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Abslracl- In recent years, convex optimization has be- 
come a computational tool of central importance in engi- 
neering, thanks to it’s ability to solve very large, practical 
engineering problems reliably and efficiently. The goal of 
this tutorial is to give an ovemew of the basic concepts of 
convex sets, functions and convex optimization problems, so 
that the reader can more readily recognize and formulate 
engineering problems using modern convex optimization. 
This tutorial coincides with the publication of the new book 
on convex optimization, by Boyd and Vandenberghe (71, 
who have made available a large amount of free course 
material and links to freely available code. These can be 
downloaded and used immediately by the audience both 
for self-stndy and to solve real problem. 

1. INTRODUCTION 
Convex optimization can be described as a fusion 

of three disciplines: optimization [221, [ZO], [I], [31, 
[4], convex analysis [19], [24], 1271, [16], [13], and 
numerical computation [26], [U], [IO], [17]. It  has 
recently become a tool of central importance in engi- 
neering, enabling the solution of very large, practical 
engineering problems reliably and efficiently. In some 
sense, convex optimization is providing new indispens- 
able computational tools today, which naturally extend 
our ability to solve problems such as least squares and 
linear programming to a much larger and richer class of 
problems. 

Our ability to solve these new types of problems 
comes from recent breakthroughs in algorithms for solv- 
ing convex optimization problems [181, [231, [291, 1301, 
coupled with the dramatic improvements in computing 
power, both of which have happened only in the past 
decade or so. Today, new applications of convex op- 
timization are constantly being reported from almost 
every area of engineering, including: control, signal 
processing, networks, circuit design, communication, in- 
formation theory, computer science, operations research, 
economics, statistics, structural design. See [71, [21, [SI, 
[61, [91, [ I  I], [15], [SI, [ZI], [14], [28] and the references 
therein. 

The objectives of this tutorial are: 
I )  to show that there is are straight forward, sys- 

tematic rules and facts, which when mastered, 
allow one to quickly deduce the convexity (and 

hence tractability) of many problems, often by 
inspection; 

2) to review and introduce some canonical opti- 
mization problems, which can be used to model 
problems and for which reliable optimization code 
can be readily obtained; 

3) emphasize the modeling and formulation aspect; 
we do not discuss the aspects of writing custom 
codes. 

We assume that the reader has a working knowledge of 
linear algebra and vector calculus, and some (minimal) 
exposure to optimization. 

Our presentation is quite informal. Rather than pro- 
vide details for all the facts and claims presented, our 
goal is instead to give the reader a flavor for what is 
possible with convex optimization. Complete details can 
be found in [7], from which all the material presented 
here is taken. Thus we encourage the reader to skip 
sections that might not seem clear and continue reading; 
the topics are not all interdependent. 

Motivarion 

A vast number of design problems in engineering can 
be posed as constrained optimization problems, of the 
form: 

minimize fo(z) 
subjectto f;(z)sO, i = l ,  . . . ,  m ( I )  

where x is a vector of decision variables, and the 
functions fo, fi and hi, respectively, are the cost, in- 
equality constraints, and equality constraints. However, 
such problems can be very hard to solve in general, 
especially when the number of decision variahies in x 
is large. There are several reasons for this difficulty: 
First, the problem “terrain” may be riddled with local 
optima. Second, it might be very hard to find a fea- 
sible point (i.e., an z which satisfy all equalities and 
inequalities), in fact, the feasible set which needn’t even 
be fully connected, could be empty. Third, stopping 
criteria used in general Optimization algorithms are often 
arbitrary. Forth, optimization algorithms might have very 
poor convergence rates. Fifth, numerical problems could 

hi(.) = 0, 2 = 1,. . . , p .  
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cause the minimization algorithm to stop all together or 
wander. 

It has been known for a long time [19], [31, [I@, [I31 
that if the f, are all convex, and the h; are affine, then 
the first three problems disappear: any local optimum 
is, in fact, a global optimum; feasibility of convex o p  
timization problems can be determined unambiguously, 
at least in principle; and very precise stopping criteria 
are available using duality. However, convergence rate 
and numerical sensitivity issues still remain a potential 
problem. 

It was not until the late '80's and ' 90 's  that researchers 
in the former Soviet Union and United States discovered 
that if, in addition to convexity, the f; satisfied a property 
known as self-concordance. then issues of convergence 
and numerical sensitivity could be avoided using interior 
point methodr [MI, [23], [29], 1301, [251. The self- 
concordance property is satisfied by a very large set of 
important functions used in engineering. Hence, it is now 
possible to solve a large class of convex optimization 
problems in engineering with great efficiency. 

11. CONVEX SETS 
In this section we list some important convex sets 

and operations. It is important to note that some of 
these sets have different representations. Picking the 
right representation can make the difference between a 
tractable problem and an intractable one. 

We will he concerned only with optimization prob- 
lems whose decision variables are vectors in R" or 
matrices in R"'"". Throughout the paper, we will make 
frequent use of informal sketches to help the reader 
develop an intuition for the geometry of convex opti- 
mization. 

A function f : R" -+ R"' is afine if it has the form 
linear plus constant f(z) = Az + b. If F is a matrix 
valued function, i.e., F : R" + RPxq, then F is affine 
if it has the form 

F ( x )  = Ao + X I A ~  + , , . + z,A, 

where A; E Rpxq. Affine functions are sometimes 
loosely refered to as linear. 

Recall that S C R" is a subspace if it contains the 
plane through any two of its points and the origin, i.e., 

x , y E S ,  A,peR +Xx+pyeS.  

Two common representations of a subspace are as the 
range of a matrix 

range(A) = {Aw /w  ER^} 
{wlai + .  . + ~,p, I W; E R} 

where A = [ a1 
matrix 

. ' .  aq 1;  or as the nullspace of a 

nullspace(B) = {x I Bx = 0) 
= { E  I bTx = 0,. . . , bp T x = 0) 

T where B = [ bl .. . bp ] . As an example, let 
S" = {X E R"'" I X = X T }  denote the set 
of symmetric matrices. Then S" is a subspace, since 
symmetric matrices are closed under addition. Another 
way to see this is to note that S" can be written as 
{ X  E R"'" I Xij  = X j ; , W , j }  which is the nullspace 
of h e a r  function X - X T .  

A set S 2 R" is afine if it contains line through any 
two points in it, i.e., 

X,Y E S, X 7 p  E R, X+p = 1 * Xz + p y  E S. 

X = 0.6 \Y. 
&.. 

X = -0.5 . 
Geometrically, an affine set is simply a subspace which 
is not necessarily centered at the origin. Two common 
representations for of an affine set are: the range of affine 
function 

S = { A t + b  I t ER'}, 

or as the solution of a set of linear equalities: 

S = {z I b y .  = dl ,  . . . , bTz = dp) 
= { X I  B x = d } .  

A set S C R" is a convex set if it contains the line 
segment joining any of its points, i.e., . 

z,y E s, A,p 2 0, X+p=  1 * Xx+py E s 
convex not convex 

Geometrically, we can think of convex sets as always 
bulging outward, with no dents or kinks in them. Clearly 
subspaces and affine sets are convex, since their defini- 
tions subsume convexity. 

A set S C R" is a convex cone if it contains all 
rays passing through its points which emanate from the 
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origin, as well as all line segments joining any points 
on those rays, i.e., 

z,yES, X , p t O ,  * X x + p y E S  

Geometrically, z, y E S means that S contains the entire 
'pie slice' between x ,  and y. 

The nonnegative orthant, R; is a convex cone. The set 
S ;  = { X  E S" I X 2 0) of symmetric positive 
semidefinite (PSD) matrices is also a convex cone, since 
any positive combination of semidefinite matrices is 
semidefinite. Hence we call S ;  the positive semidefinite 
cone. 

R" is said to be proper if it is 
closed, has nonempty interior, and is pointed, i.e., there 
is no line in K .  A proper cone K defines a generalized 
inequnlify S K  in R": 

A convex cone K 

X ~ K Y  e y - X E K  

(strict version x 4~ y e y - x E int K). 

This formalizes our use of the ? symbol: . K = R;: x SK y means zi I yi 
(componentwise vector inequality) 

These are so common we drop the K. 

. . . + B k X k  is said to be a 

K = S;:  x 5~ Y means Y - X  is PSD 

Given points x ;  E R" and Bi E R, then y = 01x1 + 
. linear combination for any real 6, 

affine Combination if xi 0; = 1 
convex combination if xi Bi = 1, B; 2 0 . conic combination if 0, 2 0 

The linear (resp. affine, convex, conic) hull of a set 
S is the set of all linear (resp. affine, convex, conic) 
combinations of points from S. and is denoted by 
span(S) (resp. Aff(S), Co(S), Cone(S)). It can be 
shown that this is the smallest such set containing S. 

As an example, consider the set S = 
{ ( l , O , O ) ,  ( O , l , O ) ,  (O,O, l)}. Then span(S) is R3; 
Aff(S) is the hyperplane passing through the three 

points; Co(S)  is the unit simplex which is the triangle 
joining the vectors along with all the points inside it; 
Cone(S) is the nonnegative orthant R t .  

Recall that a hyperplane, represented as { x  I u T x  = 
b} (U # 0). is in general an affine set, and is a subspace 
if b = 0. Another useful representation of a hyperplane 
is given by { x  I a T ( x  - X U )  = 0} ,  where a is normal 
vector; xo lies on hyperplane. Hyperplanes are convex, 
since they contain all lines (and hence segments) joining 
any of their points. 

A halfspace, described as { x  I a T x  5 b}  (a  # 0) is 
generally convex and is a convex cone if b = 0. Another 
useful representation is { x  I a T ( x  - X U )  I 0} ,  where 
a is (outward) normal vector and X U  lies on boundary. 
Halfspaces are convex. 

We now come to a very important fact about prop- 
erties which are preserved under intersection: Let A be 
an arbitrary index set (possibly uncountably infinite) and 
{Sa I a E A} a collection of sets , then we have the 
following: 

subspacc subspace 

convex 
convcx cone convex wne 

In fact, every closed convex set S is the (usually infinite) 
intersection of halfspaces which contain it, i.e., 
S = n { E  I 7-1 halfspace, S C 7-1). For example, 
another way to see that S ;  is a convex cone is to recall 
that a matrix X E S" is positive semidefinite if z T X z  2 
0, Vz E R". Thus we can write 

s ; =  n 
Z E R n  

Now observe that the summation above is actually linear 
in the components of X, so S ;  is the infinite intersection 
of halfspaces containing the origin (which are convex 
cones) in S". 

We continue with our listing of useful convex sets. 
A polyhedron is intersection of a finite number of 

halfspaces 

P { x / a T x < b i ,  i = l ,  ..., k} 
= H XI AX^^} 
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where 5 above means componentwise inequality. n 

I a4 
A bounded polyhedron is called a polytope, which also 
has the alternative representation P = C o { v l , .  . . ,UN}, 
where {q?. . . ,UN} are its vertices. For example, the 
nonnegative orthant RT = {z E R" I z 0) 
is a polyhedron, while the probability simplex {z E 
R" 1 z 

If f is a norm, then the norm ball B = {z I f(z - 
zc) 5 1) is convex, and the norm cone C = 
{(z, t )  I f(z) 5 t) is a convex cone. Perhaps the most 
familiar norms are the t p  norms on R": 

0,  E, z, = 1) is a polytope. 

The corresponding norm balls (in R2) look like this: 

In this case, the semiaxis lengths are 6;. where A, 
eigenvalues of A; the semiaxis directions are eigenvec- 
tors of A and the volume is proportional to (det A) 'I2. 
However, depending on the problem, other descri tions 
might be more appropriate, such as (Ilull = se &U) . image of unit ball under affine transformation: E = 

{Bu + zc I 1 1 ~ 1 1  I 1); vol. a det B 
preimage of unit ball under affine transformation: 
E = {z 1 I1Az - bll 5 1); vol. a det A-' . sublevel set of nondegenerate quadratic: E = 
{z 1 f(z) I O} where f(z) = zTCz + Zdrz + e 
with C = CT , +  0 ,  e - drC-'d < 0;  vol. a 
(det A)-'/' 

It is an instructive exercise to conveIt among represen- 
tations. 

The secondorder cone is the norm cone associated 
with the Euclidean norm. 

The image (or preimage) under an afinre transform- 
tion of a convex set are convex, i.e., if S, T convex, 
then so are the sets 

f-'(S) = { z ( A z + b E S }  Another workhorse of convex optimization is the 
ellipsoid. In addition to their computational convenience, f ( T )  = { A z + b / z E T }  
ellipsoids can be used as crude models or approximates 
for other convex Sets. In fact, it can be shown that 
bounded convex set in R" can be approximated to within 
a factor of n by an ellipsoid. 

There are many representations for ellipsoids. For 
example, we can use 

1-1. -1) 

An example is coordinate projection {. I (z, y) E 
S for some U}. As another example, a constraint of the 
form 

lIAz + bllz I cTz + d ,  

where A E R"", a second-order cone constraint, since 
it is the same as requiring the affine function (Az + 
b,cTx + d )  to lie in the second-order cone in R"'. 
Similarly, if Ao,  A I , .  . . ,A,,, E S'', solution set of the 
linear matrix inequality (LMI) 

E = {z I (z - z , )~A- ' ( z  - z.) 5 l} 

where the parameters are'A = AT t 0, the center zc E 
R". F ( z )  = Ao + z iAi  + ' .  . + I,A, ? 0 
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is convex (preimage of the semidefinite cone under an 
affine function). 

A linear-fractional (or projective) function f : R"' + 

R" has the form 
A x + b  

f ( 4  = 

and domain d o m  f = 'H = {x I cTx + d > 0) .  If C 
is a convex set, then its linear-fractional transformation 
f(C) is also convex. This is because linear fractional 
transformations preserve line segments: for x, y E 'H, 

f ( k y l )  = If (x), f (Y)l 

Two further properties are helpful in visualizing the 
geometry of convex sets. The first is the separating 
hyperplane theorem, which states that if S, T R" 
are convex and disjoint (S  n T = 0), then there exists a 
hyperplane {x I a T x  - b = 0) which separates them. 

The second properly is due to the supporting hyperplane 
theorem which states that there exists a supporting 
hyperplan at every point on the boundary of a convex 
set, where a supporting hyperplane {x I a T x  = aTxo} 
supports S at x0 E as if 

x E s * aTx 5 aTxo 

111. CONVEX FUNCTIONS 

In this section, we introduce the reader to some 
important convex functions and techniques for verifying 
convexity. The objective is to sharpen the reader's ability 
to recognize convexity. 

A. Convex functions 

is convex and for all x, y E d o m  f ,  8 E [0,1] 
A function f : U" + R is convex if its domain d o m  f 

f ( s x  + (1 - e)Y)  5 e m  + (1 - w y ) ;  

f is concave if - f is convex. 

X 5 X 

convex concave neither 

Here are some simple examples on R) are: x 2  is convex 
(dom f = R); log x is concave (dom f = R++); and 
f (x) = l / x  is convex ( d o m  f = R++). 

It is convenient to define the extension of a convex 
function f 

f ( x )  x ~ d o m f  iC4 = [ +CO x g d o m f  

Note that f still satisfies the basic definition on for all 
x,  y E R", 0 5 8 5 1 (as an inequality in R U {+CO}). 
We will use same symbol for f and its extension, i.e., we 
will implicitly assume convex functions are extended. 

The epigraph of a function f is 

e p i f  = { ( x , t )  I2 E d o m f ,  f(5) 5 t 1 w..- , 

, .  

The (a-)sublevel set of a function f is 

Se { x ~  dom f I f ( x )  5 a} 

Form the basic definition of convexity, it follows that 
i f f  is a convex function if and only if its epigraph epi f 
is a convex set. It also follows that if f is convex, then 
its sublevel sets S, are convex (the converse is false - 
see quasiconvex functions later). 

The convexity of a differentiable function f : R" + R 
can also be characterized by conditions on its gradient 
O f  and Hessian V'f. Recall that, in general, the 
gradient yields a first order Taylor approximation at 20: 

f ( x )  = f b o )  + Vf(.O)T(X - 20) 

We have the followingfirst-order condition: f is convex 
if and only if for all x, xo E d o m  f ,  

f (I) 2 f (20) + vf(.o)T(. - xo), 
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i.e., the first order approximation of f is a global 

i(z) ................ , 

f b o )  + Vf(xo)'(z - 30) 
To see why this i s  so, we can rewrite the condition above 
in terms of the epigraph of f as: for all (z, t)  E epi f ,  

~ ........ ~~~. ~ ..... 

i.e., (Vf(zo),  -1) defines supporting hyperplane to 
epif at (zo,f(zo)) 

/ 

Recall that the Hessian of f, V z  f. yields a second 
order Taylor series expansion around 50: 

1 
f(x) = f ~ z 0 ) + V f ~ z o ~ ~ ~ x - z o ~ + 2 ( 2 - I O ~ ~ V ~ f  (zo)(z- 

We have the following necessary and sufficient second 
order condition: a twice differentiable function f is 
convex if and only if for all z E dom f ,  Vz f(z) 2 0, 
i.e., its Hessian is positive semidefinite on its domain. 

The convexity of the following functions is easy to 
verify, using the first and second order characterizations 
of convexity: 

x" is convex on R++ for a 2 1; . xlogx is convex on R+; 
log-sum-apfunction f (I) = log xi ezi (tricky!) 
aflnefuncrions f(x) = aTx+b where Q E R", b E 

. quadraticfunctions f (2) = xTPx+2qTx+r (P = 
R are convex and concave since V 2  f 

PT) whose Hessian Vzf(x) = 2P are convex 
P t 0; concave ej P 5 0 

in verifying convexity. We list several: 

0. 

Funher elementary properties are extremely helpful 

f : R" + R is convex iff it is convex on all lines: 
j(t) 5 j(xo + th) is convex in t E Q for 

nonnegative sums of convex functions are convex: 
xo,hER" 

c r ~ , a z  2 0 and fi, fz  convex * alfi +a& convex 

P ( U )  2 0, g(x, u) convex in z 
* /p(u)s(x,u)d~ convex 

nonnegative infinite sums. integrals: 

. pointwise supremum (maximum): 
fu convex ==+ supueA f u  convex (corresponds 

An important example of this is the minimum distance 
function to a set S C R", defined as: 

dist(x, S) = inf,Es 112 - yll 
= inf, llz - ~ l l  + ~(YIS) 

where 6(glS) is the indicator function of the set S, 
which is infinite everywhere except on S, where it is 
zero. Note that in contrast to the maximum distance 
function defined earlier, dist(z,S) is not convex in 
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general. However, if S is convex, then dist(z,S) is 
convex since (Iz - yI( + S(y/S) is convex in (2, y). 

The technique of composition can also be used to 
deduce the convexity of differentiable functions, by 
means of the chain rule. For example, one can show 
results like: f(z) = logCiexpg; (z)  is convex if each 
g; is; see 171. 

Jensen's inequality, a classical result which essentially 
a restatement of convexity, is used extensively in various 
forms. If f : R" + R is convex 

two points: el + lJ2 = 1, 0; 2 0 + 

. more than two points: xi Bi = 1, 0; 2 0 ==+ 
f(elzl + 02z2) 5 elf(.1) + e z f ( z z )  

f(Ci @<Xi) 5 e; @if(.i) 
f(J4.) d z )  5 s fb)p(z) d z  
continuous version: p ( z )  I 0, J p ( z )  dx = 1 ==+ 

or more generally, f(Ez) 5 Ef(z). 
The simple techniques above can also be used to 

verify the convexity offunctions ofmatrices, which arise 
in many important problems. 

. 

T r A T X  = 
logdetX- '  is convex on { X  E S" I X t 0 )  
Proof: Verify convexity alon lines. Let X i  be the 

f(t) 5 logdet(Xo + tH)- '  

A;jX;j is linear in X on R"'" 

eigenvalues of X , ' / ~ H X -  1% 
0 

= IogdetX;' + logdet( l+ tX;"2HX;"z)' 
=logdetX; ' -Ci log(l+tXi)  

which is a convex function of t. 
(de tX) ' / "  is concave on { X  E S" I X t 0 )  
X,,,(X) is convex on S" since, for X symmetric, 
X,,,(X) = sup11~11~=~ yTXy, which is a supre- 
mum of linear functions of X. 
IlXllz = U I ( X )  = (X,,(XTX))1/2 is con- 
vex on RmX" since, by definition, llXllz = 

S"PII.II.=' IlX4Z. 

-1 

The Schur complement technique is an indispensihle 
tool for modeling and transforming nonlinear constraints 
into convex LMI constraints. Suppose a symmetric ma- 
trix X can be decomposed as 

A B  
X = [ P  c ]  

with A invertible. The matrix S C - BTA- 'B  is 
called the Schur complement of A in X, and has the 
following important attributes, which are not too hard 
to prove: 

A . X t 0 if and only if A t 0 and S = C - 
BTA- 'B  t 0 
if A + 0, then X 2 0 if and only if S 2 o 

For example, the following second-order cone con- 

11 A z  + bll 5 e T z  + d 
straint on z 

is equivalent to LMI 

( e T z + d ) l  A z +  b t o ,  [ ( A z + b ) T  e T z + d  1 
This shows that all sets that can be modeled by an SOCP 
constraint can be modeled as LMI's. Hence LMI's are 
more "expressive". As another nontrivial example, the 
quadratic-over-linear function 

f(z ,y)  = z2/y, domf = R x R++ 

is convex because its epigraph {(z,y, t) 1 y > 0, x2/y 5 
t} is convex: by Schur complememts, it's equivalent to 
the solution set of the LMI constraints 

The concept of K-converity generalizes convexity to 
vector- or matrix-valued functions. As mentioned earlier, 
a pointed convex cone K E Rm induces generalized 
inequality 5 ~ .  A function f : R" + R'" is K-convex 
if for all 0 E [O, 11 

f(ez + (1 - 0 ) ~ )  5K + (1 - w ( y )  

In many problems, especially in statistics, log-concave 
functions are frequently encountered. A function f : 
R" + R+ is log-concave (log-convex) if log f is 
concave (convex). Hence one can transform problems in 
log convex functions into convex optimization problems. 
As an example, the normal density, f(x) = const . 
e-('/2)(Z-.o)'c-'(s-so) is ~og-concave. 

E .  Quasiconvex functions 
The next best thing to a convex function in optimiza- 

tion is a quasiconvex function, since it can be minimized 
in a few iterations of. convex optimization problems. 

A function f : R" + R is quasiconvex if every 
sublevel set Se = {z E domf 1 f(z) 5 a) is 
convex. Note that i f f  is convex, then it is automatically 
quasiconvex. Quasiconvex functions can have 'locally 
flat' regions. 
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We say f is quasiconcave if - f is quasiconvex, i.e., 
superlevel sets {z j f(x) 2 a} are convex. A function 
which is both quasiconvex and quasiconcave is called 
quasilinear. 

We list some examples: 
f (z) = is quasiconvex on R . f(z) = logs  is quasilinear on R+ 
linear fractional function, 

is quasilinear on the halfspace cTx + d > 0 

{x I l l ~  - 4 2  5 l l ~  - bllz} 
. f(z) = is quasiconvex on the halfspace 

Quasiconvex functions have a lot of similar features to 
convex functions, but also some important differences. 
The following quasiconvex properties are helpful in 
verifying quasiconvexity: 

f is quasiconvex if and only if it is quasiconvex on 
lines, i.e., f (xo + th) quasiconvex in t for all zo, h 
modified Jensen's inequality: f is quasiconvex iff 
for all z, y E dom f, 0 E [0, 11, 

f(Sz + (1 - Q)Y) 5 "{f (z), f (U)} 

/ v 
4 

for f differentiable, f quasiconvex 
x , y  E dom f 

X Y 
for all 

f (Y) 5 f (z) + (Y - z ) T v f ( z )  5 0 

oL1 < a2 < a3 
positive multiples 
f quasiconvex, a 2 0 + af quasiconvex 
pointwise supremum f l ,  f2  quasiconvex ==+ 
m u {  f l  , f ~ }  quasiconvex 
(extends to supremum over arbitrary set) 
affine transformation of domain 
f quasiconvex 3 f (Ax + b) quasiconvex 

. linear-fractional transf rmation of domain 
f quasiconvex ==+ f $&$ 
on cTx + d > 0 

f quasiconvex, g monotone increasing 

quasiconvex 0 
. composition with monotone increasing function: 

g(f(z))  quasiconvex . sums of quasiconvex functions are not quasiconvex 
in general 
f quasiconvex in z, y ==+ g ( x )  = inf, f(z, y) 
quasiconvex in x (projection of epigraph remains 
quasiconvex) 

IV. CONVEX OPTIMIZATION PROBLEMS 

In this section, we will discuss the formulation of 
optimization problems at a general level. In the next 
section we will focus on useful optimization problems 
with specific structure. 

Consider the following optimization in standardform 

minimize fo(z) 
subjectto f i ( x ) 5 0 ,  i = l ,  ..., m 

where fi,  hi : R" -t R; z is the optimization variable; 
fo is the objective or cost function; fi(x) _< 0 are 
the inequality constraints: h , (x )  = 0 are the equality 
constraints. Geometrically, this problem corresponds to 
the minimization of fo, over a set described by as the 
intersection of 0-sublevel sets of f;, i = 1, . . . , m with 
surfaces described by the 0-solution sets of hi. 

A point 2: is feasible if it satisfies the constraints; 
the feasible set C is the set of all feasible points; and 
the problem isfeasible if there are feasible points. The 
problem is said to be unconstrained if m = p = 0 The 
optimal value is denoted by f * = infZEc fo(z), and we 
adopt the convention that f * = +m if the problem is 
infeasible). A point z E C is an optimalpoint if f (z) = 
f' and the opfimalset is X,,, = {z E C I f(z) = f'}. 

hi(z)=O, i = l ,  . . . , p  

As an example consider the problem 

minimize z1 + z2 

subject to -zl _< 0 H" 
- 2 2  5 0 
1--<0 

. . . .  
The objective function is fa(.) = [I 1Ipd the feasible 
set C is half-hyperboloid; the optimal value is f = 2; 
and the only optimal point is z* = (1,1). 

In the standard problem above, the explicit constraints 
are given by f,(z) 5 0, h;(z) = 0. However, there are 
also the implicit constraints: 2 E dom f;, x E dom hi, 
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i.e., x must lie in the set 

D = dom fori.. .ndom f,,,ndom hl n . .  .ndom h, 

which is called the domain offhe problem. For example, 

minimize 
subject to 

- log 21 - log 2 2  

XI + z'2 - 1 5 0 

has the implicit constraint x E D = {z E R2 I X I  > 

Afeasibiliry problem is a special case of the standard 
problem, where we are interested merely in finding any 
feasible point. Thus, problem is really to 

0, x2 > 0). 

either find x E C . or determine that C = 0 . 
Equivalently, the feasibility problem requires that we 
either solve the inequality / equality system 

f;(z)<O, i = l ,  ..., m 
hi(z)=O, i = l ,  . . . ,  p 

or determine that it is inconsistent. 
An optimization problem in standard form is a convex 

optimization problem if fo, f l ,  . . . , fm are all convex, 
and hi are all affine: 

minimize fo(z) 
subject to fi(x) 5 0, i = 1,. . . , m 

aTx- b; = 0, i = 1 ,..., p. 

This is often written as 
minimize fo(x) 
subject to fi(z) 5 0, i = 1,. . . , m 

A x = b  

where A E Rpx" and b E Rp. As mentioned in the 
introduction, convex optimization problems have three 
crucial properties that makes them fundamentally more 
tractable than generic nonconvex optimization problems: 

1) no local minima: any local optimum is necessarily 
a global optimum; 

2) exact infeasibility defecfion: using duality theory 
(which is not cover here), hence algorithms are 
easy to initialize; 

3 )  eficient numerical solution methods that can han- 
dle very large problems. 

Note that often seemingly 'slight' modifications of 

. convex maximization, concave minimization, e.g. 

maximize 11z11 
subject to Ax 5 b 

convex problem can be very hard. Examples include: 

. nonlinear equality constraints, e.g. 

minimize cTx 
subject to zTPix + qTz + ri = 0, i = 1,. . . , K 

. minimizing over non-convex sets, e.g., Boolean 
variables 

find X 

such that Ax 5 b, 

To understand global optimality in convex problems, 
xi E {O, 1) 

recall that z E C is locally optimal if it satisfies 

Y E c, (Iy - XI1 5 R * f O ( Y )  2 fo(x) 

for some R > 0. A point x E C is globally optimal 
means that 

Y E  c * fO(Y) ? fo(x). 

For convex optimization problems, any local solution is 
also global. [Proofsketch: Suppose x is locally optimal, 
but that there is a y E C, with fo(y) < fo(x). Then 
we may take small step from x towards y. i.e., z = 
Ay + (1 - X)r with X > 0 small. Then t is near x, with 
fo( t )  < fo(z) which contradicts local optimality.] 

There is also a j r s t  order condition that characterizes 
optimality in convex optimization problems. Suppose f 
is differentiable, then x E C is optimal iff 

y E c ==+ Vfo(x)T(y - x) 2 0 

So -Vfo(x) defines supporting hyperplane for C at x. 
This means that if we move from z towards any other 
feasible y. fo does not decrease. 

contour lines of fa 

Many standard convex optimization algorithms as- 
sume a linear objective function. So it is important to 
realize that any convex optimization problems can be 
converted to one with a linear objective function. This 
is called putting the problem into epigraph form. It 
involves rewriting the problem as: 

minimize t 
subject to fo(z) - t 5 0, 

f,(x) so, i = l ,  ..., m 
hi(.) = 0, i = 1,. . . , p  

where the variables are now (x,t)  and the objective 
has essentially be moved into the inequality constraints. 
Observe that the new objective is linear: t = eT+l(z, t )  
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(e,+l is the vector of all zeros except for a 1 in  
its (n + 1)th component). Minimizing t will result in  
minimizing jo  with respect to x ,  so any optimal x* of 
the new problem with be optimal for the epigraph form 

So the linear objective is 'universal' for convex opti- 
mization. 

The above trick of introducing the extra variable t 
is known as the method of slack variables. It is very 
helpful in transforming problems into canonical form. 
We will see another example in the next section. 

A convex optimization problem in standard form with 
generalized inequalities: 

minimize jo(x) 
subject to ti(.) 3~~ 0, i = 1,. . . , L 

A x = b  

where fo : R" 4 R are all convex; the +, are 
generalized inequalities on R"; and j; : R" i R"' 
are K;-convex. 

A quasiconvex optimization problem is exactly the 
same as a convex optimization problem, except for one 
difference: the objective function f is quasiconvex. 

We will see an important example of quasiconvex 
optimization in the next section: linear-fractional pro- 
gramming. 

V. CANONICAL OPTIMIZATION PROBLEMS 

In this section, we present several canonical optimiza- 
tion problem formulations, which have been found to be 
extremely useful in  practice, and for which extremely 
efficient solution codes are available (often for free!). 
Thus if a real problem can be cast into one of these 
forms, then it can be considered as essentially solved. 

A. Conic programming 
We will present three canonical problems in this 

section. They are called conic problems because the 
inequalities are specified in terms of affine functions and 
generalized inequalities. Geometrically, the inequalities 
are feasible if the range of the affine mappings intersects 
the cone of the inequality. 

The problems are of increasing expressivity and mod- 
eling power. However, roughly speaking, each added 

level of modeling capability is at the cost of longer com- 
putation time. Thus one should use the least complex 
form for the problem at hand. 

A general linear program (LP) has the form 
minimize cTx + d 
subject to Gx 5 h 

Ax = b, 

where G E R"'" and A E Rpx". 
A problem that subsumes both linear and quadratic 

programming is the second-order cone program 
(SOCP): 

minimize j T x  
subject to llAix + billz _< CTX + di, 

F x  = g, 
i = 1 , .  . . ,m  

where z E R" is the optimization variable, A ;  E R"'xn, 
and F E Rpx". When ci = 0, i = 1,. . . , m, the SOCP 
is equivalent to a quadratically constrained quadratic 
program (QCQP), (which is obtained by squaring each 
of the constraints). Similarly, if A i  = 0, i = 1,. . . , m, 
then the SOCP reduces to a (general) LP. Second-order 
cone programs are, however, more general than QCQPs 
(and of course, LPs). 

A problem which subsumes linear, quadratic and 
second-order cone programming is called a semidefinite 
program (SDP), and has the form 

minimize cTx 
subject to xlFl + . . . + z,F, + G 5 0 

A x  = b,  

where G, F, ,..., F,, E S k ,  and A E Rpx". The 
inequality here is a linear matrix inequality. As shown 
earlier, since SOCP constraints can be written as LMI's, 
SDP's subsume SOCP's, and hence LP's as well. (If 
there are multiple LMI's, they can be stacked into one 
large block diagonal LMI, where the blocks are the 
individual LMIs.) 

We will now consider some examples which are 
themselves very instructive demonstrations of modeling 
and the power of convex optimization. 

First, we show how slack variables can be used to 
convert a given problem into canonical form. Consider 
the constrained e,- (Chebychev) approximation 

minimize IIAx - b / l ,  
subject to F x  3 9. 

By introducing the extra variable t ,  we can rewrite the 
problem as: 

minimize t 
subject to A x  - b 5 t l  

A x -  b 2 -tl 
F x  5 g, 
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which is an LP in variables z E Rn, t E R (1 is the 
vector with all components 1). 

Second, as (more extensive) example of how an SOCP 
might arise, consider linear programming with random 
constraints 

minimize cTx 
subject to Prob(aTx 5 b;) 2 p ,  i = 1 , .  . . , m 

Here we suppose that the parameters a; are independent 
Gaussian random vectors, with mean Zi and covariance 
E;. We require that each constraint aTz 5 bi should 
hold with a probability (or confidence) exceeding p ,  
where p 2 0.5, i.e., 

Prob(aTz 5 6,) 2 p ,  

We will show that this probability constraint can be 
expressed as a second-order cone constraint. Letting 
U = aTz, with U' denoting its variance, this constraint 
can be written as 

U - 1 1  b i - i i  
Prob (- 5 -) U 2 7. 

U 

Since (U - G ) / u  is a zero mean unit variance Gaussian 
variable, the probability above is simply Q((bi  -E)/u), 
where 

is the cumulative distribution function of a zero mean 
unit variance Gaussian random variable. Thus the prob- 
ability constraint can be expressed as 

or, equivalently, 

11 + @-' (p )o  5 bi. 

From ii = ZTx and U = (zTEix)1/2 we obtain 

ZTx + @ - l ( p ) ~ [ E ~ ~ z x \ ~ z  5 b;. 

By our assumption that p 2 1/2, we have @ - I ( p )  2 
0, so this constraint is a second-order cone constraint. 
In summary, the stochastic LP can be expressed as the 
SOCP 

minimize cTx 
subject to ZTx + @ - l ( p ) ~ ~ X ~ ' z x ~ ~ ~  5 b;, i = 1,. . . 

We will see examples of using LMI constraints below. 

E .  Extensions of conic programming 

We now present two more canonical convex optimiza- 
tion formulations, which can be'viewed as extensions of 
the above conic formulations. 

A generalized linear fractional program (GLFP) has 
the form: 

minimize fo(z) 
subject to Gx 5 h 

A x = b  

where the objective function is given by 

with domfo = {z I eTz + f; > 0,  i = 1 , .  . . , T } .  

The objective function is the pointwise maximum of 
T quasiconvex functions, and therefore quasiconvex, so 
this problem is quasiconvex. 

A determinant mmimization program (maxdet) has 
the form: 

minimize cTx - logdet G(x) 
subject to G(x) t 0 

F(x)  t 0 
A x = b  

where F and G are linear (affine) matrix functions of 
x, so the inequality constraints are LMI's. By Ripping 
signs, one can pose this as a maximization problem, 
which is the historic reason for the name. Since G is 
affine and, as shown earlier, the function - logdet X 
is convex on the symmetric semidefinite cone S ; ,  the 
maxdet program is a convex problem. 

We now consider an example of each type. First, we 
consider an optimal transmitter power allocation prob- 
lem where the variables are the transmitter powers pk, 
k = 1,. , . , m. Given m transmitters and mn receivers 
all at the same frequency. Transmitter i wants to transmit 
to its n receivers labeled ( i , j ) ,  j = 1 , .  . . , n, as shown 
below (transmitter and receiver locations are fixed): 

transmitter k ...- ...- . __.. 

transmitter i "1 . . 
Let Ai,,, E R denote the path gain from transmitter 

& to receiver (i,j), and N i j  E R be the (self) noise 
power of receiver (i,j) So at receiver (i,j) the signal 
power is Sij = Aij;pi and the noise plus interference 

' 
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power is I;j = Ek+ Aijkpk + Nij.Therefore the signal 
to interferencehoise ratio (SINR) is 

s;j / 4, 

The optimal transmitter power allocation problem is then 
to choose p i  to maximize smallest SINR 

subject to 0 5 pi p,,, 

This is a GLFP. 
Next we consider two related ellipsoid approximation 

problems. In addition to the use of LMI constraints, 
this example illustrates techniques of computing with 
ellipsoids and also how the choice representation of the 
ellipsoids and polyhedra can make the difference be- 
tween a tractable convex problem, and a hard intractable 
one. 

First consider computing a minimum volume ellipsoid 
around points u l ,  ..., uK E R". This is equivalent 
to finding the minimum volume ellipsoid around the 
polytope defined by the convex hull of those points, 
represented in vertex form. 

For this problem, we choose the representation for 
the ellipsoid as E = {z I IIAz - b/l 5 l}, which is 
parametrized by its center A-'b, and the shape matrix 
A = AT + 0, and whose volume is proportional to 
det A-'. This problem immediately reduces to: 

minimize logdet A-' 
subject to A = AT + 0 

l lA~j - bll 5 1 ,  i = 1 , .  . . , K 

which is a convex optimization problem in A, b (n + 
n(n + l) /2 variables), and can be written as a maxdet 
problem. 

Now, consider finding the m i m u m  volume ellipsoid 
in a polytope given in  inequality form 

P = { x  1 uTx 5 b,, i = 1 , .  . . , L }  

For this problem, we represent the ellipsoid as E = 
{By+d I llyll I l}, which is parametrized by its center 
d and shape matrix B = BT + 0, and whose volume is 
proportional to det B. Note the containment condition 
means 

E c P Q aT(By  + d )  5 b, for all llyll 5 1 

a sup (uTBy + aTd) 5 b; 
llrlls' 

llBaJ + aTd I b;, i = 1 , .  . . , L Q 

which is a convex constraint in B and d. Hence finding 
the maximum volume E c P: is convex problem in 
variables B, d: 

maximize logdet B 
subject to B = BT t 0 

1lBa;ll + a'd 5 bi ,  i = 1 , .  . . , L 

Note, however, that minor variations on these two 
problems, which are convex and hence easy, resutl in 
problems that are very difficult: 

compute the maximum volume ellipsoid inside 
polyhedron given in vertex form C o { u l , .  . . , UK} . compute the minimum volume ellipsoid containing 
polyhedron given in inequality form Ax  5 b 

In fact, just checking whether a given ellipsoid E covers 
a polytope described in inequality form is extremely 
difficult (equivalent to maximizing a convex quadratic 
s.t. linear inequalities). 

C. Geometric programming 
In this section we describe a family of optimization 

problems that are not convex in their natural form. 
However, they are an excellent example of how problems 
can sometimes be transformed to convex optimization 
problems, by a change of variables and a transformation 
of the objective and constraint functions. In addition, 
they have been found tremendously useful for modeling 
real problems, e.g.circuit design and communication 
networks. 

A function f : R" + R with dom f = R:+, defined 
as 

f ( x ) = c z ; ' z T  ...z>, 
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where c > 0 and a; E R, is called a monomial 
function, or simply, a monomial. The exponents a ;  of a 
monomial can be any real numbers, including fractional 
or negative, but the coefficient c must be nonnegative. 
A sum of monomials, i.e., a function of the form 

K 

f(z) = C C k 2 y z y k " . z p ,  
k=l 

where ck > 0, is called a posynomialfunction (with K 
terms), or simply, a posynomial. Posynomials are closed 
under addition, multiplication, and nonnegative scaling. 
Monomials are closed under multiplication and division. 
If a posynomial is multiplied by a monomial, the result 
is a posynomial; similarly, a posynomial can he divided 
by a monomial, with the result a posynomial. 

An optimization problem of the form 

minimize fo(z) 
subjectto f j (z )<l ,  i = l ,  ..., m 

where fo,. . . , fm are posynomials and h l , .  . . , hp are 
monomials, is called a geometric program (GP). The 
domain of this problem is 2) = R:+; the constraint 
z > 0 is implicit. 

Several extensions are readily handled. If f is a 
posynomial and h is a monomial, then the constraint 
f(z) 5 h( z )  can be handled by expressing it as 
f ( z ) / h ( z )  5 1 (since f / h  is posynomial). This includes 
as a special case a constraint of the form f(z) 5 a, 
where f is posynomial and Q > 0. In a similar way if 
hl and hz are both nonzero monomial functions, then 
we can handle the equality constraint hl (z )  = hz(z) 
by expressing it as h l ( z ) /h z ( z )  = 1 (since hl/hz 
is monomial). We can maximize a nonzero monomial 
objective function, by minimizing its inverse (which is 
also a monomial). 

We will now transform geometric programs to convex 
problems by a change of variables and a transformation 
of the objective and constraint functions. 

We will use the variables defined as y; = logz;, so 
xi = eyi. I f f  a monomial function of x, i.e., 

hi(.) = 1, i = 1,. . . , p  

f(.) =..;'.y....:", 
then 

f(z) = f ( e u l , .  . . , eY*) 

- - eaTu+b, 

- - c(eul)- . . . (.")"m 

where b = logc. The change of variables y j  = logz; 
turns a monomial function into the exponential of an 
affine function. 

Similarly, if f a posynomial, i.e., 
K 

k = l  

then 

k=l 

where a k  = (alk,.. . , a n k )  and bk = log c k .  After the 
change of variables, a posynomial becomes a sum of 
exponentials of affine functions. 

The geometric program can be expressed in terms of 
the new variable y as 

minimize xFzl enTky+*ak 
subject to CKi ear*u+bit < - 1, 

egi = 1, i = 1,. . . , p ,  
i = 1,. , . , m $=I 

where E R", i = 0, .  . . , m, contain the exponents 
of the posynomial inequality constraints, and gi E R", 
i = 1,. . . , p, contain the exponents of the monomial 
equality constraints of the original geometric program. 

Now we transform the objective and constraint func- 
tions, by taking the logarithm. This results in the prob- 
lem 

minimize jo(y) = log (xfzl e*rku+bob) 

subject to f , (y)  = log eDT*u+bili) 5 0, i = 1,. . . ,m 

ii(y) = gTy + h; = 0,  i = 1 , .  . . , p .  

Since the functions are convex, and are affine, this 
problem is a convex optimization problem. We refer to 
it as a geometric program in convexform.Note that the 
transformation between the posynomial form geometric 
program and the convex form geometric program does 
not involve any computation; the problem data for the 
two problems are the same. 

VI. NONSTANDARD AND NONCONVEX PROBLEMS 

In practice, one might encounter convex problems 
which do not fall into any of the canonical forms 
above. In this case, it is necessary to develop custom 
code for the problem. Developing such codes requires 
gradient, for optimal performance, Hessian information. 
If only gradient information is available, the ellipsoid, 
subgradient or cutting plane methods can be used. These 
are reliable methods with exact stopping criteria. The 
same is true for interior point methods, however these 
also require Hessian information. The payoff for having 
Hessian information is much faster convergence; in 
practice, they solve most problems at the cost  of a dozen 
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least squares problems of about the size of the decision 
variables. These methods are described in the references. 

Nonconvex problems are more common, of course, 
than nonconvex problems. However, convex optimiza- 
tion can still often be helpful in solving these as well: 
it can often be used to compute lower; useful initial 
starting points; etc. 

VII. CONCLUSION 

In this paper we have reviewed some essentials of 
convex sets, functions and optimization problems. Wc 
hope that the reader is convinced that convex optimiza- 
tion dramatically increases the range of problems in 
engineering that can be modeled and solved exactly. 
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