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D
ue to the volume conduction multichannel electroencephalogram (EEG) record-
ings give a rather blurred image of brain activity. Therefore spatial filters are
extremely useful in single-trial analysis in order to improve the signal-to-noise
ratio. There are powerful methods from machine learning and signal processing
that permit the optimization of spatio-temporal filters for each subject in a data

dependent fashion beyond the fixed filters based on the sensor geometry, e.g., Laplacians. Here
we elucidate the theoretical background of the common spatial pattern (CSP) algorithm, a popu-
lar method in brain-computer interface (BCI) research. Apart from reviewing several variants of
the basic algorithm, we reveal tricks of the trade for achieving a powerful CSP performance,
briefly elaborate on theoretical aspects of CSP, and demonstrate the application of CSP-type pre-
processing in our studies of the Berlin BCI (BBCI) project.
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INTRODUCTION
Noninvasive BCI has in the recent years become a highly active
research topic in neuroscience, engineering, and signal pro-
cessing. One of the reasons for this development is the striking
advances of BCI systems with respect to usability, information
transfer, and robustness for which modern machine learning
and signal processing techniques have been instrumental [2],
[4], [14], and [15]. Invasive BCIs [46], in particular intracranial
signals, require completely different signal processing methods
and are therefore not discussed here.

This article will review a particularly popular and powerful
signal processing technique for EEG-based BCIs called CSP and
discusses recent variants of CSP. Our goal is to provide compre-
hensive information about CSP and its application. Thus we
address both the BCI expert who is not specialized in signal pro-
cessing and the BCI novice who is an expert in signal processing.

Consequently, this article will mainly focus on CSP filtering,
but we will also briefly discuss BCI paradigms and the neuro-
physiological background thereof. Finally, we will report on
recent results achieved with the BBCI using advanced signal
processing and machine learning techniques.

BACKGROUND

OVERVIEW OF A BCI SYSTEM
An overview of a BCI system based on machine learning is
shown in Figure 1. The system operates in two phases, namely

the calibration phase and the feedback phase. The feedback
phase is the time the users can actually transfer information
through their brain activity and control applications; in this
phase, the system is composed of the classifier that classifies
between different mental states and the user interface that
translates the classifier output into control signals, e.g., cursor
position or selection from an alphabet. In the calibration
phase, we collect examples of EEG signals in order to train the
classifier. Here we describe a typical experiment as performed
in the BBCI project. We use three types of imaginary move-
ments, namely, left hand (L), right hand (R), and right foot (F)
as the mental states to be classified. Other paradigms based on,
e.g., modulation of attention to external stimulation can be
found in [55]. The subjects are instructed to perform one of
the three imaginary movements indicated on the screen for 
3.5 s at the interval of 5.5 s. For more effective performance, it
is important to instruct the subjects to concentrate on the
kinesthetic aspect rather than the visual [37]. We obtain 420
trials of imaginary movement (140 for each class) in a random-
ized order for each subject (less is sufficient for feedback per-
formance). The data is then used for the training of the
classifier and assessment of generalization error by cross-vali-
dation. In particular, we compare three pair-wise classifiers
and select the combination of two classes that yields the best
generalization performance.

After the calibration measurement subjects perform five feed-
back sessions consisting of 100 runs. Here the output of the

[FIG1] Overview of the machine-learning-based BCI system. The system runs in two phases. In the calibration phase, we instruct the
subjects to perform certain tasks and collect short segments of labeled EEG (trials). We train the classifier based on these examples. In
the feedback phase, we take sliding windows from continuous stream of EEG; the classifier outputs a real value that quantifies the
likeliness of class membership; we run a feedback application that takes the output of the classifier as an input. Finally the subject
receives the feedback on the screen as, e.g., cursor control.
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binary classifier is translated into the horizontal position of a
cursor. Subjects are instructed to move the cursor to that one of
the two vertical bars at the edges of the screen which was indicat-
ed as target by color. The cursor is initially at the center of the
screen; it starts to follow the classifier output based on the brain
signal 750 ms after the indication of the target. A trial ends when
the cursor touches one of the two bars; the bar that the cursor
reached is colored green if correct and red otherwise. The next
trial starts after 520 ms (see [2], [4], [7] for more details).

The performance of the classifier is measured by the accura-
cy of the prediction in percent. The performance of the overall
system is measured by the information transfer rate (ITR) [54]
measured in b/min:

ITR = # of decisions
duration in minutes

·
(

p log2(p) + (1 − p) log2

(
1 − p
N − 1

)
+ log2(N )

)
,

(1)

where p is the accuracy of the subject in making decisions
between N targets, e.g., in the feedback explained above, N = 2
and p is the accuracy of hitting the correct bars. ITR measures
the capacity of a symmetric communication channel that makes
mistake with the equal probability (1 − p)/(N − 1) to all other
N − 1 classes divided by the time required to communicate that
amount of information. The ITR depends not only on the accu-
racy of the classifier but also on the design of the feedback appli-
cation that translates the classifier output into command. Note
that the duration in min refers to the total duration of the run
including all inter-trial intervals. In contrast to the accuracy of
the decision, the ITR takes different duration of trials and differ-
ent number of classes into account. The ITR is zero for a ran-

dom classifier i.e., p = 1/N . Note that the communication
channel model can be generalized to take the nonsymmetric or
nonuniform errors into account [44]. 

Brain activity was recorded from the scalp with multi-
channel EEG amplifiers (BrainAmp by Brain Products,
Munich, Germany) using 55 Ag/AgCl electrodes in an extend-
ed 10–20 system.

NEUROPHYSIOLOGICAL BACKGROUND
Macroscopic brain activity during resting wakefulness com-
prises distinct “idle” rhythms located over various cortical
areas, e.g. the occipital α-rhythm (8–12 Hz) can be measured
over the visual cortex [1]. The perirolandic sensorimotor cor-
tices show rhythmic macroscopic EEG oscillations (μ-rhythm,
sensori motor rhythm, SMR) [20], [24] with spectral peak
energies of about 9–14 Hz (localized predominantly over the
postcentral somatosensory cortex) and around 20 Hz (over
the precentral motor cortex). The occipital α-rhythm is quite
prominent and can be seen in the raw EEG with the naked eye
if the subject closes the eyes (idling of the visual cortex). In
contrast the μ-rhythm has a much weaker amplitude and can
only be observed after appropriate signal processing. In some
subjects no μ-rhythm can be observed in scalp EEG.

Our system is based on the modulation of the SMR. In fact,
motor activity, both actual and imagined [25], [42], [45], as
well as somatosensory stimulation [38] have been reported to
modulate the μ-rhythm. Processing of motor commands or
somatosensory stimuli causes an attenuation of the rhythmic
activity termed event-related desynchronization (ERD) [42],
while an increase in the rhythmic activity is termed event-
related synchronization (ERS). For BCIs, the important fact is
that the ERD is caused also by imagined movements (healthy
users, see Figure 2) and by intented movements in paralyzed
patients [30].

[FIG2] Event-related desynchronization (ERD) during motor imagery of the left and the right hand. Raw EEG signals of one subject have
been band-pass filtered between 9–13 Hz. For the time courses, the envelope of the signals has been calculated by Hilbert transform
(see e.g., [9]) and averaged over segments of –500–4,500 ms relative to each cue for left or right hand motor imagery. ERD curves are
shown for Laplace filtered channels at C3 and C4, i.e., over left and right primary motor cortex. The topographical maps of ERD were
obtained by performing the same procedure for all (non-Laplace filtered) channels and averaging across the shaded time interval 1,000
to 4,000 ms.
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For “decoding” of different motor intentions from brain activi-
ty, the essential task is to distinguish different spatial localization
of SMR modulations. Due to the topographical arrangement in
the motor and somatosensori cortex, these locations are related to
corresponding parts of the body (see Figure 3). For example, left
hand and right hand have corresponding areas in the contralater-
al, i.e., right and left motor cortex, respectively; see Figure 2.

WHY SPATIAL FILTERING IS IMPORTANT
Raw EEG scalp potentials are known to have a poor spatial reso-
lution owing to volume conduction. In a simulation study in
[39] only half the contribution to each scalp electrode came
from sources within a 3 cm radius. This is in particular a prob-
lem if the signal of interest is weak, e.g. sensorimotor rhythms,
while other sources produce strong signals in the same frequen-
cy range like the α-rhythm of the visual cortex or movement
and muscle artifacts.

The demands are carried to the extremes when it comes to
single-trial analysis as in BCI. While some approaches try to
achieve the required signal strength by training the subjects
[30], [53] an alternative is to calibrate the system to the specific
characteristics of each user [2], [7], and [19]. For the latter,
data-driven approaches to calculate subject-specific spatial fil-
ters have proven to be useful.

As a demonstration of the importance of spatial filters,
Figure 4 shows spectra of left versus right hand motor imagery
at the right hemispherical sensorimotor cortex. All plots are
computed from the same data but using different spatial filters.
While the raw channel only shows a peak around 9 Hz that pro-
vides almost no discrimination between the two conditions, the
bipolar and the common average reference filter can improve

the discrimination slightly. However, the Laplace filter and even
more the CSP filter reveal a second spectral peak around 12 Hz
with strong discriminative power. By further investigations, the
spatial origin of the nondiscriminative peak could be traced back
to the visual cortex, while the discriminative peak originates
from sensorimotor rhythms. Note that in many subjects, the
frequency ranges of visual and sensorimotor rhythms overlap or
completely coincide.

METHODS

GENERAL FRAMEWORK
Here we overview the classifier we use. Let X ∈ RC×T be a
short segment of EEG signal, which corresponds to a trial of
imaginary movement; C is the number of channels and T is
the number of sampled time points in a trial. In the follow-
ing, we also use the notation x(t) ∈ RC to denote EEG signal
at a specific time point t; thus X is a column concatenation
of x(t)’s as X = [x(t), x(t + 1), . . . , x(t + T− 1)] for some t
but the time index t is omitted. We assume that X is already 
band-pass filtered, centered and scaled i.e.,
X = 1√

T
Xband−pass(IT − 1T1�

T ), where IT denotes T× T identi-
ty matrix and 1T denotes a T-dimensional vector with all one. A
classifier is a function that predicts the label of a given trial X.
For simplicity, let us focus on the binary classification e.g., clas-
sification between imagined movement of left and right hand.
The classifier outputs a real value whose sign is interpreted as
the predicted class. The classifier is written as follows: 

f(X; {w j } J
j=1, {β j} J

j=0) =
J∑

j=1

β j log
(

w�
j X X�w j

)
+ β0. (2)

[FIG3] (a) Lobes of the brain: frontal, parietal, occipital, and temporal (named after the bones of the skull beneath which they are
located). The central sulcus separates the frontal and parietal lobe. (b) Geometric mapping between body parts and
motor/somatosensory cortex. The motor cortex and the somatosensory cortex are shown at the left and right part of the figure,
respectively. Note that in each hemisphere there is one motor area (frontal to the central sulcus) and one sensori area (posterior to the
central sulcus). The part which is not shown can be obtained by mirroring the figure folded at the center.
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The classifier first projects the signal by J spatial filters
{w j } J

j=1 ∈ RC× J; next it takes the logarithm of the power of
the projected signal; finally it linearly combines these J
dimensional features and adds a bias β0. In fact, each projec-
tion captures different spatial localization; the modulation of
the rhythmic activity is captured by the log-power of the
band-pass filtered signal. Note that various extensions are
possible (see the section on variants and extensions of the
original CSP algorithm). A different experimental paradigm
might require the use of nonlinear methods of feature extrac-
tion and classification respectively [33]. Direct minimization
of discriminative criterion [17] and marginalization of the
classifier weight [22] are suggested. On the other hand, meth-
ods that are linear in the second order statistics X X� , i.e., (2)
without the log, are discussed in [48], [49] and shown to have
some good properties such as convexity.

The coefficients {w j } J
j=1 and {β j } J

j=1 are automatically
determined statistically [21] from the training examples i.e., the
pairs of trials and labels {Xi, yi}n

i =1 we collect in the calibration
phase; the label y ∈ {+1,−1} corresponds to, e.g., imaginary
movement of left and right hand, respectively, and n is the num-
ber of trials.

We use CSP [18], [27] to determine the spatial filter coeffi-
cients {w j } J

j=1. In the following, we discuss the method in detail
and present some recent extensions. The linear weights {β j } J

j=1
are determined by Fisher’s linear discriminant analysis (LDA).

INTRODUCTION TO CSP ANALYSIS
CSP [18], [27] is a technique to analyze multichannel data based on
recordings from two classes (conditions). CSP yields a data-driven
supervised decomposition of the signal parameterized by a matrix
W ∈ RC×C (C being the number of channels) that projects the sig-
nal x(t) ∈ RC in the original sensor space to xCSP(t) ∈ RC, which
lives in the surrogate sensor space, as follows:

xCSP(t) = W�x(t) .

In this article, we call each column vector w j ∈ RC

( j = 1, . . . , C ) of W a spatial filter or simply a filter; moreover
we call each column vector a j ∈ RC( j = 1, . . . , C ) of a matrix
A = (W−1)� ∈ RC×C a spatial pattern or simply a pattern. In
fact, if we think of the signal spanned by A as
x(t) = ∑C

j=1 a j sj (t), each vector a j characterizes the spatial
pattern of the j-th activity; moreover, w j would filter out all but

[FIG4] Spectra of left versus right hand motor imagery. All plots are calculated from the same dataset but using different spatial filters.
The discrimination between the two conditions is quantified by the r2-value. CAR stands for common average reference.
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the j-th activity because the orthogonality w�
j ak = δ jk holds,

where δ jk is the Kronecker delta (δ jk = 1 for j = k and = 0 for
j �= k ). The matrices A and W are sometimes called the mixing
and de-mixing matrix or the forward and backward model [41]
in other contexts. 

The optimization criterion that is used to determine the CSP
filters will be discussed in detail in the subsequent section on
technical approaches to CSP analysis. In a nutshell, CSP filters
maximize the variance of the spatially filtered signal under one
condition while minimizing it for the other condition. Since
variance of band-pass filtered signals is equal to band-power,
CSP analysis is applied to approximately band-pass filtered sig-
nals in order to obtain an effective discrimination of mental
states that are characterized by ERD/ERS effects. Figure 5 shows
the result of applying four CSP filters to continuous band-pass
filtered EEG data. Intervals of right hand motor imagery are
shaded green and show larger variance in the CSP:L1 and
CSP:L2 filters, while during left hand motor imagery (shaded
red) variance is larger in the CSP:R1 and CSP:R2 filters. See also
the visualization of spatial maps of CSP analysis in the section
on visualization of the spatial filter coefficients.

TECHNICAL APPROACHES TO CSP ANALYSIS
Let �(+) ∈ RC×C and �(−) ∈ RC×C be the estimates of the
covariance matrices of the band-pass filtered EEG signal in the
two conditions (e.g., left hand imagination and right hand
imagination):

�(c) = 1
|Ic|

∑

i ∈Ic

Xi X
�
i (c ∈ {+,−}), (3)

where Ic (c ∈ {+,−}) is the set of indices corresponding to tri-
als belonging to each condition and |I| denotes the size of a set

I. The above expression gives a pooled estimated of covariance
in each condition because each X is centered and scaled. Then
CSP analysis is given by the simultaneous diagonalization of the
two covariance matrices

W��(+)W = �(+) , (4)

W��(−)W = �(−) , (�(c)diagonal),

where the scaling of W is commonly determined such that
�(+) + �(−) = I [18]. Technically, this can simply be 
achieved (In MATLAB: W = eig(S1, S1 + S2)) by solving the
generalized eigenvalue problem

�(+)w = λ�(−)w . (5)

Then (4) is satisfied for W consisting of the generalized eigen-
vectors w j ( j = 1, . . . , C ) of (5) (as column vectors) and
λ

(c)
j = w�

j �(c)w j being the corresponding diagonal elements of
�(c) (c ∈ {+,−}), while λ in (5) equals λ(+)

j /λ
(−)
j . Note that

λ
(c)
j ≥ 0 is the variance in condition c in the corresponding sur-

rogate channel and λ(+)
j + λ

(−)
j = 1. Hence a

large value λ(+)
j (λ

(−)
j ) close to one indicates

that the corresponding spatial filter w j yields
high variance in the positive (negative) condi-
tion and low variance in the negative (positive)
condition, respectively; this contrast between
two classes is useful in the discrimination.
Koles [27] explained that the above decompo-
sition gives a common basis of two conditions
because the filtered signal xCSP(t) = W�x(t)
is uncorrelated in both conditions, which
implies ‘independence’ for Gaussian random
variables. Figure 6 explains how CSP works in
2-D. CSP maps the samples in Figure 6(a) to
those in Figure 6(b); the strong correlation
between the original two axes is removed and
both distributions are simultaneously de-cor-
related. Additionally, the two distributions are
maximally dissimilar along the new axes. The
dashed lines in Figure 6 denote the direction
of the CSP projections. Note that the two vec-
tors are not orthogonal to each other; in fact
they are rather almost orthogonal to the

direction that the opponent class has the maximum variance.
A generative view on CSP was provided by [40]. Let us con-

sider the following linear mixing model with nonstationary
sources: 

xc = Asc, sc ∼ N (0,�(c)) (c ∈ {+,−}) ,

where the sources sc ∈ RC (c ∈ {+,−}) are assumed to be
uncorrelated Gaussian distributions with covariance matrices
�(c) (c ∈ {+,−}) for two conditions respectively. If the empiri-
cal estimates �(c) are reasonably close to the true covariance

IEEE SIGNAL PROCESSING MAGAZINE [46] JANUARY 2008

[FIG5] Effect of spatial CSP filtering. CSP analysis was performed to obtain four
spatial filters that discriminate left from right hand motor imagery. The graph shows
continuous band-pass filtered EEG after applying the CSP filters. The resulting signals
in filters CSP:L1 and CSP:L2 have larger variance during right hand imagery
(segments shaded in green) while signals in filters CSP:R1 and CSP:R2 have larger
variance during left hand imagery (segment shaded red).
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matrices A�(c) A�, the simultaneous diagonalization gives the
maximum likelihood estimator of the backward model
W = (A−1)�.

A discriminative view is the following (see the section on
variants and extenstions of the original CSP alogrithm). Let us
define Sd and Sc as follows:

Sd = �(+) − �(−) : discriminative activity , (6)

Sc = �(+) + �(−) : common activity ,

where Sd corresponds to the discriminative activity, i.e., the
band-power modulation between two conditions and Sc corre-
sponds to the common activity in the two conditions that we are
not interested in. Then a solution to the following maximization
problem (Rayleigh coefficient) can be obtained by solving the
same generalized eigenvalue problem,

maximize
w∈Rc

w�Sd w
w�Sc w

. (7)

It is easy to see that every generalized eigenvector w j corre-
sponds to a local stationary point with the objective value
λ

(+)
j − λ

(−)
j (assuming λ(+)

j + λ
(−)
j = 1 as above). The large

positive (or negative) objective value corresponds to large
response in the first (or the second) condition. Therefore, the
common practice in a classification setting is to use several
eigenvectors from both ends of the eigenvalue spectrum as
spatial filters {w j } J

j=1 in (2). If the number of components J is
too small, the classifier would fail to fully capture the discrimi-
nation between two classes (see also the discussion in the sec-
tion on merits and caveats on the influence of artifacts); on the
other hand, the classifier weights {β j } J

j=1 could severely over-
fit if J is too large. In practice we find J = 6, i.e., three eigen-
vectors from both ends, often satisfactory. Alternatively one
can choose the eigenvectors according to different criterion
(see the section on how to select hyperparameters for CSP) or
use cross-validation to determine the number of components.

FEEDBACK WITH CSP FILTERS
During BCI feedback, the most recent segment of EEG is
processed and translated by the classifier into a control signal,
(see Figure 1). This can be done according to (2), where X
denotes the band-pass filtered segment of EEG. Due to the lin-
earity of temporal (band-pass) and spatial filtering, these two
steps can be interchanged in order. This reduces the computa-
tion load (number of signals that are band-pass filtered), since
the number of selected CSP filters is typically low (2–6) com-
pared to the number of EEG channels (32–128). Furthermore, it
is noteworthy that the length of segment which is used to calcu-
late one time instance of the control signal can be changed dur-
ing feedback. Shorter segments result in more responsive but
also more noisy feedback signal. Longer segments give a
smoother control signal, but the delay from intention to control
gets longer. This trade-off can be adapted to the aptitude of the

subject and the needs of the application. As a caveat, we remark
that for optimal feedback the bias of the classifier [β0 in (2)]
might need to be adjusted for feedback. Since the mental state
of the user is very much different during the feedback phase
compared to the calibration phase, also the nontask related

[FIG6] A toy example of CSP filtering in 2-D. Two sets of samples
marked by red crosses and blue circles are drawn from two
Gaussian distributions. In (a), the distribution of samples before
filtering is shown. Two ellipses show the estimated covariances
and dashed lines show the direction of CSP projections
wj (j = 1, 2). In (b), the distribution of samples after the filtering
is shown. Note that both classes are uncorrelated at the same
time; the horizontal (vertical) axis gives the largest variance in
the red (blue) class and the smallest in the blue (red) class,
respectively.
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brain activity differs. For a thorough investigation of this issue
compare [29], [47].

RESULTS

PERFORMANCE IN TWO BBCI FEEDBACK STUDIES
Here we summarize the results of two feedback studies with
healthy subjects. The first was performed to explore the limits of
information transfer rates in BCIs system not relying on user
training or evoked potentials and the objective of the second was
to investigate for what proportion of naive subjects our system
could provide successful feedback in the very first session. One
of the keys to success in this study was the proper application of
CSP analysis. Details can be found in [2], [3], and [7].

Table 1 summarizes performance, in particular the informa-
tion transfer rates that were obtained in the first study. Note
that calibration and feedback accuracy refer to quite different

measures. From the calibration measurement, trials of approxi-
mately 3 s after each cue presentation have been taken out and
the performance of the processing/classification method was val-
idated by cross-validation. The feedback accuracy refers to the
actual hitting of the correct target during horizontal cursor
control. This involves integration of several classifier outputs to
consecutive sliding windows of 300 to 1,000 ms length.
As a test of practical usability, subject al operated a mental
typewriter based on horizontal cursor control. In a free
spelling mode he spelled three German sentences with a total
of 135 characters in 30 min, which is a “typing” speed of 4.5
letters per min. Note that the subject corrected all errors
using the deletion symbol. For details, see [11]. Recently,
using the novel mental typewriter Hex-o-Spell that is based
on principles of human-computer interaction, the same sub-
ject achieved a typing speed of more than seven letters per
min, compare [6], [34].

Table 2 summarizes the performance obtained in the second
study. It demonstrates that 12 out of 14 BCI novices were able
for control the BCI system in their very first session. In this
study, the feedback application was not optimized for fast per-
formance, which results in longer trial duration times.

VISUALIZATION OF THE SPATIAL FILTER COEFFICIENTS
Let us visualize the spatial filter coefficients and the correspon-
ding pattern of activation in the brain and see how they corre-
spond to the neurophysiological understanding of ERD/ERS for
motor imagination. Figure 7 displays two pairs of vectors
(w j, a j) that correspond to the largest and the smallest eigenval-
ues for one subject topographically mapped onto a scalp and
color coded. w j and a j are the j -th columns of W and
A = (W−1)�, respectively. The plot shows the interpolation of
the values of the components of vectors w j and a j at electrode
positions. Note that we use a colormap that has no direct associ-
ation to signs because the signs of the vectors are irrelevant in
our analysis.

[FIG7] Example of CSP analysis. The patterns (aj) illustrate how
the presumed sources project to the scalp. They can be used to
verify neurophysiological plausibility. The filters (wj) are used to
project the original signals. Here they resemble the patterns but
their intricate weighting is essential to obtain signals that are
optimally discriminative with respect to variance. See the
introduction to CSP Patterns Analysis for the definition of the
terms filter and pattern.

− 0 +

Filter FilterPattern Pattern

Min Variance for
Right Trials

Min Variance for
Left Trials

CALIBRATION FEEDBACK
ACCURACY ACCURACY DURATION OVERALL ITR PEAK ITR

SUBJECT CLASSES [%] [%] [S] [B/MIN] [B/MIN]
al LF 98.0 98.0 ± 4.3 2.0 ± 0.9 24.4 35.4
ay LR 97.6 95.0 ± 3.3 1.8 ± 0.8 22.6 31.5
av LF 78.1 90.5 ± 10.2 3.5 ± 2.9 9.0 24.5
aa LR 78.2 88.5 ± 8.1 1.5 ± 0.4 17.4 37.1
aw RF 95.4 80.5 ± 5.8 2.6 ± 1.5 5.9 11.0
au — — — — — —

MEAN 89.5 90.5 ± 7.6 2.3 ± 0.8 15.9 27.9

[TABLE 1]  RESULTS OF A FEEDBACK STUDY WITH SIX HEALTHY SUBJECTS (IDENTIFICATION CODE IN COLUMN 1). FROM THE
THREE CLASSES USED IN THE CALIBRATION MEASUREMENT. THE TWO CHOSEN FOR FEEDBACK ARE INDICATED IN
COLUMN 2 (L: LEFT HAND, R: RIGHT HAND, F: RIGHT FOOT). COLUMNS 3 AND 4 COMPARE THE ACCURACY AS
CALCULATED BY CROSS-VALIDATION ON THE CALIBRATION DATA WITH THE ACCURACY OBTAINED ONLINE IN
THE FEEDBACK APPLICATION “RATE CONTROLLED CURSOR”. THE AVERAGE DURATION ± STANDARD DEVIATION
OF THE FEEDBACK TRIALS IS PROVIDED IN COLUMN 5 (DURATION FROM CUE PRESENTATION TO TARGET HIT).
SUBJECTS ARE SORTED ACCORDING TO FEEDBACK ACCURACY. COLUMNS 6 AND 7 REPORT THE INFORMATION
TRANSFER RATES (ITR) MEASURED IN B/MIN AS OBTAINED BY SHANNON’S FORMULA, COMPARE (1). HERE THE
COMPLETE DURATION OF EACH RUN WAS TAKEN INTO ACCOUNT, I.E., ALSO THE INTER-TRIAL BREAKS FROM TAR-
GET HIT TO THE PRESENTATION OF THE NEXT CUE. THE COLUMN OVERAL ITR REPORTS THE AVERAGE ITR OF ALL
RUNS (OF 25 TRIALS EACH), WHILE COLUMN PEAK ITR REPORTS THE PEAK ITR OF ALL RUNS. FOR SUBJECT AU NO
REASONABLE CLASSIFIER COULD BE TRAINED (CROSS-VALIDATION ACCURACY BELOW 65% IN THE CALIBRATION
DATA), SEE [2] FOR AN ANALYSIS OF THAT SPECIFIC CASE.
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DISCUSSION

DEPENDENCE OF LINEAR SPATIAL 
FILTERING PRIOR TO CSP
The question arises whether the results of CSP-based classification
can be enhanced by preprocessing the data with a linear spatial fil-
ter [like principle component analysis (PCA), independent compo-
nent analysis (ICA) or re-referencing like Laplace filtering]. The
question is difficult to answer in general, but two facts can be
derived. Let B ∈ RC×C0 be the matrix representing an arbitrary lin-
ear spatial filter while using notions Xi, �(+), �(−), Sd, and Sc as
noted in the section on technical approaches to CSP patterns analy-
sis. Denoting all variables corresponding to the B-filtered signals by
·̃, the signals are X̃ = B� X . This implies �̃(+) = B��(+)B,

�̃(−) = B��(−)B, S̃d = B�Sd B, and S̃c = B�ScB. The filter
matrices calculated by CSP are denoted by W and W̃.

1) If matrix B is invertible, the classification results will exact-
ly be identical, regardless of applying filter B before calculat-
ing CSP or not: Let us consider the CSP solution
characterized by simultaneous diagonalization of �(+) and
�(−) in (4) with constraint �(+) + �(−) = I. This implies

(B−1W)��̃(+)B−1W = �(+)

(B−1W)��̃(−)B−1W = I − �(+),

which means that B−1W is a solution to the simultaneous
diagonalization of �̃(+) and �̃(−) . Since the solution is
unique up to the sign of the columns, we obtain

CALIBRATION FEEDBACK
ACCURACY ACCURACY DURATION

SUBJECT CLASSES [%] [%] [S]
cm LR 88.9 93.2 ± 3.9 3.5 ± 2.7
ct LR 89.0 91.4 ± 5.1 2.7 ± 1.5
cp LF 93.8 90.3 ± 4.9 3.1 ± 1.4
zp LR 84.7 88.0 ± 4.8 3.6 ± 2.1
cs LR 96.3 87.4 ± 2.7 3.9 ± 2.3
cu LF 82.6 86.5 ± 2.8 3.3 ± 2.7
ea FR 91.6 85.7 ± 8.5 3.8 ± 2.2
at LF 82.3 84.3 ± 13.1 10.0 ± 8.3
zr LF 96.8 80.7 ± 6.0 3.1 ± 1.9
co LF 87.1 75.9 ± 4.8 4.6 ± 3.1
eb LF 81.3 73.1 ± 5.6 5.9 ± 4.8
cr LR 83.3 71.3 ± 12.6 4.9 ± 3.7
cn LF 77.5 53.6 ± 6.1 3.9 ± 2.4
cq — — — —

MEAN 87.3 82.6 ± 11.4 4.3 ± 1.9

[TABLE 2]  PERFORMANCE RESULTS FOR ALL 14 SUBJECTS OF THE SECOND STUDY. COLUMN 1 SHOWS THE SUBJECT CODE
AND COLUMN 2 SHOWS A TWO LETTER CODE WHICH INDICATES THE CLASSES WHICH HAVE BEEN USED FOR
FEEDBACK. COLUMN 3 SHOWS THE AVERAGE ACCURACY DURING THE FEEDBACK ± THE STANDARD ERROR OF
INTRA-RUN AVERAGES. THE AVERAGE DURATION ± STANDARD DEVIATION OF THE FEEDBACK TRIALS IS PROVIDED
IN COLUMN 4 (DURATION FROM CUE PRESENTATION TO TARGET HIT). SUBJECTS ARE SORTED ACCORDING TO
FEEDBACK ACCURACY. FOR SUBJECT CQ NO REASONABLE CLASSIFIER COULD BE TRAINED. 

SBJ FIXED AUTO MANUAL
zq 17.4 13.1 12.5
zp 24.4 24.6 22.8
zr 25.3 18.6 23.1
cs 26.1 23.0 21.8
at 39.6 34.9 33.6
ct 12.1 31.0 10.9
zk 28.2 27.3 28.8
cm 19.9 8.8 7.4
cm 6.2 2.5 2.0
cm 7.7 6.6 6.1
cm 27.7 7.0 5.9
ea 21.6 20.4 19.1
eb 50.3 42.3 39.1

MEAN 23.6 20.0 17.9

[TABLE 4]  COMPARISON OF PERFORMANCE ANALOG TO
TABLE 3, BUT WITH EVALUATION BY TRAINING
ON THE WHOLE CALIBRATION MEASUREMENT
AND TESTING ON THE FEEDBACK DATA
(WINDOWS OF 1,000 MS DURING CURSOR
MOVEMENT). NOTE THAT THESE ERROR RATES
DO NOT REFLECT THE ERRORS IN HITTING THE
CORRECT BARS; A SUCCESSFUL TRIAL OFTEN
INCLUDES ERRONEOUS INTERMEDIATE STEPS.

SBJ FIXED AUTO MANUAL
zq 2.5 0.5 0.1
zp 11.9 14.8 8.1
zr 0.8 0.2 0.2
cs 9.6 4.1 1.3
at 6.9 6.7 6.7
ct 20.7 8.9 5.2
zk 9.9 6.0 1.5
cm 14.9 6.5 5.0
cm 15.1 6.4 2.1
cm 18.2 18.2 6.9
cm 13.7 8.2 5.0
ea 5.7 1.7 1.6
eb 25.0 27.1 12.1

MEAN 11.9 8.4 4.3

[TABLE 3]  COMPARISON OF CSP-BASED CLASSIFICATION PER-
FORMANCE WHEN THE HYPERPARAMETERS ARE
FIXED A-PRIORI, SELECTED AUTOMATICALLY BY
THE PROPOSED HEURISTICS, OR SELECTED MANU-
ALLY. EVALUATION BY A CHRONOLOGICAL SPLIT
OF THE CALIBRATION DATA (FIRST HALF  FOR
TRAINING, SECOND HALF FOR TESTING). NOTE
THAT “AUTO” USES ONLY THE FIRST HALF FOR
HYPERPARAMETER SELECTION, WHEREAS
”MANUAL” USES THE WHOLE CALIBRATION DATA.
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W̃D = B−1W with diagonal D : (D) j, j = sign
(

w�
j Bw̃ j

)
.

Accordingly, the filtered signals are identical up to the sign:
W� X = DW̃�B� X = DW̃� X̃ , so the features, the classifier
and the classification performance do not change.
2) If matrix B is not invertible, the objective of CSP analysis
(on the training data) can only get worse. This can easily be
seen in terms of the objective of the CSP-maximization in the
formulation of the Rayleigh coefficient, (7). Then the follow-
ing holds 

max
w̃∈RC0

w̃� S̃d w̃

w̃� S̃ c w̃
= max

w̃∈RC0

w̃�B�Sd Bw̃

w̃�B�S cBw̃

≤ max
w∈RC

w�Sd w
w�Sc w

since every term on the left hand side of the inequality is
covered on the right hand side for w = Bw̃. That means,
the CSP-optimum for the unfiltered signals (right hand
side) is greater than or equal to the CSP-optimum for the
signals filtered by B (left hand side). However, this result
holds only for the training data, i.e., it may be affected by
overfitting effects. If the prefiltering reduces artifacts, it is
well possible that the generalization performance of CSP
improves. On the other hand, the prefiltering could also
discard dicriminative information which would be detri-
mental for performance.

MERITS AND CAVEATS
The CSP technique is very successfully used in online BCI sys-
tems [2], [19]. Also in the BCI Competition III many of the suc-
cessful methods involved CSP type spatial filtering [8]. Apart
from the above results, an advantage of CSP is the interpretabili-
ty of its solutions. Far from being a black-box method, the result

of the CSP optimization procedure can visu-
alized as scalp topographies (filters and pat-
terns). These maps can be used to check
plausibility and to investigate neurophysio-
logical properties,compare the section on
visualization of the spatial filter coefficients
and also Figure 8.

It is important to point out that CSP is
not a source separation or localization
method. On the contrary, each filter is opti-
mized for two effects: maximization of vari-
ance for one class while minimizing variance
for the other class. Let us consider, e.g., a fil-
ter that maximizes variance for class foot and
minimizes it for right: A strong focus on the
left hemispherical motor area (corresponding
to the right hand) can have two plausible rea-
sons. It can either originate from an ERD
during right hand imagery, or from an ERS

during foot imagery (hand areas are more relaxed if concentra-
tion focuses on the foot, therefore the idle rhythm may increase;
lateral inhibition [36], [43]). Or it can be a mixture of both
effects. For the discrimination task, this mixing effect is irrele-
vant. However, this limitation has to be kept in mind for neuro-
physiological interpretation.

Several parameters have to be selected before CSP can be
used: the band-pass filter and the time intervals (typically a
fixed time interval relative to all stimuli/responses) and the
subset of CSP filters that are to be used. Often some general
settings are used (frequency band 7–30 HZ ([35]), time interval
starting 1,000 ms after cue, two or three filters from each side
of the eigenvalue spectrum). But there is report that on-line
performance can be much enhanced by subject-specific settings
[2]. In Appendix A, we give a heuristic procedure for selection
of CSP hyperparameters and demonstrate its favorable impact
on classification. A practical example where parameters are
selected manually is given in [15].

In addition, one should keep in mind that the discrimina-
tive criterion (6) tells only the separation of the mean power
of two classes. The mean separation might be insufficient to
tell the discrimination of samples around the decision bound-
ary. Moreover, the mean might be sensitive to outliers.
Artifacts, such as blinking and other muscle movements can
dominate over EEG signals giving excessive power in some
channels. If the artifact happens to be unevenly distributed in
two conditions (due to its rareness), one CSP filter will likely
to capture it with very high eigenvalue. Taking one specific
data set from our database as an example, the CSP filter/pat-
tern corresponding to the best eigenvalue shown in Figure 8
is mainly caused by one single trial. This is obviously a highly
undesirable effect. But it has to be noted that the impact on
classification is not as severe as it may seem on the first sight;
typically the feature corresponding to such an artifact CSP fil-
ter component gets a near-zero weight in the classification
step and is thereby neglected.

[FIG8] (a) CSP filter/pattern corresponding to the ‘best’ eigenvalue in the data set of
subject cr. This CSP solution is highly influenced by one single-trial in which channel
FC3 has a very high variance. (b) shows the variance of all single-trials of the training
data (x-axis: number of trial in chronological order, y-axis: log variance of the trial in
the CSP surrogate channel; green: left hand imagery, red: right hand imagery). The
trial which caused the distorted filter can be identified as the point in the upper right
corner. Note that the class-specific box-plots in (b) show no difference in median of
the variances (black line).

Filter Number 1 Pattern Number 1

(a) (b)
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Finally, we would like to remark that the evaluation of
CSP-based algorithms needs to take into account that this
technique uses label information. This means that CSP filters
may only be calculated from training data (of course the
resulting filters need then to be applied also to the test set).
In a cross-validation, CSP filters have to be calculated repeat-
edly on the training set within each fold/repetition.
Otherwise severe underestimation of the generalization error
may occur.

APPLICATION OF CSP TO SOURCE PROJECTION
Here we report a novel application of CSP with a different flavor
than above. Instead of single trial classification of mental states,
CSP is used in the analysis of event-related modulations of brain
rhythms. We show that CSP can be used to enhance the signal
of interest while suppressing the background activity.

Conventionally event-related (de-)synchronization is defined
as the relative difference in signal power of a certain frequency
band, between two conditions, for instance a prestimulus or ref-
erence period and an immediate post-stimulus period [42]: 

ERD(t) = Power(t) − Reference power
Reference power

.

Thus ERD and ERS describe the relative power modulation of
the ongoing activity, induced by a certain stimulus or event.
Typically the sensor (possibly after Laplace filtering) that exhibit
the strongest ERD/ERS effect at a certain frequency band is used
for the analysis. Nevertheless, the CSP technique can help to
further improve on the signal-to-noise ratio by optimizing the
spatial filters focusing on rhythmic cortical generators that
undergo the rhythmic perturbation.

We briefly outline how the CSP algorithm can be used for
this purpose in an illustrative example of somatosensory stim-
ulation. In particular, we use single trial EEG recordings of
electrical stimulations of the median nerve at the right wrist.
Such somatosensory stimulation typically causes modulations
of the μ-rhythm, yielding a sequence of ERD followed by a
rebound (ERS), overshooting the pre-event baseline level.
Figure 9(a) depicts the time course of the averaged ERD/ERS
for the α-band at approximately 10 HZ obtained from the best
sensor. Based on this averaged band power modulations, we
determine two disjoint temporal intervals T1 and T2, associat-
ed with the desynchronization and the hyper-synchronization
phase, respectively. These two intervals serve as the opposed
conditions (classes) in the conventional CSP framework. We
estimate covariance matrices �(+) and �(−) as in (3) pooling
covariance matrices in the two intervals separately. Solving the
CSP problem according to (5), yields a set of spatial filters. The
filter that minimized the variance for the desynchronization
period, while simultaneously maximizing those of the synchro-
nization period constitutes the optimal spatial projection onto
the cortical generator under consideration, i.e., onto the con-
tralateral μ-rhythm. Here we restrict our CSP analysis only to
the hemisphere that is contralateral to the stimulation in

order to obtain unilateral spatial filter that has no cross talk
with the other hemisphere. Figure 9 depicts the obtained spa-
tial CSP filter, along the time course of ERD/ERS of the pro-
jected signal.

[FIG9] Illustration of an improved source projection using the
CSP technique. (a) The time course of the averaged band-power
(10 HZ) at the channel (CP3) with the most prominent ERD/ERS
following a median nerve stimulation at the right wrist. The
gray-shaded areas indicate the two selected virtual classes for
the CSP-algorithm, where T1 corresponds to the ERD phase,
while T2 reflects the ERS interval. (b) Depicts the CSP-filter that
minimizes the variance for T1, along with the projection of the
corresponding source to the scalp. See main text for the reason
to constrain the filter to the left hemisphere. (c) Time course of
the averaged band-power of the projected signal. Note that this
source projection procedure has yielded ERD and ERS that are
much more accentuated as they have almost tripled in
magnitude.
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Note, in case the modulation of rhythmic activity com-
prises only of an ERD or an ERS response, the same approach
can be used by simply contrast-
ing a pre-stimulus reference
interval against the period of
modulation. In other words,
CSP should be thought as a gen-
eral tool for contrasting differ-
ent brain states that yields a
spatial filter solution that can be
used to enhance the signal-to-
noise ratio and can be interpreted from the physiological
viewpoint.

VARIANTS AND EXTENSIONS OF THE 
ORIGINAL CSP ALGORITHM

MULTICLASS
In its original form, CSP is restricted to binary problems. A
general way to extend this algorithm to the multiclass case is to
apply CSP to a set of binary subproblems (all binary pairs or,
preferably, in a one-versus-rest scheme). A more direct
approach by approximate simultaneous diagonalization was
proposed in [12].

AUTOMATIC SELECTION OF SPECTRAL FILTER
The common spatio-spectral pattern (CSSP) algorithm [31]
solves the standard CSP problem on the EEG time series aug-
mented by delayed copies of the original signal, thereby obtain-
ing simultaneously optimized spatial filters in conjunction with
simple frequency filters. More specifically, CSP is applied to the
original x concatenated with its off τ ms delayed version
x(t − τ). This amounts to an optimization in an extended spatial
domain, where the delayed signals are treated as new channels
x̃(t) = (x(t)�, x(t − τ)�)� . Consequently this yields spatial
projections w̃ = (w(0)�, w(τ)�)� , that correspond to vectors in
this extended spatial domain. Any spatial projection in state
space can be expressed as a combination of a pure spatial and
spectral filter applied to the original data x, as follows:

w̃�x̃(t) =
C∑

c=1

w(0)
c xc(t) + w(τ)

c xc(t − τ)

=
C∑

c=1

γc

(
w(0)

c

γc
xc(t) + w(τ)

c

γc
xc(t − τ)

)
, (8)

where {γc}C
c=1 defines a pure spatial filter, whereas

⎛
⎜⎝ w(0)

c

γc
,

τ−1︷ ︸︸ ︷
0, . . . , 0,

w(τ)
c

γc

⎞
⎟⎠

defines a finite impulse response (FIR) filter at each electrode c.
Accordingly this technique automatically neglects or empha-
sizes specific frequency bands at each electrode position in a way

that is optimal for the discrimination of two given classes of sig-
nals. Note that individual temporal filters are determined for

each input channel.
The common sparse spectral

spatial pattern (CSSSP) algorithm
[13] eludes the problem of manual-
ly selecting the frequency band in a
different way. Here a temporal FIR
filter is optimized simultaneously
with a spatial filter. In contrast to
CSSP only one temporal filter is

used, but this filter can be of higher complexity. In order to control
the complexity of the temporal filter, a regularization scheme is
introduced which favors sparse solutions for the FIR coefficients.
Although some values of the regularization parameter seem to
give good results in most cases, for optimal performance a model
selection has to be performed.

In [50] an iterative method (SPEC-CSP) is proposed which
alternates between spatial filter optimization in the CSP sense
and the optimization of a spectral weighting. As result, one
obtains a spatial decomposition and a temporal filter with are
jointly optimized for the given classification problem.

CONNECTION TO A DISCRIMINATIVE MODEL
Here we show how CSP analysis is related to a discriminative
model. This connection is of theoretical interest in itself, and
can also be used to further elaborate new variants of CSP. See
[48], [49] for related models.

The quantity Sd = �(+) − �(−) in (6) can be interpreted as
the empirical average ÊX,y[yX X�] of the sufficient statistics
yX X� of a linear logistic regression model:

P(y | X, V, b) = exp(yf(X; V, b))
Z(X, V, b)

f(X; V, b) = Tr[V� X X�] + b,

where y ∈ {+1,−1} is the label corresponding to two classes,
V ∈ RC×C is the regression coefficient, b is the bias, and
Z(X, V, b) = ef(X;V,b) + e− f(X;V,b) . In fact, given a set of trials
and labels {Xi, yi} the log-likelihood of the above problem can
be written as follows:

log
n∏

i =1

P(yi |Xi, V, b) = Tr

[
V�

(
n∑

i =1

yi Xi X
�
i

)]

+ b
n∑

i =1

yi −
n∑

i =1

log Z(Xi, V, b)

= n
2

Tr [V�Sd] −
n∑

i =1

log Z(Xi, V, b),

where for simplicity we assumed that each condition contains
equal number (n/2) of trials. Unfortunately, because of the log-
normalization Z(X, V, b) term, the maximum likelihood prob-

CSP FILTERS MAXIMIZE THE
VARIANCE OF THE SPATIALLY
FILTERED SIGNAL UNDER ONE

CONDITION WHILE MINIMIZING IT
FOR THE OTHER CONDITION.
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lem cannot be solved as simple as the simultaneous diagonaliza-
tion. One can upper bound the log Z(X, V, b) under the follow-
ing condition:

n∑
i =1

∣∣∣Tr
[

V� Xi X
�
i

]∣∣∣ ≤ 1,

and maximize the lower bound of the likelihood as follows:

maximize
v∈Rc×c

n
2

Tr [V�Sd],

subject to
n∑

i =1

∣∣∣Tr
[

V� Xi X
�
i

]∣∣∣ ≤ 1.

Indeed this yields the first generalized eigenvector of the CSP
problem (5) when V is rank = 1 matrix V = ww�. 

REGULARIZING CSP
In practical BCI applications, the smaller the number of elec-
trodes, the smaller the effort and time to set up the cap and also
the smaller the stress of patients would be. CSP analysis can be
used to determine where the electrodes should be positioned;
therefore it would be still useful for experiments with a small
number of electrodes. In [16], �1 regularization on the CSP fil-
ter coefficients was proposed to enforce a sparse solution; that
is, many filter coefficients become numerically zero at the opti-
mum. Therefore, it provides a clean way of selecting the number
and the positions of electrodes. Their results have shown that
the number of electrodes can be reduced to 10–20 without sig-
nificant drop in the performance.

ADVANCED TECHNIQUES TOWARDS 
REDUCING CALIBRATION DATA
Because there exists substantial day-to-day variability in EEG
data, the calibration session (15–35 min) is conventionally car-
ried out every time before day-long experiments even for an
experienced subject. Thus, in order to increase the usability of
BCI systems, it is desirable to make use of previous recordings
so that we can reduce the calibration measurement as small as
possible (compare also data set IVa of the BCI competition III,
[8]). For experienced BCI users whose EEG data were recorded
more than once, [28] proposed a procedure to utilize results
from the past recordings. They extracted prototypical filters by a
clustering algorithm from the data recorded before and use
them as an additional prior information for the current new ses-
sion learning problem.

Recently [32] proposed an extended EM algorithm, where
the extraction and classification of CSP features are performed
jointly and iteratively. This method can be applied to the cases
where either only a small number of calibration measurements
(semisupervised) or even no labeled trials (unsupervised) are
available. Basically, their algorithm repeats the following steps
until a stable result is obtained: (i) constructing an expanded
training data which consists of calibration trials with observed

labels and a part of unlabeled (feedback) data with labels esti-
mated by the current classifier, (ii) reextracting the CSP fea-
ture and updating the classifier based on the current data sets.
They analyzed the data IVa of BCI competition III [8] and
reported that because of the iterative reextraction of the CSP
features, they could achieve satisfactory performance from
only 30 labeled and 120 unlabeled data or even from 150 unla-
beled trials (off-line analysis). Note that only results of selected
subjects of the competition data set IVa were reported.
Although there was no experimental result presented, it was
claimed that the extended EM procedure can also adapt to
nonstationarity in EEG signals.

DEALING WITH THE NONSTATIONARY OF EEG SIGNALS
Another practical issue is nonstationarity in EEG data. There
are various suggestions how to handle the nonstationarity in
BCI systems [10], [26], [51], and [52]. With respect to CSP-
based BCIs, the result of [29], [47] was that a simple adaptation
of the classifier bias can compensate nonstationarity astonish-
ingly well. Further changes like retraining LDA and recalculat-
ing CSP contributed only slightly or sometimes increased the
error rate. 

The question whether the CSP filter W or the pattern A
should generalize to a new recording was raised by [23]. From
a source separation point of view, the j-th column w j of the
filter W tries to capture the j-th source denoted by the j-th
column a j of the pattern A while trying to suppress all other
sources that are irrelevant to the motor-imagination task.
Therefore, if the disturbances change while the relevant
source remains unchanged the optimal filter should adaptive-
ly change to cancel out the new disturbances while still cap-
turing the relevant source. In [23] the fixed spatial pattern
(FSP) approach was proposed; that is to keep the spatial pat-
tern of the relevant source, i.e., subset of the columns of A
unchanged while changing the spatial filter adaptively in a
new recording. The true labels (i.e., the actual intension of a
subject) are not required when the FSP is applied because
only the irrelevant sources, which are assumed to be common
to two classes, are re-estimated.

A novel approach to make CSP more robust to nonstationari-
ties during BCI feedback was proposed in [5]. In this article, a
short measurement of nontask related disturbances is used to
enforce spatial filters which are invariant against those distur-
bances. In invariant CSP (iCSP) the covariance matrix of the dis-
turbance is added to the denominator in the Rayleigh coefficient
representation of CSP, compare (7).

CONCLUDING DISCUSSION
We have reviewed a spatial filtering technique that often
finds its successful use in BCI: CSP. The method is based on
the second order statistics of the signal between electrodes
and the solution is obtained by solving a generalized eigen-
value problem. We have shown a generative and a discrimi-
native interpretation of the method. We have applied the
method to two motor imagination based BCI studies. In the
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first study, we have reported the peak information transfer
rate from one subject of 35.4 b/min. In the second study, we
have shown that 12 out of 14 naive subjects could perform
BCI control on their first BCI experiments. We have pointed
out not only the advantage of the method, such as low com-
putation cost and interpretability but also some caveats
such as model selection and pre-processing issues or deteri-
oration under outliers. We showed subsequently that CSP
can be extended and robustified in order to alleviate these
critical aspects. In this review, we have focused our atten-
tion to applications of CSP for single trial EEG analysis in
the context of BCI. Note however that CSP-filtering and
extensions thereof can be applied to extract general dis-
criminative spatio-temporal structure from multivariate
data streams beyond EEG. Future work will continue the
quest to develop novel spatio-temporal filtering methods
that allow more accurate and interpretable classification
even for nonstationary, noisy, interacting data sources.
Special attention will be placed on the construction of prob-
abilistically interpretable nonlinear modeling that allows
the integration of feature extraction and classification steps
within a one step procedure in the spirit of, e.g., [17], [22],
[48], and [49].
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APPENDIX

HOW TO SELECT HYPERPARAMETERS FOR CSP
Here we give a heuristic procedure to automatically select all
parameters that are needed for successful CSP application.
There is no claim whatsoever that these heuristics are close
to optimal or natural in any sense. However, we have found
them practically working and evaluate them here in compari-
son to the general setting and to manual selection by the
experimenter.

SELECTION OF A FREQUENCY BAND
We provide our heuristic for the selection of a discriminative
frequency band in pseudo code, see Algorithm 1. The EEG trials
X should be spatially filtered by a Laplacian or bipolar filter. In
our experience, the algorithm works best if only few channels
are used. A good choice is, e.g., to choose C = {c1, c2, c3} with
ci being one from each area of the left hand, right hand and feet
with max

√∑
f (scorec( f ))2.

Algorithm 1 Selection of a discriminative frequency band.
Let X(c,i ) denote trial i at channel c with label yi and let C
denote the set of channels.

1) dBc( f, i) ← log band-power of X(c,i ) at frequency f ( f
from 5 to 35Hz)

2) scorec( f ) ← corrcoef(dBc( f, i ), yi)i

3) fmax ← argmaxf
∑

c∈C scorec( f )

4) score∗
c( f ) ←

{
scorec ( f ) if scorec ( fmax) > 0
−scorec ( f ) otherwise

5) fscore( f ) ← ∑
c∈C score∗

c( f )

6) f ∗
max ← argmaxf fscore( f )

7) f0 ← f ∗
max f1 ← f ∗

max
8) while fscore( f0 − 1) ≥ fscore( f ∗

max)
∗0.05 do

9) f0 ← f0 − 1
10) while fscore( f1 + 1) ≥ fscore( f ∗

max)
∗0.05 do

11) f1 ← f1 + 1
12) return frequency band [ f0, f1]

SELECTION OF A TIME INTERVAL.
The heuristic selection of a time interval proceeds similar to the
selection of the frequency band, (see e.g., 2).

Algorithm 2 Selection of a discriminative time interva.l
Let X(c,i)(t) denote time sample t of trial i at channel c
with label yi and let C denote the set of channels.

1) envc(t, i ) ← envelope of X(c,i )(t) , calculated by Hilbert
transform (e.g. [9]) and smoothed

2) scorec(t) ← corrcoef (envc(t, i ), yi)i

3) tmax ← argmaxt
∑

c∈C |scorec(t)|

4) score∗
c(t) ←

{
scorec(t) if

∑
tmax−100ms<t′<tmax+100ms scorec(t ′) > 0

−scorec(t) otherwise

5) tscore(t) ← ∑
c∈C score∗

c(t)
6) t∗

max ← argmax t tscore(t)
7) thresh ← 0.8 ∗∑

t tscore+(t) (with f +(x) = f(x) if
f(x) > 0 and = 0 otherwise)

8) t0 ← t ∗
max; t1 ← t ∗

max
9) while

∑
t0≤t≤t1 tscore(t) < thresh do

10) if
∑

t<t0 tscore∗(t) >
∑

t>t1 tscore∗(t) then
11) t0 ← t0 − 1
12) else
13) t1 ← t1 + 1
14) return time interval [t0, t1]

SELECTION OF A SUBSET OF FILTERS
The classical measure for the selection of CSP filters is based on
the eigenvalues in (5). Each eigenvalue is the relative variance of
the signal filtered with the corresponding spatial filter (variance
in one condition divided by the sum of variances in both condi-
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tions). This measure is not robust to outliers because it is based
on simply pooling the covariance matrices in each condition (3).
In fact, one single trial with very high variance can have a
strong impact on the CSP solution (see also Figure 8). A simple
way to circumvent this problem is to calculate the variance of
the filtered signal within each trial and then calculate the corre-
sponding ratio of medians:

score(w j) =
med(+)

j

med(+)
j + med(−)

j

where,

med(c)
j = mediani∈Ic

(
w�

j Xi X
�
i w j

)
(c ∈ {+,−}).

As with eigenvalues, a ‘ratio-of-medians’ score near 1 or near 0
indicates good discriminability of the corresponding spatial fil-
ter. These scores are more robust with respect to outliers than
the eigenvalue score, e.g., the filter shown in Figure 8 would get
a minor (i.e., near 0.5) ratio-of-medians score.

EVALUATION OF HEURISTIC SELECTION PROCEDURE
Here we compare the impact of individually choosing the
hyperparameters for CSP-based classification. We compare the
method “fixed” which uses a broad frequency band 7–30 Hz and
the time window 1,000–3,500 ms post stimulus. The method
“auto” uses the heuristics presented in this section to select fre-
quency band and time interval. In “manual” we use the settings
that were chosen by an experienced experimenter by hand for
the actual feedback (see [15] for a practical example with man-
ual selection). Note there is a substantial improvement of per-
formance in most of the data sets. Interestingly in one feedback
data set (subject ct) the “auto” method performs badly,
although the selected parameters were reasonable.
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