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Static Solution for Linear Networks
adapted from Carlos J. Cela PhD dissertation, April 2012

The static solution constitutes the simplest case for a linear network, in which all current sources are
DC, and all equivalent capacitances in the circuit are completely charged. Under these conditions,
capacitors are replaced by open circuits. and the network can be considered purely resistive.

Nodal analysis is used to create a suitable linear system, considering m nodes, and excluding ground.
The system is solved for the voltage value at each node.

G V=l (3.9)

This is equivalent to use Kirchoff Current Law. KCL is chosen as a method because in 3D structures
the topologies may not be planar, leading to cases that cannot be solved using KVL. The resulting
linear system is of the form (3.9), where G is the sparse symmetric admittance matrix representing the
model’s admittance. V is the unknown voltage vector, and I the vector describing the currents being
injected at each node.

Forming the Admittance Matrix G

If the network has m + 1 nodes, G is the m *x m conductance matrix; each node of the network is
present in both the rows and the columns of the matrix. The ground node is implicit. G is formed from
the network resistors by using the following steps derived from nodal analysis:

1. Nodes are sequentially labeled from 1 to m. Ground node is not counted.
2. All values of G are initialized to zero.
3. For each pair of nodes (a.b):

(a) If a=b. and there are K resistances connected to the node:
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(b)Ifa fb, and the nodes have K resistances connected between them:
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The resulting system will yield a sparse symmetric G matrix.
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Forming the Current Vector I

The I current vector describes the independent current sources connected to the network. These are the

vehicle to inject energy into the model. There is one entry for each node in the system. labeled from 1
to m.

U,

. Nodes are sequentially labeled from 1 to m, using the same order used in G. Ground node is not
counted.

S8

. All values of | are initialized to zero.

. For each current source 1 having its positive terminal connected to node a and its negative
terminal connected to node b:

(%)

(a) If a is the ground node:
[b=1b—1i
(b) If b is the ground node:
[a=la+i
(¢) If neither a or b are the ground node:
[a=la+i
Ib=1Ib—i
Solving the Linear System
In order to minimize computer memory usage, it is desirable to keep the admittance matrix sparse
while solving the linear system; this makes direct methods such a Gaussian elimination a poor choice

for this problem. Some authors report using successive overrelaxation (SOR) and Gauss-Seidel. In our
experience, Krylov sub-space iterative gradient- descent methods have proved effective.
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