 802.11b, 401
IEEE 802.11g, 373, 401
IEEE 802.11n, 5
IEEE 802.15/WPAN, 4
IEEE 802.16e, 5
IEEE 802.16e (WiMAX), 368
Milgo 4400/48, 3
MIMO, 5
modulation, 7
pulse shaping, 6
receiver, 5
signal processing in, 5–8
timing recovery, 8
transmitter, 5
WiFi/WLAN, 4
WiMAX/WMAN, 4
wireless, 4
Modified DFT filter bank, 412
Modulation, 7, 37
all-digital demodulator, 143
all-digital modulator, 140
amplitude modulation (AM), 38
bandwidth efficiency, 41
double-side band (DSB), 42
phase modulation (PM), 44
quadrature amplitude modulation (QAM), 40, 240
formulation based on complex signals, 42
single-side band (SSB), 42
vestigial-side band (VSB), 42
Index

Modulation, OFDM, 363, 365
Multicarrier communication, 355–357, 409
 with non-overlapping subcarriers, 357
 with overlapping subcarriers, 357
Multicarrier demultiplexing, 355
Multicarrier filter bank (MCFB), 409
 bandwidth efficiency, 409
 cosine modulated multitone (CMT), 419–429
 channel impact, 428
 equalization, 428
 even symmetric square-root Nyquist filter, 424
 ISI, 424
 subcarrier spacing, 419
Filtered multitone (FMT), 429
 polyphase implementation, 429, 432
 CMT, 445–454
 FMT, 454–460
generic, 431–441
SMT, 441–445
staggered multitone (SMT), 412–419
 channel impact, 418
 equalization, 418
 even symmetric square-root Nyquist filter, 416
ICI, 414, 416
 ISI, 414, 415
 spectra of subcarriers, 414
 subcarrier spacing, 419
 subcarrier channels overlap, 409, 412, 414, 419, 425, 429
 synchronization, 410, 412
Multicarrier filter bank (MCFB)ICI cosine modulated multitone (CMT), 425
Multicarrier multiplexing, 355
Multipath channel, 50, 170, 243, 355, 359
Multirate signal processing, 2
Multistage implementation, 124
 Interpolated FIR (IFIR) technique, 124
Multistage realization, 128
Network layer, 3
Network stack, 3
Noble identities, 112
Noise enhancement, 355
Non-data aided carrier acquisition and tracking, 246–261
 coarse carrier acquisition, 247
 Costas loop, 256
 fine carrier acquisition and tracking, 248
Non-data aided carrier recovery methods, 238–243, 246
Normalized LMS algorithm, 189
Nyquist (M) filter, 86, 97
Nyquist criterion, 29, 30
Nyquist frequency, 32, 57
Nyquist pulse, 415
Nyquist rate, 32, 57
OFDM symbol, 358, 361
OFDM-OQAM, 410
Offset QAM (OQAM), 410
Orthogonal frequency division multiplexing (OFDM)
 carrier acquisition and tracking, 368–385
 carrier tracking, 373–385
 complex carrier, 358
 cyclic prefix (CP), 360
decimation filter, 385–389, 391–394
demodulation process, 359
equalization, 359, 363, 364
 frequency domain equalization, 363
guard interval, 360
ICI due to carrier offset, 372
impact of carrier frequency offset, 363
implementation tips, 403
intercarrier interference (ICI), 370
interpolation filter, 385–391
null subcarriers, 388, 389
modulation, 363, 365
modulation process, 359
modulation to IF, 393
modulator vector, 358
peak to average power ratio (PAPR), 394–401
reduction methods, 395
preamble, 373
receiver, 362
sensitivity to carrier offset, 371
simulation, 363, 366
single-tap equalizer, 361, 362, 367
spectral images, 386, 388
symbol, 358, 360, 361
symbol shaping window function, 377
rectangular window, 377
symbol vector, 359
the principle of, 358–360, 362, 363
timing recovery, 363, 366–368
tones/subcarriers, 386
transmitter, 362
virtual subcarriers, 373, 375
Overlap-and-add method, 360
Parseval’s relation, 15, 65
Peak to average power ratio (PAPR)
complementary cumulative density function (CCDF), 394
of a tone, 394
phase modulation, 394
quadrature amplitude modulation, 394
Peak to average power ratio (PAPR), OFDM, 394–401
clipping compensation method
frequency domain filtering, 399, 401
time domain filtering, 397, 400
power spectral density, 398
reduction methods, 395
clipping compensation method, 395
code books, 395
scrambling, 395
Periodic training symbols, 256
Phase acquisition, 238
Phase ambiguity, 48, 241, 246, 255, 261
Phase detection methods
data aided, 238
non-data aided, 238
Phase-locked loop (PLL), 40, 207, 237, 253
basic principles, 207
definition, 207
lock range, 237
maximum likelihood phase detector, 208
minimum mean-square error estimator, 208
nominal frequency, 207
phase detector, 237
Physical layer (PHY), 2
PI PLL, 253
Pilot aided carrier acquisition method, 261, 263
PLL with an extended lock range, 253
phase unwrapping, 253
PLL with extended lock range, 231, 232, 237
lock range, 231
phase detector, 231
phase unwrapping, 231
MATLAB function, 232
phase wrapping, 232
PLL, OFDM, 372
Polyphase components, 114, 355
for very fast sampling rates at receiver, 146
Index

at transmitter, 146
representations, 114
for FIR and IIR filters, 115
type 1, 114
type 2, 114
Polyphase analysis filter bank
generic, 437–440
SMT, 445
Polyphase analysis filter bank, CMT, 451–453
Polyphase analysis filter bank, FMT, 458–460
Polyphase identity, 123
Polyphase structure
L/M-fold resampling, 120
commutator models, 119
for decimators, 115
for interpolators, 118
Polyphase synthesis and analysis filter bank
at baseband
generic, 439, 441
at IF band
generic, 441
Polyphase synthesis filter bank
generic, 429, 431–437
SMT, 441–444
Polyphase synthesis filter bank, CMT, 446–450
Polyphase synthesis filter bank, FMT, 455–458
Power spectral density, 72
Power spectral density, OFDM, 376
impact of carrier offset, 378, 380
impact of cyclic prefix, 379
ripple in, 376
Power-spectral density, 21
Power-type signal, 21, 72
Preamble, OFDM, 373
coarse estimation of carrier offset, 373
periodic, 373
Presentation layer, 3
Principle of orthogonality, 180
for complex-valued signals, 184
Prolate sequence/Optimal window, 83, 96
Pulse amplitude modulation, 27
generation of, 28
Pulse shaping, 6
Pulse-amplitude modulation (PAM), 419
Pulse-shape design, 29, 75
Pulse-shaping filter, 357, 394
Quadrature amplitude modulation (QAM), 40–42, 47, 48, 240
Raised-cosine filter, 32
impulse response of, 32
Raised-cosine pulse, 87, 92, 97, 98
Random signals, 22, 73
autocorrelation function, 22, 73
cyclostationary, 23
ergodic process, 22, 73
Wiener-Khinchin theorem, 22, 73
Rate conversion, 104
L-fold interpolation, 105
L/M-fold rate change, 107
M-fold decimation, 107
Rayleigh’s relation
for discrete-time random processes, 74
for random processes, 22
Receive filter, 33
Receiver filter, 154
RLS algorithm, 193–197, 199
a posteriori estimation error, 196
a priori estimation error, 196
computational complexity, 197
example, 198
gain vector, 195
initialization, 196
matrix inversion lemma, 195
recursions, 194
stability, 199
summary, 197, 198
Roll-off factor, 32
Principle of orthogonality, 180
for complex-valued signals, 184
Prolate sequence/Optimal window, 83, 96
Pulse amplitude modulation, 27
generation of, 28
Pulse shaping, 6
Pulse-amplitude modulation (PAM), 419
Pulse-shape design, 29, 75
Pulse-shaping filter, 357, 394
Quadrature amplitude modulation (QAM), 40–42, 47, 48, 240
Raised-cosine filter, 32
impulse response of, 32
Raised-cosine pulse, 87, 92, 97, 98
Random signals, 22, 73
autocorrelation function, 22, 73
cyclostationary, 23
ergodic process, 22, 73
Wiener-Khinchin theorem, 22, 73
Rate conversion, 104
L-fold interpolation, 105
L/M-fold rate change, 107
M-fold decimation, 107
Rayleigh’s relation
for discrete-time random processes, 74
for random processes, 22
Receive filter, 33
Receiver filter, 154
RLS algorithm, 193–197, 199
a posteriori estimation error, 196
a priori estimation error, 196
computational complexity, 197
example, 198
gain vector, 195
initialization, 196
matrix inversion lemma, 195
recursions, 194
stability, 199
summary, 197, 198
Roll-off factor, 32
s-domain to z-domain transformations
 bilinear, 223
time differentiation, 223
Sampling in the frequency domain, 60
Sampling rate, 57
Sensitivity to carrier offset, OFDM, 371
Session layer, 3
Signal reconstruction, 58
Signal spectra, 9
sinc function
 definition, 11
Software defined radio
 definition, 1
 reconfigurability, 2
spectral efficiency, 410
Spectral images, OFDM, 386, 388
Square-root Nyquist (M) filter, 86, 98
square-root Nyquist filter, 415
Square-root raised-cosine filter, 33
 impulse response, 36
square-root raised-cosine pulse, 87
Staggered multitone (SMT), 412–419
 channel impact, 418
 equalization, 418
 even symmetric square-root Nyquist filter, 416
ICI, 414, 416
ISI, 414, 415
spectra of subcarriers, 414
 subcarrier spacing, 419
Standard recursive least-squares algorithm, 193–197, 199
Star-QAM constellation, 269
Steepest descent method, 185
Superheterodyne structure, 2, 140
Symbol shaping window function, OFDM, 377
 rectangular window, 377
Symbol-spaced equalizer, 419
Timing acquisition, OFDM, 365
Timing epoch, 173
Timing recovery, 8, 135, 173
 interpolator-decimator for, 138, 139
Timing recovery, OFDM, 366–368
 linear phase rotation, 367
 range, 366, 367
 timing phase offset, 367
Timing tracking, OFDM, 365
Tones/subcarriers, OFDM, 386
Training symbols, 238, 256, 261
Transfer function, 9, 19, 70
Transmit filter, 33, 153
Transport layer, 3
Tunable filter, 251
Turbo codes, 2
User application layer, 3
Vestigial sideband (VSB) modulation, 42, 412, 419, 420, 424, 425, 428
Virtual subcarriers, OFDM, 373
 virtual subcarriers-based carrier recovery methods, OFDM, 375
Wiener filter, 174–180
 autocorrelation matrix, 176
 positive definite, 177
 complex-valued case, 182
 cross-correlation vector, 176
 example, 178
 minimum mean-squared error, 178
 for complex-valued signals, 185
 for real-valued signals, 178, 182
 performance function, 174, 175
 global minimum, 177
 minimization, 177
 quadratic function of tap-weight vector, 177
 principle of orthogonality, 180
real-valued case, 176
Wiener-Hopf equation, 178
for complex-valued signals, 185
Wiener-Hopf equation, 178
WiFi/WLAN, 368
WiMAX/WMAN, 368

z-transform, 68
Zero padding, 68
Zero-IF, 242, 249
Zeroth subcarrier, OFDM, 363