
3. The Finite-Difference Time-
Domain Method (FDTD)

The Finite-Difference Time-Domain method (FDTD) is today’s one of the most
popular technique for the solution of electromagnetic problems. It has been successfully
applied to an extremely wide variety of problems, such as scattering from metal objects and
dielectrics, antennas, microstrip circuits, and electromagnetic absorption in the human body
exposed to radiation. The main reason of the success of the FDTD method resides in the fact
that the method itself is extremely simple, even for programming a three-dimensional code.
The technique was first proposed by K. Yee, and then improved by others in the early 70s.

Theory

The theory on the basis of the FDTD method is simple. To solve an electromagnetic
problem, the idea is to simply discretize, both in time and space, the Maxwell’s equations with
central difference approximations. The originality of the idea of Yee resides in the allocation
in space of the electric and magnetic field components, and the marching in time for the
evolution of the procedure. To better understand the theory of the method, we will start
considering a simple one-dimensional problem. Assume, at this stage, “free space” as
propagation medium. In this case, Maxwell’s equations can be written as

∂
∂ ε
E

H
t 0

= ∇ ×
1

 (1)

∂
∂ µ
H

E
t 0

= − ∇ ×
1

 . (2)

In the one-dimensional case, we can use only Ex and Hy, and (1), (2) can be rewritten
as

∂
∂ ε

∂
∂

E
t

H
z

x

0

y= −
1

 (3)

∂
∂ µ

∂
∂

H
t

E
z

y

0

x= −
1

 (4)

that represents a plane wave traveling in the z direction.

 Yee’s scheme consists in considering Ex and Hy shifted in space by half a cell and in
time by half a time step when considering a central difference approximation of the
derivatives. In such a case, equations (3) and (4) can be written as

E k) - E k)
t

 = -
1

H k + 1 / 2) - H k -1 / 2)

z
x
n+1/2

x
n-1/2

y
n

y
n((((

∆ ∆ε0
 (5)

H k + 1 / 2) - H k + 1/ 2)
t

 = -
1

E k + 1) - E k)

z
y
n+1

y
n

x
n+1/2

x
n+1/2((((

∆ ∆µ0
 . (6)

 Equations (5) and (6) show the usefulness of Yee’s scheme in order to have a central
difference approximation for the derivatives. In particular, the left term in equation (5) says
that the derivative of the E field at time n∆t can be expressed as a central difference using E
field values at times (n+1/2)∆t and (n-1/2)∆t. The right term in equations (5) approximates
instead the derivative of the H field at point k∆x as a central difference using H field values at
points (k+1/2)∆x and (k-1/2)∆x. This approximations oblige us to calculate always the E field
values at points …, (k-1) ∆x, k ∆x, (k+1) ∆x, … and times …, (n-3/2) ∆t, (n-1/2) ∆t,
(n+1/2) ∆t, … and to calculate always the H field values at points …, (k-3/2) ∆x, (k-1/2) ∆x,
(k+1/2) ∆x, … and times …, (n-1) ∆t, n ∆t, (n+1) ∆t, …

 This scheme is known as “leap-frog” algorithm. Practically, it means that to
approximate Maxwell’s equations in space and time using this algorithm, one should calculate
first all H field values, then all E field values, remembering always that E and H are shifted
also in space by half of the discretization ∆x. Figure 1 shows schematically the algorithm.

Figure 1. Yee’s one-dimensional scheme for updating EM fields in space and time.

Ex

z k-2 k-1 k k+1

Time: (n-1/2)∆t

Hy

z k-3/2 k-1/2 k+1/2 k+3/2

Time: (n)∆t

Ex

z k-2 k-1 k k+1

Time: (n+1/2)∆t

 The explicit FDTD equations can be derived from (5) and (6) obtaining

E (k) = E (k) +
t

 z
 (H k -1 / 2) - H k + 1 / 2))x

n+1/2
x
n-1/2

y
n

y
n∆

∆ε 0
(((7)

H (k + 1 / 2) = H (k + 1 / 2) +
t

 z
 (E k) - E k + 1))y

n+1
y
n

x
n+1/2

x
n+1/2∆

∆µ 0
((. (8)

 To avoid computational problems due to the very different amplitudes of E and H,
Taflove introduced a normalization of the E field:

~E = E
ε
µ

0

0
 . (9)

 Equations (7) and (8), adopting this substitution and dropping the symbol “~” from
now on, become

E (k) = E (k) +
1 t

z
 (H k -1 / 2) - H k +1 / 2))x

n+1/2
x
n-1/2

y
n

y
n

µ ε0 0

∆
∆

(((10)

H (k + 1 / 2) = H (k + 1 / 2) +
1 t

z
 (E k) - E k + 1))y

n+1
y
n

x
n+1/2

x
n+1/2

µ ε0 0

∆
∆

((. (11)

 These equations can be directly implemented in a computer code. Note that the “1/2”
in equations (10) and (11) do not need to be implemented in the computer code. The half a cell
and half a time step are necessary in equations (10) and (11) just to remind us the physical
definitions of E and H, and to remind us that E and H are actually offset by half a cell and half
a time step. This information, anyway, will never appear in our coding. To implement the
code for the calculation of the fields obeying to equations (10) and (11) we need to:

a) Define the size KE of the arrays E and H that, once we have chosen the spatial
resolution ∆z, will correspond to the absolute size of the computational domain;

b) Determine the time step necessary according to our resolution and excitation
signal;

c) Implement a cycle to compute the fields for a certain number of time steps. Within
the cycle, we need to include:

d) A cycle to calculate the various EX(K) according to equation (10) for all
the cells of the domain KE;

e) The excitation signal at the source point KS;

f) A cycle to calculate the various HY(K) according to equation (11) for all
the cells of the domain KE; Note that in the computer code we do not need
to include the information relative to the half a cell shift (i.e., the “1/2”)
since this is only the interpretation that we need to give to the field, and
does not correspond to any practical modification in the algorithm.

The problem is now: how to choose ∆z and ∆t. How fine should our resolution be?
The first parameter to choose is generally the resolution Dz. It has been verified that at least 10
cells per wavelength are necessary to ensure an adequate representation. The wavelength to
consider is the smallest wavelength in the simulation. We did not consider yet the presence in
our simulations of dielectrics, but we will shortly see that the presence of dielectric will just
slightly modify the FDTD scheme given by equations (10) and (11). Anyway, it is well known
that the signal wavelength is smaller in dielectrics with higher dielectric constants and losses.
Therefore, in the case we have to consider dielectrics, we should first calculate the wavelength
in the dielectric with higher dielectric constant and losses, and then consider the cell size to be
about ten times smaller than this value.

Once the cell size has been chosen, the time step is also chosen according to stability
considerations. For stability reasons, a field component cannot propagate more than one cell
size in the time step ∆t. This means that

∆
∆

t
z

c0
≤ (12)

since the wave travels at the speed of the light c0. This is the stability condition for one-
dimensional problems. It can be proven that, in general, the stability condition (Courant
condition) is given by

∆
∆

t
c d0

≤ (13)

with d=1, 2, or 3 for one-, two-, or three-dimensional problems, respectively, and ∆ the
smallest cell size.

 A common choice for ∆t (in one-, two-, or thee-dimensional problems) is anyway
given by

∆
∆

t
2 c0

= . (14)

Source Signals

 We have mentioned how to choose the cell-size ∆z with respect to the minimum
signal wavelength in the simulation. This makes sense in the case of sinusoidal excitation, but
what about other signal waveforms that we may need to handle? If, for example, we have to
consider a Gaussian pulse as excitation signal, how should we proceed to determine the cell
size? A spectrum of a Gaussian pulse is, again, a Gaussian and, therefore, it contains infinite
frequencies. In this case, we should choose the cell size according to the maximum frequency
of interest. The remaining part of the spectrum will be filtered by the mesh, incapable of
describing the propagation that will require smaller cell size (and time step). One should
anyway be careful in choosing well the input signal, in the sense that energy associated with
frequencies incapable of propagating should be small with respect to the others. If this is not
satisfied, the propagating signal in our simulation may be affected significantly by noise, given
by the frequencies that cannot propagate.

 A wide variety of signals have been used as source in FDTD meshes. The most
common are the sinusoidal signal and the Gaussian pulse. Sometimes, when a sinusoidal
signal need to be used, it is preferred to use a modulated signal in order to avoid high
frequency at the beginning of the simulation. Other choices, in order to reduce the error,
consist in using the so called "soft" source, where the source signal of interest is added in the
source point to the previous value of the field. In other words, for example, if the following is
an "hard" source

EX(KS) = SIN (OMEGA* T)

the following is instead a "soft" source

EX(KS) = EX(KS) + SIN (OMEGA* T)

Basic Example of 1D FDTD Code in Matlab

The following is an example of the basic FDTD code implemented in Matlab. The code uses a
pulse as excitation signal, and it will display a "movie" of the propagation of the signal in the
mesh. If you are not using a workstation, Matlab might have difficulties in handling the movie
due to the memory requirements. In this case you should use the second code given, where
instead of the movie the code plots the e-field at each time step waiting for you to press a key
to plot the next time step.

% This is a 1D FDTD simulation with pulse
% It displays a "movie" of the signal
% Size of the FDTD space
clear;
ke=50;

% Position of the source
ks=ke/2;

% Number of time steps
nsteps=100;

% Cell size and time stepping
c0=3.e8;
dx=0.01;
dt=dx/(2.*c0);

% Constants
cc=c0*dt/dx;

% Initialize vectors
ex=zeros(1,ke);
hy=zeros(1,ke);

% Gaussian pulse
t0=20;
spread=8;

% Start loop
M=moviein(nsteps);
for t=1:nsteps

% E field loop
for k=2:ke-1

ex(k)=ex(k)+cc*(hy(k-1)-hy(k));
end

% Source
ex(ks)=exp(-.5*((t-t0)/spread)^2);

% H field loop
for k=1:ke-1

hy(k)=hy(k)+cc*(ex(k)-ex(k+1));
end

plot(ex);axis([1 ke -2 2]);
M(:,t) = getframe ;

% input('')

end
movie(M,1);

The following is the code without movie, but with plot at each time step and wait for you to
press a key to continue. Of course, you can modify it to plot with the desired number of time
steps interval between plots.

% This is a 1D FDTD simulation with pulse
% It displays a "movie" of the signal
% Size of the FDTD space
clear;
ke=50;

% Position of the source
ks=ke/2;

% Number of time steps
nsteps=100;

% Cell size and time stepping
c0=3.e8;
dx=0.01;
dt=dx/(2.*c0);

% Constants
cc=c0*dt/dx;

% Initialize vectors
ex=zeros(1,ke);
hy=zeros(1,ke);

% Gaussian pulse
t0=20;
spread=8;

% Start loop
for t=1:nsteps

% E field loop
for k=2:ke-1

ex(k)=ex(k)+cc*(hy(k-1)-hy(k));
end

% Source
ex(ks)=exp(-.5*((t-t0)/spread)^2);

% H field loop
for k=1:ke-1

hy(k)=hy(k)+cc*(ex(k)-ex(k+1));
end

plot(ex);axis([1 ke -2 2]);
input('Type')

end

Understanding the Codes

We can now spend a few words on how the codes have been implemented, and the
correspondence of equations (10) and (11) with those programmed. We can observe that,
basically, we have just "dropped" the 1/2 in the position of the field H. The correspondence
between physical and computer variables is indicated in the following figure.

Figure 2. Correspondence between "physical arrays" and "programmed arrays".

Boundary Conditions

From the previous discussion, it is not clear what happens at the mesh termination. Of
course, we cannot simulate the propagation of the signal indefinitely, and we need to terminate
somehow the FDTD grid. The problem does not exist in the case of a spatially limited
structure, like a waveguide, a resonator, etc., where we need to model a region that “trap” the
field inside. In most of the problems, however, we need to simulate open space regions. In
these cases, since our simulation region MUST be limited, we need to find a way to
“simulate” the open space. These boundary conditions are called RADIATION BOUNDARY
CONDITIONS (RBCs) or ABSORBING BOUNDARY CONDITIONS (ABCs).

In 1D (the formulation in eq. (10) and (11)) the problem can be easily solved. We can
observe, in fact, that if we use ∆t given by (14) (∆t=∆z/(2 c0)), since the field travels at the
speed of the light c0, in one time step the field will travel only half a cell. This means that to
entirely cross one cell, two time steps are necessary. The absorbing boundary condition for the
1D case can be therefore expressed by

E Ex
n+1/2

x
n-2+1/2() ()1 2= (15)

Ex

z k-2 k-1 k k+1

Hy
k-3/2 k-1/2 K+1/2 K+3/2 Physical Situation

Hy

Ex

k-2 k-1 k k+1

for the left side of the mesh, and by

E KE E KE -1x
n+1/2

x
n-2+1/2() ()= (16)

for the right side of the mesh. With these conditions, in the 1D simulation described in the
previous section the wave will be completely “absorbed” by the termination. Of course,
“completely” means actually “relatively”, since for numerical errors some small reflections
from the boundary (noise) will be observed.

 This is the simplest approach to derive an absorbing boundary condition. Several
ABCs have been proposed in the literature that resort to analytical approximations of the wave
equation or use fictitious absorbing materials to physically absorb the outgoing wave. One
traditional ABC is that developed by G. Mur. The boundary condition proposed by Mur can
be explained by considering the wave equation that the electromagnetic field obey.
Considering the 1D case, we can write the following wave equation:

∂
∂

∂
∂

2

2
0
2

2
x

2

E
z

 -
1
c

E
t

= 0x . (17)

 This equation can be rewritten as

∂
∂

∂
∂

∂
∂

∂
∂z c t

z c t

 E
o o

x+
�

�
�

�

�
� −
�

�
�

�

�
� =

1 1
0 . (18)

 Engquist and Madja have shown that an absorbing boundary condition for the left side
of the grid (z=0) can be derived applying the condition

z c t

 E
o

x

∂
∂

∂
∂

−
�

�
�

�

�
� =

1
0 (19)

while on the right side of the mesh (z=KE) the boundary condition can be derived by using

z c t

 E
o

x

∂
∂

∂
∂

+
�

�
�

�

�
� =

1
0 . (20)

 The idea of Mur is to express the derivatives around a point that is half a cell distant
from the boundary calculated at time n. In this case, we will be able to express the derivatives
in equations (19) and (20) by using the electric field values at the points and times known by
the simulation. Consider, for example, equation (19) that we should use to derive the boundary
condition at the left side of the mesh (z=0). We obtain, using central differences,

() ()1
z

 E - E -
1

c t
E - Ex 2

n
x 1
n

0
x 1/2
n+1/2

x 1/2
n-1/2

∆ ∆
= 0

and, therefore,

1
z

E E

2
-

E E
2

-
1

c t
E E

2
-

E E
2

x 2
n+1/2

x 2
n-1/2

x 1
n+1/2

x 1
n-1/2

0

x 1
n+1/2

x 2
n+1/2

x 1
n-1/2

x 2
n-1/2

∆ ∆
+ +�

�
�

�

�
�

+ +�

�
�

�

�
� = 0 .

 Simplifying, and solving the equation for Ex1
n+1/2, we obtain

()E = E +
c t - z
c t + z

 E Ex 1
n+1/2

x 2
n-1/2 0

0
x 2
n+1/2

x 1
n-1/2∆ ∆

∆ ∆
− . (21)

 Applying the same approximation to the right boundary, we obtain

()E = E +
c t - z
c t + z

 E Ex KE
n+1/2

x KE-1
n-1/2 0

0
x KE-1
n+1/2

x KE
n-1/2∆ ∆

∆ ∆
− . (22)

 Equations (21) and (22) can be applied directly in the code to update the left and right
points in the mesh, respectively.

FDTD in Dielectrics

 So far, we have considered the one-dimensional FDTD algorithm in free space. How
the presence of a dielectric will affect the algorithm?

 We can derive the modification we need to include in the algorithm by considering,
again, Maxwell’s equations. For a generic medium, Maxwell’s equations can be written as

∂
∂ ε ε

σ
ε ε

E
H E

t
-

0 r 0 r
= ∇ ×

1
 (23)

∂
∂ µ
H

E
t 0

= − ∇ ×
1

 . (24)

In 1D, these equations can be rewritten as follows:

∂
∂ ε ε

∂
∂

σ
ε ε

E
t

H
z

- Ex

0 r

y

0 r
x= −

1
 (25)

∂
∂ µ

∂
∂

H
t

E
z

y

0

x= −
1

 . (26)

Changing the variable Ex according to equation (9), we obtain

∂
∂ ε µ ε

∂
∂

σ
ε ε

E
t

H
z

- Ex

r 0 0

y

0 r
x= −

1
 (27)

∂
∂ µ ε

∂
∂

H
t

E
z

y

0 0

x= −
1

 . (28)

At this point, we can just discretize equations (27) and (28) in the same we have done
it for deriving equations (10) and (11). We obtain, after a few simple manipulations,

E (k) =
1-

 t

1 +
 t

 E (k) +

1 t
 z

1 +
 t

 (H k -1 / 2) - H k + 1 / 2))x
n+1/2 r

r

x
n-1/2 r

r

y
n

y
n

σ
ε ε

σ
ε ε

µ ε ε
σ
ε ε

∆

∆

∆
∆

∆
2

2 2

0

0

0 0

0

(((29)

H (k + 1 / 2) = H (k + 1 / 2) +
1 t

z
 (E k) - E k + 1))y

n+1
y
n

x
n+1/2

x
n+1/2

µ ε0 0

∆
∆

((. (30)

Equation (30) is identical to equation (11), since we did not consider the possibility to
have magnetic materials. Magnetic materials can be included easily modify equation (28) first,
and the discretizing it as done for deriving equation (28).

Note that equations (29) and (30) are more general than equations (10) and (11).
Equations (10) and (11) are obtained by simply imposing εr=1 and σ=0 in equations (29) and
(30) and, therefore, we can focus on these last two equations for developing the general 1D
FDTD algorithm.

Implementation of the 1D FDTD Algorithm for Generic Media.

As we have said before, the superscripts and subscripts containing '1/2' can be
simplified in the computer implementation of the algorithm. We should always remember
that, anyway, the half a cell and half a time step are "physically" present in the algorithm and,
therefore, they should be taken into account in the interpretation of the results.

A computer version of equations (29), (30) is the following:

EX(K) = CA(K) * EX(K) + CB(K) * (HY(K-1) - HY(K)) (31)

HY(K) = HY(K) + CC * (EX(K) - EX(K+1)) , (32)

with

 CA(K) =
1-

(K) t
 (K)

1+
(K) t

 (K)

 r

r

σ
ε ε
σ
ε ε

∆

∆
2

2

0

0

 (33)

CB(K) =

1 t
(K) z

1+
(K) t

 (K)

r

r

µ ε ε
σ
ε ε

0 0

02

∆
∆

∆ (34)

 CC =
1 t

z

µ ε0 0

∆
∆

 . (35)

 Each cell will have its own εr and σ, that we need to store somewhere, in order to
calculate the coefficients CA and CB for each cell of the mesh. The coefficient CC is just a
constant, not having any dependence from the dielectrics inside the mesh. A basic skeleton of
the code is given in the following.

BASIC SKELETON FOR 1D FDTD CODE FOR GENERIC MEDIA

Define the cell size ∆z to use (in meters) (typically, ∆z=λmin/10)
Define the time step ∆t to use (in seconds) (typically, ∆t=∆z/2 c0)
Define how many cells will constitute the mesh (decide KE)
Define how many time steps for the simulation (decide NMAX)
Initialize the vectors CA and CB according to the dielectrics in the mesh
Initialize the variable CC
FOR N=1 : NMAX

FOR K=2 : KE
EX(K) = CA(K) * EX(K) + CB(K) * (HY(K-1) - HY(K))

END
Apply an electric field source somewhere in the mesh (i.e., sin, pulse, etc.)
Apply Absorbing Boundary Conditions (if any)
FOR K=1 : KE-1

HY(K) = HY(K) + CC * (EX(K) - EX(K+1))
END

END

