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Abstract—The data of interest are assumed to be represented as
-dimensional real vectors, and these vectors are compressible in

some linear basisB, implying that the signal can be reconstructed
accurately using only a small number of basis-function
coefficients associated with B. Compressive sensing is a frame-
work whereby one does not measure one of the aforementioned

-dimensional signals directly, but rather a set of related mea-
surements, with the new measurements a linear combination of
the original underlying -dimensional signal. The number of
required compressive-sensing measurements is typically much
smaller than , offering the potential to simplify the sensing
system. Let denote the unknown underlying -dimensional
signal, and a vector of compressive-sensing measurements, then
one may approximate accurately by utilizing knowledge of
the (under-determined) linear relationship between and , in
addition to knowledge of the fact that is compressible in B. In
this paper we employ a Bayesian formalism for estimating the
underlying signal based on compressive-sensing measurements

. The proposed framework has the following properties: i) in
addition to estimating the underlying signal , “error bars”
are also estimated, these giving a measure of confidence in the
inverted signal; ii) using knowledge of the error bars, a principled
means is provided for determining when a sufficient number of
compressive-sensing measurements have been performed; iii)
this setting lends itself naturally to a framework whereby the
compressive sensing measurements are optimized adaptively and
hence not determined randomly; and iv) the framework accounts
for additive noise in the compressive-sensing measurements and
provides an estimate of the noise variance. In this paper we present
the underlying theory, an associated algorithm, example results,
and provide comparisons to other compressive-sensing inversion
algorithms in the literature.

Index Terms—Adaptive compressive sensing, Bayesian model se-
lection, compressive sensing (CS), experimental design, relevance
vector machine (RVM), sparse Bayesian learning.

I. INTRODUCTION

OVER the last two decades there have been significant ad-
vances in the development of orthonormal bases for com-

pact representation of a wide class of discrete signals. An im-
portant example of this is the wavelet transform [1], [2], with
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which general signals are represented in terms of atomic ele-
ments localized in time and frequency, assuming that the data
index represents time (it may similarly represent space). The
localized properties of these orthonormal time-frequency atoms
yields highly compact representations of many natural signals
[1], [2]. Let the matrix represent a wavelet basis, with
basis functions defined by associated columns; a general signal

may be represented as , where repre-
sents the wavelet and scaling function coefficients [1], [2]. For
most natural signals , most components of the vector have
negligible amplitude. Therefore, if represents the weights
with the smallest coefficients set to zero, and ,
then the relative error is often negligibly small
for . This property has led to the development of
state-of-the-art compression algorithms based on wavelet-based
transform coding [3], [4].

In conventional applications one first measures the -dimen-
sional signal , is then compressed (often using a wavelet-
based transform coding scheme), and the compressed set of
basis-function coefficients are stored in binary [3], [4]. This
invites the following question: If the underlying signal is ulti-
mately compressible, is it possible to perform a compact (“com-
pressive”) set of measurements directly, thereby offering the po-
tential to simplify the sensing system (reduce the number of
required measurements)? This question has recently been an-
swered in the affirmative [5], [6], introducing the field of com-
pressive sensing (CS).

In its earliest form the relationship between the underlying
signal and the CS measurements has been constituted
through random projections [6], [7]. Specifically, assume that
the signal is compressible in some basis (not necessarily
a wavelet basis), the th CS measurement ( th component
of ) is constituted by projecting onto a “random” basis
that is constituted with “random” linear combination of the
basis functions in , i.e., , where
is a column vector with each element an independent and
identically distributed (i.i.d.) draw of a random variable, with
arbitrary alphabet (e.g., real or binary) [6], [7].

Based on the above discussion, the CS measurements may be
represented as , where is
a matrix, assuming random CS measurements are
made. Since typically this amounts to having fewer
measurements than degrees of freedom for the signal . There-
fore, inversion for the -weights represented by (and hence

) is ill-posed. However, if one exploits the fact that is sparse
with respect to a known orthonormal basis , then one may ap-
proximate accurately [5], [6]. A typical means of solving such
an ill-posed problem, for which it is known that is sparse, is
via an -regularized formulation [6]

(1)
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where the scalar controls the relative importance applied
to the Euclidian error and the sparseness term [the first and
second expressions, respectively, inside the brackets in (1)].
This basic framework has been the starting point for several
recent CS inversion algorithms, including linear programming
[8] and greedy algorithms [9], [10], for a point estimate of the
weights .

In this paper we consider the inversion of compressive
measurements from a Bayesian perspective. Specifically, from
this standpoint we have a prior belief that should be sparse
in the basis , data are observed from compressive mea-
surements, and the objective is to provide a posterior belief
(density function) for the values of the weights . Besides the
improved accuracy over the point estimate (to be discussed
in Section III-B), the Bayesian formalism, more importantly,
provides a new framework that allows us to address a variety
of issues that previously have not been addressed. Specifically,
rather than providing a point (single) estimate for the weights

, a full posterior density function is provided, which yields
“error bars” on the estimated ; these error bars may be used to
give a sense of confidence in the approximation to , and they
may also be used to guide the optimal design of additional CS
measurements, implemented with the goal of reducing the un-
certainty in ; in addition, the Bayesian framework provides an
estimate for the posterior density function of additive noise en-
countered when implementing the compressive measurements.

The remainder of the paper is organized as follows. In
Section II, we consider the CS inversion problem from a
Bayesian perspective, and make connections with what has
been done previously for this problem. The analysis is then
generalized in Section III, yielding a framework that lends itself
to efficient computation of an approximation to a posterior
density function for . In Section IV, we examine how this
framework allows adaptive CS, whereby the aforementioned
projections are selected to optimize a (myopic) information
measure. Example results on canonical data are presented in
Section V, with comparisons to other algorithms currently in
the literature. Conclusions and future work are discussed in
Section VI.

II. COMPRESSIVE-SENSING INVERSION FROM

BAYESIAN VIEWPOINT

A. Compressive Sensing as Linear Regression

It was assumed at the start that is compressible in the basis
. Therefore, let represent an -dimensional vector that is

identical to the vector for the elements in with largest
magnitude; the remaining elements in are set to zero.
Similarly, we introduce a vector that is identical to for the
smallest elements in , with all remaining elements of

set to zero. We therefore have , and

(2)

with . Since it was assumed at the start that is con-
stituted through random samples, the components of may be
approximated as a zero-mean Gaussian noise as a consequence
of Central Limit Theorem [11] for large . We also note

that the CS measurements may be noisy, with the measurement
noise, denoted by , represented by a zero-mean Gaussian dis-
tribution, and therefore

(3)

where the components of are approximated as a zero-mean
Gaussian noise1 with unknown variance . We therefore have
the Gaussian likelihood model

(4)

This above analysis has converted the CS problem of in-
verting for the sparse weights into a linear-regression
problem with a constraint (prior) that is sparse. Assuming
knowledge of , the quantities to be estimated based on the
CS measurements are the sparse weights and the noise
variance . In a Bayesian analysis we seek a full posterior
density function for and .

B. Sparseness Prior and MAP Approximation

In a Bayesian formulation our understanding of the fact that
is sparse is formalized by placing a sparseness-promoting

prior on . A widely used sparseness prior is the Laplace den-
sity function [12], [13]

(5)

where in (5) and henceforth we drop the subscript on , rec-
ognizing that we are always interested in a sparse solution for
the weights. Given the CS measurements , and assuming the
likelihood function in (4), it is straightforward to demonstrate
that the solution in (1) corresponds to a maximum a posteriori
(MAP) estimate for using the prior in (5) [13], [14].

III. ESTIMATE OF SPARSE WEIGHTS VIA RELEVANCE

VECTOR MACHINE

A. Hierarchical Sparseness Prior

The above discussion connected conventional CS inversion
for the weights to a MAP approximation to a Bayesian linear-
regression analysis, with a Laplace sparseness prior on . This
then raises the question of whether the Bayesian analysis may be
carried further, to realize an estimate of the full posterior on
and . This is not readily accomplished using the Laplace prior
directly, since the Laplace prior is not conjugate2 to the Gaussian
likelihood and hence the associated Bayesian inference may not
be performed in closed form [12], [15].

This issue has been addressed previously in sparse Bayesian
learning, particularly, with the relevance vector machine (RVM)
[16]. Rather than imposing a Laplace prior on , in the RVM a
hierarchical prior has been invoked, which has similar properties

1In practice, not all of the assumptions made in deriving (3) will necessarily
be valid, but henceforth we simply use (3) as a starting point, motivated for the
reasons discussed above, and desirable from the standpoint of analysis.

2In Bayesian probability theory, a class of prior probability distributions p(�)
is said to be conjugate to a class of likelihood functions p(xj�) if the resulting
posterior distributions p(�jx) are in the same family as p(�).
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Fig. 1. Graphical model of the Bayesian CS formulation.

as the Laplace prior but allows convenient conjugate-exponen-
tial analysis. To see this, one first defines a zero-mean Gaussian
prior on each element of

(6)

with the precision (inverse-variance) of a Gaussian density
function. Further, a Gamma prior is considered over

(7)

By marginalizing over the hyperparameters , the overall prior
on is then evaluated as

(8)

The density function is the conjugate prior
for , when plays the role of observed data and

is a likelihood function. Consequently, the
integral can be evaluated ana-
lytically, and it corresponds to the Student- distribution [16].
With appropriate choice of and , the Student- distribution
is strongly peaked about , and therefore the prior in (8)
favors most being zero (i.e., it is a sparseness prior). Simi-
larly, a Gamma prior is introduced on the inverse of
the noise variance .

To see the advantage of this hierarchical prior, consider the
graphical structure of the model as reflected in Fig. 1, for gen-
eration of the observed data . Following consecutive blocks in
Fig. 1 (following the direction of the arrows), let represent
the parameter associated with block , and represents the
next parameter in the sequence. For all steps in Fig. 1, the den-
sity function for is the conjugate prior for the likelihood de-
fined in terms of the density function for , assuming that all
parameters except are held constant (i.e., all parameters other
than temporarily play the role of fixed data). This structural
form is very convenient for implementing iterative algorithms
for evaluation of the posterior density function for and .
For example, one may conveniently implement a Markov chain
Monte Carlo (MCMC) [17] or, more efficiently and approxi-
mately, a variational Bayesian (VB) analysis [18]. While the VB
analysis is efficient relative to MCMC, in the RVM a type-II
maximum-likelihood (ML) procedure is considered, with the

objective of achieving highly efficient computations while still
preserving accurate results.

As one may note, the Bayesian linear model considered in
RVM is essentially one of the simplified models for Bayesian
model selection [19]–[21]. Although more accurate models may
be desired, the main motivation of adopting the RVM is due to
its highly efficient computation as discussed below.

B. Bayesian CS Inversion via RVM

Assuming the hyperparameters and are known, given
the CS measurements and the projection matrix , the pos-
terior for can be expressed analytically as a multivariate
Gaussian distribution with mean and covariance

(9)

(10)

where . The associated “learning”
problem, in the context of the RVM, thus becomes the search
for the hyperparameters and . In the RVM, these hyper-
parameters are estimated from the data by performing a type-II
ML (or evidence maximization) procedure [16]. Specifically, by
marginalizing over the weights , the marginal likelihood for
and , or equivalently, its logarithm can be expressed
analytically as

(11)

with . A type-II ML approximation em-
ploys the point estimates for and to maximize (11), which
can be implemented via the EM algorithm (or other techniques)
[16], to yield

(12)

where is the th posterior mean weight from (9) and we have
defined the quantities , with the th diagonal
element of the posterior weight covariance from (10). For the
noise variance , differentiation leads to the re-esti-
mate

(13)

Note that and are a function of and , while
and are a function of and . This suggests an iterative al-
gorithm, which iterates between (9) and (10) and (12) and (13),
until a convergence criterion has been satisfied. In this process,
it is observed that many of the tend to infinity (or are nu-
merically indistinguishable from infinity given the machine pre-
cision) for those that have insignificant amplitudes for rep-
resentation of ; only a relatively small set of , for
which the corresponding remains relatively small, contribute
for representation of , and the level of sparseness (size of )
is determined automatically (see [22] for an interesting expla-
nation from a variational approximation perspective). It is also
important to note that, as a result of the type-II ML estimate
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(11), the point estimates (rather than the posterior densities) of
and are sought. Therefore, there is no need to set , , ,

and on the Gamma hyperpriors. This is equivalent to setting
, , , and to zero, and thus uniform hyperpriors (over a log-

arithmic scale) on and have been invoked [16].
While it is useful to have a measure of uncertainty in the

weights , the quantity of most interest is the signal .
Since is drawn from a multivariate Gaussian distribution with
mean and covariance defined in (9) and (10), the posterior den-
sity function on is also a multivariate Gaussian distribution
with mean and covariance

(14)

(15)

The diagonal elements of the covariance matrix in (15) provide
“error bars”3 on the accuracy of the inversion of , as repre-
sented in terms of its mean in (14).

While the iterative algorithm described above has been
demonstrated to yield a highly accurate sparse linear-regression
representation [16], we note the following practical limitation.
When evaluating (10) one must invert matrices of size :
an operation,4 thereby making this approach relatively
slow for data of large dimension (at least for the first
few iterations). This motivates development of a fast RVM
algorithm with the objective of achieving highly efficient com-
putations that are comparable to existing CS algorithms (e.g.,
OMP [9] and StOMP [10]).

Fortunately, this fast RVM algorithm has been developed in
[26] and [27] by analyzing the properties of the marginal like-
lihood function in (11). This enables a principled and efficient
sequential addition and deletion of candidate basis function
(columns of ) to monotonically maximize the marginal likeli-
hood. We omit the detailed discussion of this fast algorithm and
refer the reader to [26] and [27] for more details. We here only
briefly summarize some of its key properties. Compared to the
iterative algorithm presented above, the fast algorithm operates
in a constructive manner, i.e., sequentially adds (or deletes)
candidate basis function to the model until all “relevant” basis
functions (for which the associated weights are nonzero) have
been included. Thus, the complexity of the algorithm is more
related to than . Further, by exploiting the matrix inverse
identity, the inverse operation in (10) has been implemented
by an iterative update formula with reduced complexity. De-
tailed analysis of this algorithm shows that it has complexity

, which is more efficient than the original RVM, espe-
cially when the underlying signal is truly sparse ( ).

In contrast to other CS algorithms (e.g., OMP [9] and StOMP
[10], in which basis functions once added are never removed),
the fast RVM algorithm has the operation of deleting a basis
function from the model (i.e., setting the corresponding

). This deletion operation allows the fast algorithm to main-
tain a more concise signal representation and is likely one of

3While previous works [23], [24] in CS do obtain ` error bounds for function
estimates, the “error bars” may be more useful from a practical standpoint as
discussed in the next section.

4A simple modification to (10) is available from [25] by exploiting the matrix
inverse identity, which leads to anO(K ) operation per iteration. Nonetheless,
the iterative (EM) implementation still does not scale well.

the explanations for the improvement in sparsity demonstrated
in the experiments (see Section V).

In addition, recent theoretical analysis of the RVM [28], [29]
indicates that the RVM provides a tighter approximation to the

-norm sparsity measure than the -norm, and prove that even
in the worst-case scenario, the RVM still outperforms the most
widely used sparse representation algorithms, including BP [8]
and OMP [9]. Although these studies are based on the iterative
(EM) implementation of the RVM, they indeed shed light on
the fast implementation considered here, since both implemen-
tations are based on the same cost function (11). Our empirical
study in Section V is also consistent with these theoretical re-
sults. Nonetheless, rigorous analysis of this fast algorithm re-
mains worthy of further inquiry.

IV. ADAPTIVE COMPRESSIVE SENSING

A. Selecting Projections to Reduce Signal Uncertainty

In the original CS construction [6], [7], the projections rep-
resented by the matrix were constituted via i.i.d. realizations
of an underlying random variable. In addition, previous CS al-
gorithms [8]–[10] focused on estimating (and hence ) have
employed a point estimate like that in (1); such approaches do
not provide a measure of uncertainty in , and therefore adap-
tive design of was previously not feasible. The Bayesian CS
(BCS) algorithm (in this case the fast RVM algorithm) discussed
in Section III-B allows efficient computation of and associ-
ated error bars, as defined by (14) and (15), and therefore one
may consider the possibility of adaptively selecting projection

, with the goal of reducing uncertainty. Such a framework
has been previously studied in the machine learning commu-
nity under the name of experimental design or active learning
[30]–[32]. Further, the error bars also give a way to determine
how many measurements are enough for faithful CS reconstruc-
tion, i.e., when the change in the uncertainty is not significant,
it may be assumed that one is simply reconstructing the noise
in (3), and therefore the adaptive sensing may be stopped.

As discussed above, the estimated posterior on the signal
is a multivariate Gaussian distribution, with mean
and covariance . The differential entropy [33]
for therefore satisfies

(16)

where is independent of the projection matrix . Recall
that , and therefore the dependence
of the differential entropy on the observed CS measurements
is defined by the point estimates of and (from the type-II
ML estimates discussed in Section III).5

5In practice, many of the � have the value of infinity (or exceed the machine
precision), indicating the corresponding basis functions in ��� are excluded for
sparse representation. Therefore, when evaluating (16), bothA and��� only em-
ploy elements corresponding to the basis functions selected by BCS, and they
are thus reduced in general to small matrices.
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We may now ask which new projection would be op-
timal for minimizing the differential entropy in (16). Toward this
end, we augment by adding a th row represented by

. If we let represent the new differential entropy
as a consequence of adding this new projection vector, via the
matrix determinant identity, we have

(17)

where and are based on estimates found using the previous
measurements. To minimize , the next projection

should hence be designed to maximize . Since

(18)

this is equivalent to maximizing the variance of the expected
measurement . In other words, the next projection
should be selected to constitute the measurement for
which the data is most uncertain, and hence access to the
associated measurement would be most informative.

The adaptive framework provides an attractive setting for
selection of the next projection , with the goal of op-
timizing—in a one-look-ahead (myopic) sense—the rate at
which the uncertainty in diminishes [30]–[32]. There are
multiple ways this may be utilized in practice. If it is possible
to design new projection adaptively “on the fly,” then
one might perform an eigendecomposition of the matrix and
select for representation of the eigenvector with largest
eigenvalue. Alternatively, if from a hardware standpoint such
flexibility in design of is not feasible, then one might
a priori design a library of possible next projections, with

selected from with the goal of maximizing (18). In
the example results in Section V, we select the next projection

as the eigenvector of that has the largest eigenvalue, but
design of an a priori library may be more useful in practice,
and this remains an important direction for future research.

We also note the following practical issue for implementa-
tion of adaptive CS. Assume that an initial set of CS measure-
ments are performed with a fixed set of projections, for which
data are measured. Based upon and knowledge of the initial
projections, there is a deterministic mapping to the next opti-
mized projection, with which the next CS measurement is per-
formed. Consequently, although the optimized projections are
performed on the sensor, when performing signal reconstruc-
tion subsequently, the optimized projections that are performed
at the sensor may be inferred offline, and therefore there is no
need to send this information to the decoder. Consequently, the
performance of optimized projections introduces no new over-
head for storage of the compressive measurements (i.e., we do
not have to store the adaptively determined projections).

An additional issue needs to be clarified if the eigenvector
of is used for the next projection . Due to the sparse
Bayesian solution, only employs elements corresponding to
the associated nonzero components of found based on BCS
(i.e., is reduced in general to a small matrix). Thus, when
constructing the next projection based on the eigenvector, some
entries of will be empty. If we impute all the empty en-
tries with zero, we are under the risk of being wrong. The ini-
tial estimate of can be inaccurate; if we impute all the empty

entries with zero, the estimate of may be always biased and
has no chance to be corrected, since the corresponding contri-
butions from underlying true are always ignored. To mitigate
this problem, we impute the empty entries with random samples
drawn i.i.d. from a Gaussian distribution . After the im-
putation, we rescale the -norm of the imputed values to 0.14.
By doing so, we utilize the optimized projection and meanwhile
allow some contributions from the empty entries. Overall, the
final projection has the magnitude .

B. Approximate Adaptive CS

The “error bars” on the estimated signal play a critical role
in implementing the above adaptive CS scheme, with these a di-
rect product from the Bayesian analysis. Since there are estab-
lished CS algorithms based on a point estimate of , one may
ask whether these algorithms may be modified, utilizing insights
from the Bayesian analysis. The advantage of such an approach
is that, if possible, one would access some of the advantages
of the Bayesian analysis, in an approximate sense, while being
able to retain the advantages of established fast CS algorithms.
In this section, we consider one possible approximate scheme
for adaptive CS, and show that the adaptive CS and its approxi-
mate scheme may be only amenable to the Bayesian analysis.

The uncertainty in and the adaptive algorithm in (18) rely
on computation of the covariance matrix .
Since is assumed known (but which basis functions have
been selected by BCS are unknown), this indicates that what
is needed are estimates for and , the latter required for the
diagonal matrix . Concerning the diagonal matrix , it may
be viewed from a signal processing standpoint as a regulariza-
tion of the matrix to assure that the matrix inversion is
well-posed. While the Bayesian analysis in Section III indicates
that the loading represented by should be nonuniform, we
may simply make diagonalized uniformly, with value corre-
sponding to a small fraction of the average value of the diagonal
elements of , i.e.,

(19)

where is a small positive value (e.g., ), and is
the number of basis functions selected by BCS based on the
current CS measurements. Since we are only interested in the
eigenvectors of , in (19) can be ignored for the computation
of eigen-decomposition. Therefore, for an approximate adaptive
CS, what is needed is only the basis functions selected by BCS,
with which constitute the projection matrix in (19).

In the derivation of (19), we assume that the diagonal ele-
ments of are relatively unform, such that can be approx-
imated by a uniform diagonal matrix. While this assumption is
typically valid for BCS, there is no guarantee for other CS algo-
rithms, since other CS algorithms may select basis functions that
are distinct from those selected by BCS. In Section V, when pre-
senting example results, we make comparisons between the rig-
orous implementation of adaptive CS presented in Section IV-A
and the approximate scheme discussed here, as applied to BCS
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Fig. 2. Reconstruction of uniform Spikes for N = 512, M = 20, K = 100.
(a) Original signal; (b) Reconstruction with BP, kfff �fffk =kfffk = 0:1582,
t = 1.66 s; (c) Reconstruction with BCS, kfff � fffk =kfffk = 0:0146,
t = 0.46 s.

and OMP.6 As demonstrated, both the rigorous implementation
and the approximate scheme succeed in BCS, while the approx-
imate scheme fails in OMP. Intuitively, this is because the basis
functions selected by OMP are different from those selected
by BCS. Compared to BCS, some OMP-selected basis func-
tions should be removed. Therefore, from the Bayesian analysis
standpoint, the corresponding should be infinity, and thus the
matrix cannot be approximated by a uniform diagonal ma-
trix. These comparisons suggest that the adaptive CS developed
in Section IV-A may be only amenable to the Bayesian analysis,
while it may not be feasible for other CS algorithms, indicating
the adaptive CS may be one of the unique advantages of BCS
over other CS algorithms.

V. EXAMPLE RESULTS

We test the performances of BCS and adaptive CS on sev-
eral example problems considered widely in the CS literature,
with comparisons (when appropriate) made to BP [8], OMP [9]
and StOMP [10]. While BP is a relatively computationally ex-
pensive algorithm that involves linear programming, OMP is a
fast greedy strategy that iteratively selects basis functions most
aligned with the current residual, and StOMP is an extension of
OMP and may be one of the state-of-the-art fast CS algorithms.
In the experiments, all the computations were performed on a
3.4 GHz Pentium machine. The Matlab code is available online
at http://www.ece.duke.edu/~shji/BCS.html.

A. 1D Signals

In the first example, we consider a length signal
that contains spikes created by choosing 20 locations
at random and then putting at these points [Fig. 2(a)]. The
projection matrix is constructed by first creating a
matrix with i.i.d. draws of a Gaussian distribution , and

6OMP outputs both the weights and the indexes of the selected basis func-
tions. With these selected basis functions (which form ���), we can compute an
approximate covariance matrix �̂��(19), from which we then compute the eigen-
vector.

then the rows of are normalized to unit magnitude. To sim-
ulate measurement noise, zero-mean Gaussian noise with stan-
dard deviation is added to each of the measure-
ments that define the data . In the experiment , and the
reconstructions are implemented by BP and BCS. For the BP
implementation, we used the -magic package available online
at http://www.acm.caltech.edu/l1magic/, and the BP parameters
were set as those suggested by -magic.

Fig. 2(b) and (c) demonstrates the reconstruction results with
BP and BCS, respectively. Due to noisy measurements, BP
cannot recover the underlying sparse signal exactly, nor can
BCS. However, the BCS reconstruction is much cleaner than
BP, as spikes are correctly recovered with (about 10
times) smaller reconstruction error relative to BP. In addition,
BCS yields “error bars” for the estimated signal, indicating the
confidence for the current estimation. Regarding the computa-
tion time, BCS also outperforms BP.

As discussed in Section IV, the Bayesian analysis also allows
designing projection matrix for adaptive CS. In the second
experiment, we use the same dataset as in Fig. 2 and study the
performance of BCS for projection design. The initial 40 mea-
surements are conducted by using the random projections as in
Fig. 2, except that the rows of are normalized to 1.01 for the
reasons discussed in Section IV-A. The remaining 80 measure-
ments are sequentially conducted by optimized projections, with
this compared to using random projections. In the experiment,
after each projection vector is determined, the associated
reconstruction error is also computed. For the optimized pro-
jection, is constructed by using the eigenvector of that
has the largest eigenvalue. When examining the approximate
scheme discussed in (19), we set for diagonal loading.
Because of the randomness in the experiment (i.e., the genera-
tion of the original spike signal, the initial 40 random projections
and the empty-entries imputation for , etc.), we execute the
experiment 100 times with the average performance and vari-
ance reported in Fig. 3(a) and (b), respectively.

It is demonstrated in Fig. 3(a) and (b) that the reconstruction
error of the optimized projection is much smaller than that of the
random projection, indicating the superior performance of this
optimization. Further, the approximate scheme in Section IV-B
yields results very comparable to the rigorous implementation
in Section IV-A, suggesting that this approximate scheme may
be well-suited for BCS.

However, to make a meaningful conclusion, we still have two
questions to address. First, the spike signal that we have consid-
ered above is exactly the case for which the nonzero entries of

have the same magnitude, and thus seems well-suited to the
uniform loading assumption. Second, besides BCS, one may ask
whether other CS algorithms may be modified to implement this
approximate scheme, with the same success as BCS.

To answer the first question, we execute the same experiment
as above but on a nonuniform spike signal as shown in Fig. 4(a).
To make the comparison meaningful, the signal-to-noise-ratio
(SNR) of the both types of spike signals are fixed the same. The
results on the nonuniform spike signal are shown in Figs. 4 and
3(c) and (d), from which similar conclusions as for the uniform
case can be made, indicating that the uniform loading assump-
tion is generally applicable for BCS.



2352 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 6, JUNE 2008

Fig. 3. Comparison of adaptive CS and conventional CS on uniform spikes and nonuniform spikes by using BCS; the results are averaged over 100 runs. (a), (c)
Reconstruction error of BCS with random projections, optimized projections (Section IV-A) and approximate projections (Section IV-B); (b), (d) the variances of
the reconstruction error of BCS with random projections and optimized projections (Section IV-A); the variance for the approximate projections (Section IV-B) is
very similar to that of optimized projections, and thus is omitted to improve visibility. (a) and (b) are the results on uniform spikes (as in Fig. 2); (c) and (d) are the
results on nonuniform spikes (as in Fig. 4). Note that the error bars (one standard deviations) in (c) and (d) only show how tight the errors are around their mean
values, and do not indicate the errors can be negative.

It is worthwhile to point out some notable observations from
Fig. 3 regarding the performance of adaptive CS as compared
to conventional CS. Specifically, Theorem 2 of [6] suggests that
adaptive design of projections is of minimal help over (nonadap-
tive) random projections. Derived from information-based com-
plexity, Theorem 2 of [6] shows that

(20)

where denotes the minimax reconstruction error of
the method (adaptive or nonadaptive) adopted, and
describes the compressibility of the underlying signal. In the
most common case , this inequality (20) elucidates that
by using optimized projection at most 50% reduction in error
can be attained as compared to random projection. Not surpris-
ingly, our results in Fig. 3 is consistent with this conclusion.
We note that 50% reduction in error may be not remarkable in

theory (or from a mathematical standpoint), but from a practical
engineering standpoint 50% error reduction is often significant.

As a secondary point, we also observe the following notable
differences between the performances of BCS as applied to
the uniform spikes and the non-uniform spikes. Comparing
Fig. 3(a)–(c), for a given number of CS measurements, the
reconstruction error on the nonuniform spikes is (much) smaller
than that on the uniform spikes. Evidently, this observation is
consistent with some of the theoretical analysis from [29], i.e.,
uniform weights offer the worst-case scenario for sparse signal
reconstruction, and “the more diverse the weights magnitudes,
the better the chances we have of learning the optimal solution.”

To address the second question above, we test the approxi-
mate adaptive CS scheme as applied to OMP, with the results
on the uniform spikes and the non-uniform spikes shown in
Fig. 5. It is demonstrated in Fig. 5 that in both cases the ap-
proximate scheme with OMP are unsuccessful. Intuitively, this
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Fig. 4. Reconstruction of nonuniform Spikes for N = 512, M = 20, K =

100. (a) Original signal; (b) reconstruction with BP, kfff � fffk =kfffk =

0:1375, t = 1.89 s; (c) reconstruction with BCS, kfff � fffk =kfffk =

0:0178, t = 0.27 s.

is because the basis functions selected by OMP are different
from those selected by BCS. Compared to BCS, some OMP-se-
lected basis functions should be removed. Therefore, from the
Bayesian analysis standpoint, the corresponding should be
infinity, and thus the matrix cannot be approximated by a
uniform diagonal matrix.

In summary, the empirical study presented above suggests
that i) the adaptive CS developed in Section IV-A outperforms
conventional CS, and this improvement is more remarkable for
signals with uniform weights and ii) the adaptive CS may be
only amenable to the Bayesian analysis, while it may not be fea-
sible for other CS algorithms (e.g., OMP), indicating a unique
advantage of BCS over other CS algorithms. For these reasons,
in the experiments that follow, when the adaptive CS is ap-
plied, we only consider the rigorous implementation presented
in Section IV-A, with this a direct benefit from BCS.

B. 2D Images

In the following set of experiments, the performance of BCS
is compared to BPDN (the noise-aware version of BP) and
StOMP (equipped with CFDR and CFAR thresholding) on two
example problems included in the Sparselab package that is
available online at http://sparselab.stanford.edu/. Following the
experiment setting in the package, all the projection matrix
here are drawn from a uniform spherical distribution [7]. For
completeness, we also test the performances of adaptive CS on
these two example images as compared to conventional CS.

1) Random-Bars: Fig. 6 shows the reconstruction results
for Random-Bars that has been used in [7]. We used the Haar
wavelet expansion, which is naturally suited to images of this
type, with a coarsest scale , and a finest scale .
Fig. 6(a) shows the result of linear reconstruction (i.e., the in-
verse wavelet transform) with 4096 samples, which rep-
resents the best performance that could be achieved by all the
CS implementations used, whereas Fig. 6(b)–(d) has results for
the hybrid CS scheme (i.e., the CS measurements are made only
on the fine-scale coefficients; no compression on the coarsest-

scale coefficients) [7] with hybrid compressed sam-
ples. It is demonstrated that BCS and StOMP with CFAR yield
the near optimal reconstruction error (0.2271); among all the
CS algorithms considered StOMP is the fastest one. However,
as we have noted, the performance of StOMP strongly relies
on the thresholding parameters selected. For the Random-Bars
problem considered, the performance of StOMP with CFDR is
very sensitive to its parameter setting, with one typical example
result shown in Fig. 6(b).

2) Mondrian: Fig. 7 displays a photograph of a painting by
Piet Mondrian, the Dutch neo-plasticist. Despite being a simple
geometric example, this image still presents a challenge, as its
wavelet expansion is not as sparse as the examples considered
above. We used a multiscale CS scheme [7] for image recon-
struction, with a coarsest scale , and a finest scale
on the “symmlet8” wavelet. Fig. 7(a) shows the result of linear
reconstruction with 4096 samples, which represents the
best performance that could be achieved by all the CS imple-
mentations used, whereas Fig. 7(b)–(d) has results for the mul-
tiscale CS scheme with 2713 multiscale compressed sam-
ples. In the example results in Fig. 7(b) and (c), we used the same
parameter-setting for StOMP as those used in the SparseLab
package. It is demonstrated that all the CS implementations
yielded a faithful reconstruction to the original image, while
BCS produced the second smallest reconstruction error (0.1498)
using the second smallest computation time (15 s).

To understand why BCS is more efficient than StOMP on this
problem, we checked the number of nonzero weights recovered
by BCS and StOMP, with the results reported in Table I. Ev-
idently, BCS found the sparsest solution (with 751 nonzeros)
relative to the two StOMP implementations, but yielded the
second smallest reconstruction error (0.1498). This indicates
that although each iteration of StOMP allows multiple nonzero
weights to be added into the “active set” [10], this process may
be a too generous usage of weights without reducing the recon-
struction error. The sparser solution of BCS is the likely expla-
nation of its relative higher speed compared to StOMP in this
example.

Finally, the performances of adaptive CS as compared to con-
ventional CS are provided in Fig. 8(a) and (b), for Random-Bars
and Mondrian, respectively. The adaptive CS consistently out-
performs conventional CS in all the cases considered.

VI. CONCLUSION

Compressive sensing has been considered from a Bayesian
perspective. It has been demonstrated that by utilizing the previ-
ously studied relevance vector machine (RVM) from the sparse
Bayesian learning literature, problems in CS can be solved more
effectively. In practice, we have found that the results from
this Bayesian analysis are often sparser than existing CS so-
lutions [8], [10]. On the examples considered from the liter-
ature, BCS typically has computation time comparable to the
state-of-the-art algorithms such as StOMP [10]; in some cases,
BCS is even faster as a consequence of the improved sparsity.
We have also considered adaptive CS by optimizing the projec-
tion matrix . Empirical studies demonstrate a significantly ac-
celerated rate of convergence compared to the original CS con-
struction. Finally, we have also demonstrated that the adaptive
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Fig. 5. Comparison of the approximate adaptive CS (Approx.) and conventional CS (Random) by using OMP on (a) uniform spikes (as in Fig. 2) and (b) nonuni-
form spikes (as in Fig. 4). The results are averaged over 100 runs.

Fig. 6. Reconstruction of Random-Bars with hybrid CS. (a) Linear reconstruc-
tion fromK = 4096 samples, kfff �fffk =kfffk = 0:2271; (b) reconstruction
with CFDR, kfff �fffk =kfffk = 0:5619, t = 3.15 s; (c) reconstruc-
tion with CFAR, kfff �fffk =kfffk = 0:2271, t = 4.38 s; (d) recon-
struction with BCS, kfff � fffk =kfffk = 0:2271, t = 8.55 s. BP (` )
took 114 s with the reconstruction error 0.2279, which is not shown here.

CS may be only amenable to the Bayesian analysis, while it may
not be feasible for other CS algorithms, indicating a unique ad-
vantage of BCS over other CS algorithms.

There is a clear connection between CS and regression
shrinkage and selection via the Lasso [14], [34] as both focus
on solving the same objective function (1). Research on Lasso
has produced algorithms that might have some relevance to
BCS. Besides this, other possible areas of future research may
include i) even faster sparse Bayesian learning algorithms,
as dealing with images is a high-dimensional problem, ii)
simultaneous inversion of multiple data sets, borrowing ideas

Fig. 7. Reconstruction of Mondrian with multiscale CS. (a) Linear reconstruc-
tion fromK = 4096 samples, kfff �fffk =kfffk = 0:1333; (b) reconstruction
with CFDR, kfff � fffk =kfffk = 0:1826, t = 10 s; (c) reconstruc-
tion with CFAR, kfff � fffk =kfffk = 0:1508, t = 28 s; (d) recon-
struction with BCS, kfff � fffk =kfffk = 0:1498, t = 15 s. BP (` )
took 162 s with the reconstruction error 0.1416, which is not shown here.

TABLE I
SUMMARY OF THE PERFORMANCES OF BP, STOMP AND BCS ON MONDRIAN

from multitask learning [35], and iii) a theoretical analysis of
adaptive CS, as this could be an important complement to the
existing analysis for the conventional CS formulation (e.g.,
[23] and [24]).
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Fig. 8. Comparison of adaptive CS (optimized) and conventional CS (random) on (a) Random-Bars and (b) Mondrian. The results are averaged over 100 runs.
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