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1 Introduction

Just as differential equations are a common class of mathematical tools for electromagnetic sys-
tems, integral equations can likewise provide valuable insight into practical engineering problems.
By analogy, finite-difference methods serve as a popular tool for numerically solving differential
equations while the method of moments (MoM) is one of the more popular tools for solving inte-
gral equations. This makes MoM a cornerstone for any comprehensive study in numerical methods.
Unfortunately, the essence of MoM is much less intuitive than traditional finite-differencing meth-
ods. To make matters even worse, effective tutorials are very scarce throughout the literature.
The reason for this is because a full discussion of MoM generally requires a firm grasp of linear
vector spaces and variational calculus. In fact, some standard references will happily devote entire
chapters to these topics alone before even attempting to introduce MoM [1].

The goal of this paper is to introduce the core concepts of MoM by applying it to a relatively
simple physical problem: the charge distribution along a thin wire of constant potential. This
problem allows us to walk through the principles of MoM while still maintaining a simple, intuitive
framework based on physical principles. The problem was originally explored as an undergraduate
tutorial in [2], though some mathematical errors and misconceptions prevent it from being as in-
structive as it was intended. We shall therefore explore the problem again from a more fundamental
perspective so that introductory-level students may grasp the core of MoM without having to spend
time delving into more advanced mathematical concepts.

2 Voltage Potential Due to an Arbitrary Charge Distribution

We begin our discussion with a point charge q placed at the origin of an arbitrary coordinate
system. From Coulomb’s law, we know that the electric field intensity at some point r away from
the origin satisfies

E(r) =
1

4πε0

q

r2
r̂ , (1)

where ε0 is the permittivity of free space. We also note the use of standard vector notation defined
by

r = x x̂ + y ŷ + z ẑ , (2)

r = |r| , (3)

r̂ =
r

r
. (4)

Now let us solve for the voltage potential V at the same point r due to the presence of the
point charge. Because we are dealing with an electrostatic system, we know that the electric field
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is simply the negative gradient of the voltage potential field:

E(r) = −∇V (r)

= −x̂ ∂V
∂x
− ŷ

∂V

∂y
− ẑ

∂V

∂z
. (5)

Due to the radial symmetry in this problem, we are free to solve for V at any convenient observation
point we desire and then simply apply the result to all other points along a sphere with equivalent
radius. Let us therefore choose r = x x̂ to represent some arbitrary point along the x-axis. Solving
for E then yields

E(x) =
1

4πε0

q

x2
x̂ . (6)

Comparing this expression with −∇V then leads us to

∂V

∂x
= − 1

4πε0

q

x2
. (7)

Next, we integrate with respect to x to find

V (x) =
q

4πε0x
+ C . (8)

Note that we still need to define C in order to arrive at a unique solution for V . One convenient
way to handle this is by arbitrarily specifying the voltage potential at x = ∞ to be zero. This
forces a value of C = 0 and uniquely defines V to be

V (x) =
q

4πε0x
. (9)

Finally, because of the radial symmetry of the system, whatever is true at the point x must also
be true for all points along the surface of a sphere with radius r = x. Expressing V in spherical
coordinates therefore produces a modification of Coulomb’s law in terms of the voltage potential
function:

V (r) =
q

4πε0r
. (10)

In practice, it is usually not possible for our charges to lie exactly at the origin of the system.
A far more useful form of Coulomb’s law therefore accounts for charges that may be offset to some
arbitrary point r′. In this case, the distance between the source and the observation point is written
as r = |r− r′|. Thus, a more generic form of Coulomb’s law may be written as

V (r) =
q

4πε0

1

|r− r′|
. (11)

Next, we desire to account for the presence of multiple point charges in space. Fortunately,
this is an easy problem to handle since the electric fields add linearly. This means that the total
electric field due to a system of N point charges is simply the summation of all the individual fields.
Consequently, the total voltage potential due to a system of N point charges is also the summation
of all the individual potentials. Letting qn and r′n denote the charge and position of the nth source
therefore leads us to

V (r) =
1

4πε0

N∑
n=1

qn
|r− r′n|

. (12)
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Finally, we are now in a position to describe the total voltage potential due to a distribution of
charge density ρ rather than a discrete series of point charges. This situation is handled by simply
replacing the finite summation over points charges with an integral over a volume of charge density.
The individual point charges in qi are then replaced with the differential charge dq = ρ(r′)dV ′,
where ρ is the charge density function and dV ′ is the differential unit of volume. Integrating over
the entire distribution of charge within the source volume V ′ then leads us to

V (r) =
1

4πε0

∫
V ′

ρ(r′)

|r− r′|
dV ′ , (13)

which is Coulomb’s law for voltage potential in its most generic form.

3 Forward Versus Inverse Problems

Upon inspection of Equation (13), it is tempting to physically interpret it in the following manner:

Given an arbitrary distribution of charge density ρ, find the voltage potential V through-
out all space.

Such an interpretation is intuitive and natural for many practical applications, so we generally refer
to it as the forward problem. It should also be straightforward to see how numerical integration
allows us to obtain solutions for virtually any physical geometry imaginable. However, there is an
alternative way to view Equation (13):

Given the voltage potential V throughout all space, find the charge density ρ that pro-
duced it.

This interpretation is called the inverse problem. Though it may seem less intuitive than the
forward problem, it is still mathematically possible to perform under many physical conditions.
The only hard part is trying to find a way to invert the integration operation and solve for ρ. As we
shall see, exact solutions to the problem can be difficult (if not impossible) to obtain, but numerical
methods are available to help us generate approximate solutions with a high degree of accuracy.
One of the most popular of these is the method of weighted residuals, or more generally the method
of moments (MoM).

4 Charge Distribution on a Wire of Constant Potential

To understand the essence of how MoM works, it is instructive to demonstrate on a simplified
model. One very classic example is the system illustrated in Figure 1, which shows a thin metal
rod of length L and radius a held at constant potential V0. Because the rod is held at some voltage
potential relative to its environment, there naturally exists some distribution of charge density ρ
that spreads out over the surface. Our goal is to therefore solve for ρ given V0, L, and a.

The solution begins by rewriting Equation (13) in one dimension. As part of the “thin rod”
assumption (a << L), we can approximate the charge distribution as if it were placed entirely
along the x-axis. We shall furthermore limit our observation point r strictly to points along the
x-axis since doing so will help simplify the notation without changing the essence of the problem.
The voltage potential at some point x may therefore be expressed as

V (x) =
1

4πε0

L∫
0

ρ(x′)

|x− x′|
dx′ . (14)
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Figure 1: A thin, conductive rod with length L and radius a is oriented along the x-axis. The rod is fixed
at a voltage potential of V0, thus inducing a charge density ρ(x) along its surface.

Equations with this form have a special name in mathematics, and they are called Fredholm
integral equations. More specifically, Equation (14) is a Fredholm equation of the first kind. In
general, such equations are written as

g(t) =

b∫
a

K(x, t)Φ(x) dx . (15)

The function K(x, t) is called the kernal while g(t) is called the forcing function. Since Φ is the
function we are trying to solve for, we may simply refer to it as the unknown function. We also
note that because Equation (14) is similar in nature to Equation (15), whatever method that solves
our charged rod problem can in general be applied to any number of problems that are likewise
expressed as a Fredholm equation. This is what makes the method of moments such a powerful
tool in numerical methods.

5 Basis Functions

The first step in applying the method of moments is to slice up the metal rod into a series of discrete
subsections, each with a width ∆x. This arrangement is shown in Figure 2 with the center of each
segment located at the point x′n. We then define an estimation function ρ̂ that approximates the
unknown function ρ by expressing it as a linear combination of discrete basis functions. Letting un
denote the basis functions and αn denote the weighting coefficients, this is written as

ρ̂(x′) =

N∑
n=1

αnun(x′) . (16)

The exact choice for un can vary, but one of the simplest choices is the Dirac delta function:

un(x′) = δ(x′ − x′n) . (17)

This choice attempts to approximate the complete charge distribution on the rod as if it were a
series of point charges located at the points x′n. The exact values for x′n are likewise arbitrary,
but a natural choice is at the center of each subdomain such that x′n = n∆x/2. Another common
choice is the rectangle function, or simply rect function, defined by

un(x′) =

{
1, |x′ − x′n| ≤ ∆x/2

0, otherwise .
(18)
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Figure 2: The charged rod is segmented into a series of subsections with length ∆x.

Clearly, this approximates the charge distribution as a series of constant charge density values over
each segment. Many other options exist as well, but for the sake of this example we shall continue
on by applying delta functions as the basis for ρ̂.

6 Residuals

Now that we have settled on a choice of expansion function, our next goal is to solve for the set
of expansion coefficients αn that best approximate the true solution ρ. We therefore begin by
substituting ρ̂ for ρ into Equation (14) to find

V (x) ≈ 1

4πε0

L∫
0

1

|x− x′|

N∑
n=1

αnδ(x
′ − x′n) dx′

≈ 1

4πε0

N∑
n=1

αn

L∫
0

δ(x′ − x′n)

|x− x′|
dx′

≈ 1

4πε0

N∑
n=1

αn
|x− x′n|

. (19)

The next step is to calculate the residual by subtracting the right side of Equation (19) from the
left:

R(x) = V (x)− 1

4πε0

N∑
n=1

αn
|x− x′n|

. (20)

Note how the residual simply represents the error in our integral equation that arose after replacing
ρ with an approximation function ρ̂. Thus, a natural goal is to solve for a specific set of expansion
coefficients αn that minimize the residual. Unfortunately, this is not yet mathematically possible in
its current form because R is a continuous function over x and there are still N unknown expansion
coefficients in the summation.

To get around this problem, consider the voltage at the position x = L/2. Because the charges
are distributed on a conductive metal, the entire wire is at the same voltage potential V0. The
residual at this point therefore satisfies

R(L/2) = V0 −
1

4πε0

N∑
n=1

αn
|L/2− x′n|

. (21)
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In principle, we may not be able to drive R to zero over all space, but it is certainly possible to
choose an appropriate set of αn values such that R(L/2) = 0. In fact, because there are a total
of N expansion coefficients, it is possible to drive at least this many samples in R to zero. To see
how, suppose we were to sample a random set of M voltages along the wire such that V (xm) = V0.
If we force R(xm) = 0 at each location, the result is a system of equations given by

V0 −
1

4πε0

N∑
n=1

αn
|x1 − x′n|

= 0

V0 −
1

4πε0

N∑
n=1

αn
|x2 − x′n|

= 0

V0 −
1

4πε0

N∑
n=1

αn
|x3 − x′n|

= 0

...

V0 −
1

4πε0

N∑
n=1

αn
|xM − x′n|

= 0 .

Note how the above expression represents a system of M linear equations with N unknowns. If we
therefore specify M = N , we are guaranteed to find a unique solution for all values of the expansion
coefficients in αn. We may therefore express the above system as a matrix-vector equation with
the form Ax = b. Writing this out explicitly results in

1
|x1−x′1|

1
|x1−x′2|

1
|x1−x′3|

· · · 1
|x1−x′N−1|

1
|x1−x′N |

1
|x2−x′1|

1
|x2−x′2|

1
|x2−x′3|

· · · 1
|x2−x′N−1|

1
|x2−x′N |

1
|x3−x′1|

1
|x3−x′2|

1
|x3−x′3|

· · · 1
|x3−x′N−1|

1
|x3−x′N |

...
. . .

...
1

|xN−1−x′1|
1

|xN−1−x′2|
1

|xN−1−x′3|
· · · 1

|xN−1−x′N−1|
1

|xN−1−x′N |
1

|xN−x′1|
1

|xN−x′2|
1

|xN−x′3|
· · · 1

|xN−x′N−1|
1

|xN−x′N |





α1

α2

α3
...

αN−1

αN


=



4πε0V0

4πε0V0

4πε0V0
...

4πε0V0

4πε0V0


.

(22)
Remember that all this expression represents is a series of voltage samples chosen along the wire
such that the expansion coefficients drive the residual at each point to zero. This key step is the
essence behind the method of moments. The only difficult part now is to choose an appropriate set
of test locations at which to define xm.

7 Test Functions

In principle, we are free to choose xm along any locations where V (xm) is a known value. However
in practice, it is desirable to pick values that are relatively spread out from each other in space. This
helps to ensure a well conditioned matrix before attempting to calculate a solution. For example,
we could theoretically choose all of our test locations around a tiny little neighborhood of the rod’s
midpoint using xm = L/2 + ma × 10−9. Although this would still be mathematically possible to
invert, it essentially places all of our test locations at the same point in space. The result of such a
choice would be an ill conditioned matrix because each row would be nearly identical to all others.
Numerical inversion therefore becomes impossible due to the finite precision of digital calculations.
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For the case of our charge distribution problem, a seemingly natural choice is to define xm =
m∆x/2. In other words, we shall likewise place all xm at the centers of each subdomain similar to
the x′n values. This allows us to write each matrix element using

Amn =
1

|xm − x′n|
, (23)

where

xm = m∆x/2 ,

x′n = n∆x/2 .

Remember again that the xm terms represent the test locations while x′n represents the source
locations.

The final step before attempting a matrix inversion is to handle the self terms in A where
n = m. Due to the overlap between the test and source locations, there naturally exist singularities
along the diagonal elements of A. Although this is generally not a problem for most applications,
it is one that must be specifically dealt with for our charged rod. The ultimate problem arises from
our assumption that the charge distribution consists of point sources located at discrete locations
along the rod. In reality, a far better assumption is to treat ρ as a surface charge density that is
spread out along a hollow tube with radius a. The voltage potential at the center of this tube is
then found by integrating over the surface using

V (xm) =
1

4πε0

+∆x/2∫
−∆x/2

2π∫
0

ρn√
(x′)2 + a2

a dφ′dx′ . (24)

Note that from our assumption of discrete charges at each sample, the expansion coefficient αn
represents the total net charge in a given segment. The surface charge density term ρn is therefore
given by the total charge αn divided by the surface area of the tube:

ρn =
αn

2πa∆x
. (25)

Carrying out the integral then leads us to

V (xm) =
αm

4πε0∆x
ln

∣∣∣∣∣∆x+
√

∆x2 + 4a2

∆x−
√

∆x2 + 4a2

∣∣∣∣∣ . (26)

Finally, the diagonal matrix elements Amm for all of the self terms are found to be

Amm =
1

∆x
ln

∣∣∣∣∣∆x+
√

∆x2 + 4a2

∆x−
√

∆x2 + 4a2

∣∣∣∣∣ , (27)

where the factor 4πε0 is assumed to have been moved to the right-hand side of the matrix equation.
The vector of unknown expansion coefficients can now be found by solving for x = A−1b.

8 Example

Consider a thin conductive wire with length L = 1.0 m and radius a = L/40. Figure 3 shows the
resultant charge distribution ρ̂(x) after charging the rod to a uniform potential of V0 = 1.0 V. The
solution was achieved through the method of moments with delta functions as the basis for the
charge distribution and N = 40 subdivisions. Notice how the charges tend to repel each other away
from the center of the wire and pile up along the tips. Adding up the individual charges leads to
a total charge of q = 2.47 pC.
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Figure 3: MoM solution to the charge distribution of a 1.0 m wire with radius L/40.
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