Full Name:	Lab Section:	
ECE 6534 (Spring 2015) – Exam Practice	Date:	March 10, 2015

Question	# of Points Possible	# of Points Obtained	Grader
# 1	16		
# 2	16		
# 3	18		
# 4	18		
# 5	16		
# 6	16		
Total	100		

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Utah and ECE 3500 and without additional external help. The guidelines include, but are not limited to,

- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Student	Date

Full Name:

Lab Section: _

ECE 6534 (Spring 2015) - Exam Practice

Date:

March 10, 2015

Question #1: Consider the subspace of $\mathbb{R}^{N \times N}$ spanned by $\mathcal{S} = \{xx^H, yy^H\}$ such that $x, y \in \mathbb{R}^N$.

(a) (6 pts) Determine $\dim(S)$. Justify why.

(b) (5 pts) Does S define a subspace of finite, linear, time-invariant filters? **Justify why**.

(c) (5 pts) Consider $S_2 = \{xy^H\}$, where $x \in \mathbb{R}^N$. Is S_2 a subspace of S? Justify why.

Full Name:

Lab Section: _

ECE 6534 (Spring 2015) - Exam Practice

Date:

March 10, 2015

Question #2: Let $x \in \mathbb{R}^{50}$ and $x \neq 0$.

(a)
$$(6 pts)$$
 Is $z(x) = |x_1| + (|x_2 + x_3|^4)^{1/4} + |x_4|$ a norm? **Justify why?**

(b) $(6 \ pts)$ Is $|\sum_{n=0}^{N} |x[n]|^{1/2}|^2$ a norm? **Justify why?**

(c) (5 pts) Is $x^H A x$ for $A \in \mathbb{R}^{50 \times 50}$ a norm? Justify why?

Full Name:	Lab Section:	
ECE 6534 (Spring 2015) – Exam Practice	Date:	March 10, 2015

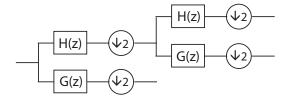
Question #3: Let A be a linear, causal, time-invariant, and BIBO stable system in which that absolute value of all eigenvalues is less than 1. Let $B = (I - A)^{-2}$

(a) (5 pts) Is B time-invariant? Justify why.

(b) (4 pts) Is B causal? Justify why.

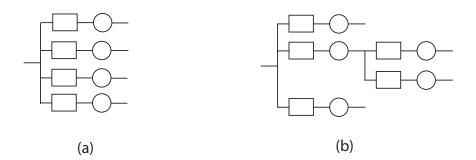
(c) (4 pts) Is B memoryless? Justify why.

(d) (5 pts) Is B BIBO stable? Justify why.


	Name: 6534 (S _l	oring 2015) – Exam	Practice	Lab Section: Date:	March 10, 2015
Ques	tion #4:				
(a)	(6 pts)	(True / False) A pro	ojection operator is alwa	ys invertible. Justi	fy why.
(b)	(6 pts) frequence		filter is orthogonal (or tall frequencies. Justify	= /	olute square of its
(c)	(6 pts) perfect r	. , ,	Iters of length N , we can V-channel filter bank. $\mathbf{J}\mathbf{u}$	_	gonality to achieve

Full Name: Lab Section: ______ ECE 6534 (Spring 2015) – Exam Practice Date: March 10, 2015

Question #5:


(a) (8 pts) Draw the block diagram for the system $H^*D_2U_2H + G^*D_2U_2G$.

(b) (8 pts) Simplify the following wavelet tree into a standard filter bank representation.

Full Name: _____ Lab Section: _____ ECE 6534 (Spring 2015) - Exam Practice Date: March 10, 2015

Question #6: (16 pts) Sketch the time-frequency tiling for the following filter banks.

