		tinen
Full Name:	20	ution.
ECE 6534 (S.	ving 201	5) - Evam

Date:	March	12,	2015	

Question	# of Points Possible	# of Points Obtained	Grader
# 1	16	1.590	
# 2	18		* 1
# 3	17	4	
# 4	17		
# 5	16		
# 6	16	(4)	
Total	100	¥)	

For justifications: Justifications need to show you understand the underlying reasons why your answer is correct.

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Utah and ECE 6534 and without additional external help. The guidelines include, but are not limited to,

- Notes are allowed
- No textbooks may be used
- No calculators or computers may be used
- No collaboration is allowed
- · No cheating is allowed

0. 1 .	 Dist		
Student	Date		

Full Name: Solutions

ECE 6534 (Spring 2015) - Exam

Date: March 12, 2015

Question #1: Let S be defined by the set of all real, Toeplitz $N \times N$ matrices, a subspace of $\mathbb{R}^{N \times N}$ over the field of real numbers \mathbb{R} .

(a) (5 pts) Is $S_1 = {\alpha I | \alpha \in \mathbb{R}}$, where I is identity, a subspace of S? Briefly justify why.

Yes. S, is contained is S (identity is toeplite) and S, is a vector space,

· There is closure under addition + multiplication

(b) (5 pts) Is the set of all Toeplitz $N \times N$ matrices with strictly positive elements a subspace of S? Briefly justify why.

No. This set closs not contain the o element, hence it is not a vector space.

(c) (6 pts) Determine dim(S). Justify why.

dim(S) = 2N-1 since Toeplitz matrices

are aniquely defined by 2N-1 values (that is,

one row and one column (minus a diagonal
value).

Full Name:

ECE 6534 (Spring 2015) - Exam

Date: March 12, 2015

Question #2: A permutation matrix P is a $N \times N$ matrix in which exactly one element in each row and each column is equal to 1 and all other elements are equal to 0.

(a) (5 pts) (True / False) P has a null space of strictly $\mathcal{N}(P) = 0$. Justify why.

I rue, Every column has one value ce unique location (compared with all other columns). Hence, the columns are linearly independent and matrix is full rank.

(b) (4 pts) (True / False) P is an orthogonal operator. Justify why.

True. PHD = I since the non column and non roun will overlap at one spoint and the nth column of PH will never overlap for n + Mo regulting in O inner product

(c) (4 pts) (True / False) P is a projection operator. Justify why.

talse, [000] [000] = I + P2 (d) (5 pts) (True / False) $\sqrt{x^H Px}$ is a norm. Justify why.

False. This rearranges the elements in one vector, so ne are not gaurenteed Vx"Px 20,

Note: If P were an orthogonal projection, it would be tike,

	$\sim 1 l$
Full Name:	Jolutions
ECE 6534 (S	pring 2015) – Exam

Date: March 12, 2015

Question #5: Let A be a linear, memoryless, and time-invariant system.
Let $B = D_3 U_2 U_3 D_2 A$ $N_0 \leftarrow common$
(a) (4 pts) Is B time-invariant? Justify why. Not common fuctors, so I can saitch
NIM D. U. U. D. A = U.D. C. D. A
1)) A = 120MOUPS
B is diagonal, but not every other every other all values are the same. So B is a rector (b) (4 pts) Is B memoryless? Justify why.
(b) (4 pts) Is B memoryless? Justify why.
Yes. From (a), B is diagonal, and therefore
memory less,

(c) (4 pts) Is B causal? Justify why.

les. Since it is memoryless, it is causal.

(d) (5 pts) Is $D_3U_2U_3D_2$ a projection operator? Justify why.

ECE 6534 (Spring 2015) - Exam

Date: March 12, 2015

Question #4:

(a) (6 pts) Show that $I + A^*A$ is invertible for any $A \in \mathbb{R}^{N \times N}$. From the HW, we know that AAA has all seal and Positive (or zero) eigenvalues.

With eigenvalue decomposition:

Hence I+ AAA is full rank

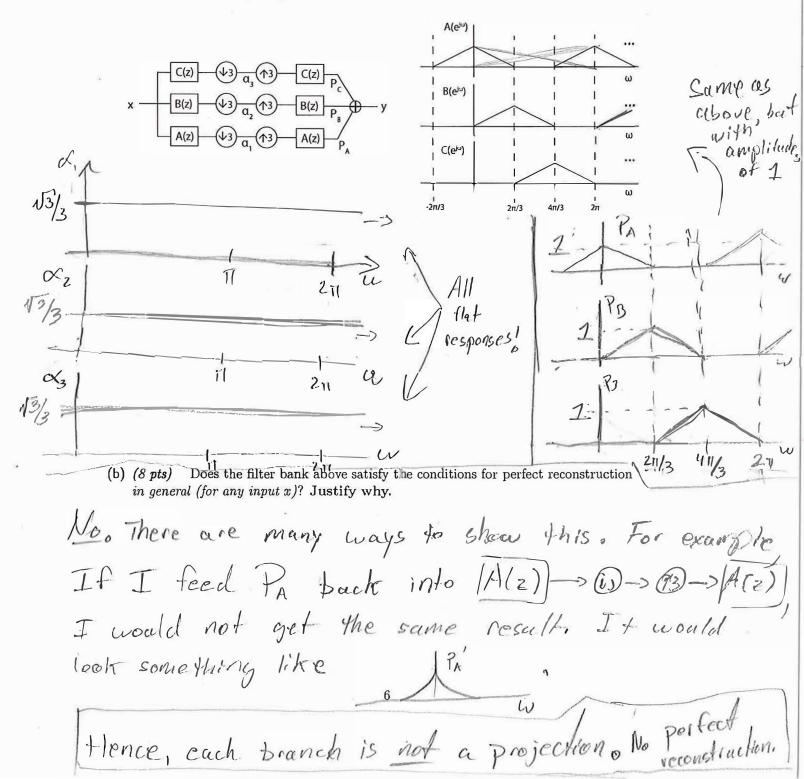
All diagonal values must

(b) (5 pts) Show that if B is a λ -tight frame, then $I - \lambda^{-1}B^*B$ is orthogonal to B^*B .

$$(B^*B)^*B \leftarrow (B^*B)(I - \lambda^- B^*B) = B^*B - \lambda^+ B^*B^*B$$

By definition of a 1-tight frame: BB = AI So = B*B- $\sqrt{X}B*B=B*B=B*B=[9*B)^*(I-XB*B)$ Octhogonal

(c) (6 pts) Determine the singular values of D_N . Justify why.

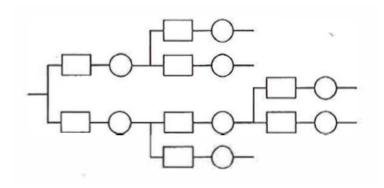

Diagonalizing I is trivial (the diagonal is I) So the signature values must contain 15 or Zeros (depending on how we define

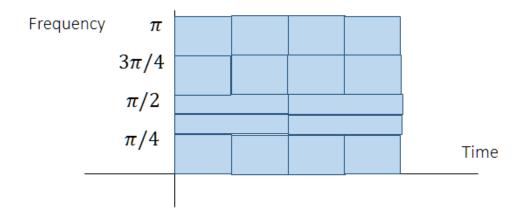
ECE 6534 (Spring 2015) - Exam

Date: March 12, 2015

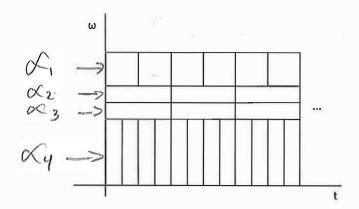
Question #5:

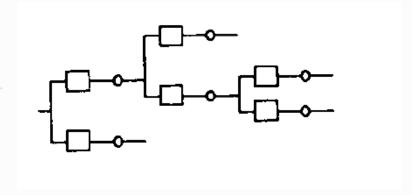
(a) (8 pts) Consider the filter bank and filters below. For an impulse input, sketch the frequency response of α_1 , α_2 , and α_3 as well as P_A , P_B , and P_C . [the maximum amplitude of each frequency response is $\sqrt{3}$]




Full Name: Solution
ECE 6534 (Spring 2015) – Exam

Date: March 12, 2015


Question #6:


(a) (8 pts) Sketch the time-frequency tiling for the following wavelet packet. Assume the top filters are high pass and the bottom filters are low pass and the downsamplings are by 2.

(b) (8 pts) Design a wavelet packet tree for the following time-frequency tiling.

