
HW 3 Solution key
Carlos J. Cela, 2012

Problem 1, part 1:

File: problem1.m
%%%
% Problem 1 solution
% Carlos J. Cela, 2012
%%%
clear all

% Calculate points for function
step = 0.3;
n = 0:step:2*pi;
v =5*sin(n*1000);

% Calculate numerical derivative
nd = derivative(v,n);

% Calculate derivative using diff
% diff assumes an increment of 1,
% so we have to divide by our
% increment to scale it properly.
dd = diff(v)./diff(n);

% Verify values
plot(n(1:size(nd,2)),nd,'bs-','linewidth',4,'markersize',20);
hold on
plot(n(1:size(dd,2)),dd,'ro-','linewidth',3,'markersize',10);
hold off

legend('Using combination','Using Matlab diff');
set(gca,'fontsize',14);
grid on

File: derivative.m
%%%
% derivative V1.0
%
% Numerically estimates the first derivative of a vector, using forward difference
% for first point, backward difference for last point, and central difference for
% all intermediate points.
%
% Usage:
%
% d = derivative(y, x)
%
% where
% y = input vector containing function values
% x = input vector containing argument increments
%
% returns
% d = Numerical derivative of y. All vectors have the same length.
%%%
function d = derivative(y, x)
 d(1) = forward(y, x, 1);
 for n = 2:size(y,2)-1
 d(n) = central(y, x, n);
 end
 d(size(y,2)) = backward(y, x, size(y,2));
end

File: forward.m
%%%
% forward
%
% Calculates derivative d of vector y at point x(p) using forward difference
% approximation.
%
% y = vector containing function values
% x = vector containing increments
% p = point number where to calculate
% d = derivative of y at point p
%%%
function d = forward(y,x,p)
 d = (y(p+1)-y(p))/(x(p+1)-x(p));
end

File: central.m
%%%
% central
%
% Calculates derivative d of vector y at point x(p) using central difference
% approximation.
%
% y = vector containing function values
% x = vector containing increments
% p = point number where to calculate
% d = derivative of y at point p
%%%
function d = central(y,x,p)
 d = (y(p+1)-y(p-1))/(x(p+1)-x(p-1));
end

File: backward.m
%%%
% backward
%
% Calculates derivative d of vector y at point x(p) using backward difference
% approximation.
%
% y = vector containing function values
% x = vector containing increments
% p = point number where to calculate
% d = derivative of y at point p
%%%
function d = backward(y,x,p)
 d = (y(p)-y(p-1))/(x(p)-x(p-1));
end

Numerical derivative result for each point n is:

n Derivative

0 -16.66260

0.3 0.36819

0.6 16.64633

0.9 -1.10384

1.2 -16.59754

1.5 1.83734

1.8 16.51635

2.1 -2.56725

2.4 -16.40289

2.7 3.29215

3.0 16.25740

3.3 -4.01062

3.6 -16.08016

3.9 4.72125

4.2 15.87151

4.5 -5.42266

4.8 -15.63187

5.1 6.11349

5.4 15.36169

5.7 -6.79237

6.0 -22.34769

Problem 1, part 2:
Plotting the results from the numerical code and Matlab diff or using a table to compare the values are
both acceptable answers.
Plot:

Values:

n Numerical
code
(combination)

Matlab (diff)

0 -16.66260 -16.6626

0.3 0.36819 17.3990

0.6 16.64633 15.8937

0.9 -1.10384 -18.1014

1.2 -16.59754 -15.0937

1.5 1.83734 18.7684

1.8 16.51635 14.2643

2.1 -2.56725 -19.3988

2.4 -16.40289 -13.4070

2.7 3.29215 19.9913

3.0 16.25740 12.5235

3.3 -4.01062 -20.5447

3.6 -16.08016 -11.6156

3.9 4.72125 21.0581

4.2 15.87151 10.6849

4.5 -5.42266 -21.5303

4.8 -15.63187 -9.7335

5.1 6.11349 21.9604

5.4 15.36169 8.7630

5.7 -6.79237 -22.3477

6.0 -22.34769 (no value)

Error calculation: To get the average percent error, we first calculate the percent error of each data
point, taking as a reference (e.g. 100%) the best value we have. In this case, the best value is the value
from our code, which is a better approximation than Matlab diff, which is just a forward difference.
Then, we average the error by adding and dividing by the number of points. We do not consider the last
point, since Matlab algorithm returns a vector that is shorter.

Note the following:

1) The use of a forward aproximation for derivatives tends to shift the derivative curve, so while both
curves look similar in shape, error at each point is large when using forward or backward
approximation only.

2) When we are trying to average an error, we have positive and negative values, which compensate
each other. This is undesirable, because it masks the magnitude of the numerical error. Because of this,
root mean square (RMS) errors are often use instead of simple averaging.

Problem 1, part 3:
The lengths of the vectors are different. This is so because using the Matlab diff command is equivalent
to use the forward approximation, and the last data point cannot be calculated by this method.

n Numerical Matlab Percent error
0.00 -16.6626 -16.6626 0.00
0.30 0.3682 17.3990 -4625.55
0.60 16.6463 15.8937 4.52
0.90 -1.1038 -18.1014 -1539.86
1.20 -16.5975 -15.0937 9.06
1.50 1.8373 18.7684 -921.50
1.80 16.5164 14.2643 13.64
2.10 -2.5673 -19.3988 -655.63
2.40 -16.4029 -13.4070 18.26
2.70 3.2922 19.9913 -507.24
3.00 16.2574 12.5235 22.97
3.30 -4.0106 -20.5447 -412.26
3.60 -16.0802 -11.6156 27.76
3.90 4.7213 21.0581 -346.03
4.20 15.8715 10.6849 32.68
4.50 -5.4227 -21.5303 -297.04
4.80 -15.6319 -9.7335 37.73
5.10 6.1135 21.9604 -259.21
5.40 15.3617 8.7630 42.96
5.70 -6.7924 -22.3477 -229.01
6.00 -22.3477 (no value)

Average error: -479.19 percent

Problem 2, part 1:
%%%
% Gauss-Seidel iterative solver V1.0
% Carlos J. Cela, Jan 2012
%
% Solves a linear system of the form A x = b
%
% Usage:
%
% x = GSsolve(A, b, tolerance)
%
% where
% A = square coefficient matrix
% b = constant term vector
% tolerance = small number indicating the target tolerance
% (error to achieve convengence)
%
% returns
% x = unknown vector
%
% Example:
% GSsolve(A,b,0.001)
%%
function x = GSsolve(A, b, tolerance)

 n = size(A,1); % Get matrix size
 x = zeros(n,1); % Result vector for iteration n
 xn= zeros(n,1); % Result vector for iteration n+1
 done = false; % Flag to exit iteration loop
 ni = 0; % Number of iterations

 while done==false
 % Count the number of iterations
 ni = ni+1;
 % Do one iteration for each element of the unknown vector
 for i = 1:n
 t1 = 0;
 t2 = 0;

 % First summation term
 for j = 1:i-1
 if j>0
 t1 = t1 + A(i,j)*xn(j);
 end
 end

 % Second summation term
 for j = i+1:n
 t2 = t2 + A(i,j)*x(j);
 end

 % Assemble the iteration equation and calculate unknowns
 xn(i) = 1/A(i,i)*(b(i)-t1-t2);
 end

 % Calculate relative difference between results of
 % this and last iteration
 d = sum(abs(xn-x))/sum(abs(xn));

 % Report iteration number and error
 disp([num2str(ni) ' ' num2str(d)]);

 % Update unknown vector with the recently-calculated values
 x = xn;

 % Check for convergence
 if(d<tolerance)
 done = true;
 end
 end
end

Code verification:
%%%
% Linear solver code verification
% Carlos J. Cela, 2012
%%%
clear all

% Setup system
A = [
 10 -7 0; ...
 -3 6 1; ...
 2 -1 5; ...
];

b =[7; 4; 6];

% Solve using matlab
A\b

% Solve using GSsolve()
GSsolve(A, b, 0.001)

Output:

Matlab:
 1.64921
 1.35602
 0.81152

GSsolve:
 1.64852
 1.35560
 0.81171

Result values are consistent within the error requested.

Problem 2, part 2:

The routine GSsolve was modified to return a vector with the error for each iteration (trivial). A plot
was made showing the convergence error vs iteration number.

It can be observed that the error decays in an exponential form, fast at the beginning, and slow later on.

