
HW 3 Solution key
Carlos J. Cela, 2012

Problem 1, part 1:

File: problem1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Problem 1 solution
% Carlos J. Cela, 2012
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all

% Calculate points for function
step = 0.3;
n = 0:step:2*pi;
v =5*sin(n*1000);

% Calculate numerical derivative
nd = derivative(v,n);

% Calculate derivative using diff
% diff assumes an increment of 1, 
% so we have to divide by our 
% increment to scale it properly.
dd = diff(v)./diff(n);

% Verify values
plot(n(1:size(nd,2)),nd,'bs-','linewidth',4,'markersize',20);
hold on
plot(n(1:size(dd,2)),dd,'ro-','linewidth',3,'markersize',10);
hold off

legend('Using combination','Using Matlab diff');
set(gca,'fontsize',14);
grid on



File: derivative.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% derivative V1.0
%
% Numerically estimates the first derivative of a vector, using forward difference 
% for first point, backward difference for last point, and central difference for
% all intermediate points.
%
% Usage:
%
%         d = derivative(y, x)
%
% where 
%         y = input vector containing function values
%         x = input vector containing argument increments
%
% returns 
%         d = Numerical derivative of y. All vectors have the same length.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d = derivative(y, x) 
  d(1) = forward(y, x, 1);
  for n = 2:size(y,2)-1
    d(n) = central(y, x, n);
  end
  d(size(y,2)) = backward(y, x, size(y,2));
end

File: forward.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% forward
%
% Calculates derivative d of vector y at point x(p) using forward difference 
% approximation.
%
% y = vector containing function values
% x = vector containing increments
% p = point number where to calculate
% d = derivative of y at point p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d = forward(y,x,p)
  d = (y(p+1)-y(p))/(x(p+1)-x(p));
end



File: central.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% central
%
% Calculates derivative d of vector y at point x(p) using central difference 
% approximation.
%
% y = vector containing function values
% x = vector containing increments
% p = point number where to calculate
% d = derivative of y at point p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d = central(y,x,p)
  d = (y(p+1)-y(p-1))/(x(p+1)-x(p-1));
end

File: backward.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% backward
%
% Calculates derivative d of vector y at point x(p) using backward difference 
% approximation.
%
% y = vector containing function values
% x = vector containing increments
% p = point number where to calculate
% d = derivative of y at point p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d = backward(y,x,p)
  d = (y(p)-y(p-1))/(x(p)-x(p-1));
end



Numerical derivative result for each point n is:

n Derivative

0 -16.66260    

0.3 0.36819   

0.6 16.64633   

0.9 -1.10384  

1.2 -16.59754    

1.5 1.83734   

1.8 16.51635

2.1 -2.56725  

2.4 -16.40289    

2.7 3.29215   

3.0 16.25740   

3.3 -4.01062  

3.6 -16.08016    

3.9 4.72125

4.2 15.87151   

4.5 -5.42266  

4.8 -15.63187    

5.1 6.11349   

5.4 15.36169   

5.7 -6.79237  

6.0 -22.34769

Problem 1, part 2:
Plotting the results from the numerical code and Matlab diff or using a table to compare the values are 
both acceptable answers. 
Plot:



Values:

n Numerical 
code 
(combination)

Matlab (diff)

0 -16.66260    -16.6626  

0.3 0.36819   17.3990   

0.6 16.64633   15.8937  

0.9 -1.10384  -18.1014  

1.2 -16.59754    -15.0937   

1.5 1.83734   18.7684   

1.8 16.51635 14.2643  

2.1 -2.56725  -19.3988  

2.4 -16.40289    -13.4070   

2.7 3.29215   19.9913   

3.0 16.25740   12.5235  

3.3 -4.01062  -20.5447  

3.6 -16.08016    -11.6156   

3.9 4.72125 21.0581   

4.2 15.87151   10.6849  

4.5 -5.42266  -21.5303  

4.8 -15.63187    -9.7335   

5.1 6.11349   21.9604    

5.4 15.36169   8.7630 

5.7 -6.79237   -22.3477

6.0 -22.34769 (no value)



Error calculation: To get the average percent error, we first calculate the percent error of each data 
point, taking as a reference (e.g. 100%) the best value we have. In this case, the best value is the value 
from our code, which is a better approximation than Matlab diff, which is just a forward difference. 
Then, we average the error by adding and dividing by the number of points. We do not consider the last 
point, since Matlab algorithm returns a vector that is shorter.

Note the following:

1) The use of a forward aproximation for derivatives tends to shift the derivative curve, so while both 
curves look similar in shape, error at each point is large when using forward or backward 
approximation only.

2)  When we are trying to average an error, we have positive and negative values, which compensate 
each other. This is undesirable, because it masks the magnitude of the numerical error. Because of this, 
root mean square (RMS) errors are often use instead of simple averaging.

Problem 1, part 3:
The lengths of the vectors are different. This is so because using the Matlab diff command is equivalent 
to use the forward approximation, and the last data point cannot be calculated by this method.

n Numerical Matlab Percent error
0.00 -16.6626 -16.6626 0.00
0.30 0.3682 17.3990 -4625.55
0.60 16.6463 15.8937 4.52
0.90 -1.1038 -18.1014 -1539.86
1.20 -16.5975 -15.0937 9.06
1.50 1.8373 18.7684 -921.50
1.80 16.5164 14.2643 13.64
2.10 -2.5673 -19.3988 -655.63
2.40 -16.4029 -13.4070 18.26
2.70 3.2922 19.9913 -507.24
3.00 16.2574 12.5235 22.97
3.30 -4.0106 -20.5447 -412.26
3.60 -16.0802 -11.6156 27.76
3.90 4.7213 21.0581 -346.03
4.20 15.8715 10.6849 32.68
4.50 -5.4227 -21.5303 -297.04
4.80 -15.6319 -9.7335 37.73
5.10 6.1135 21.9604 -259.21
5.40 15.3617 8.7630 42.96
5.70 -6.7924 -22.3477 -229.01
6.00 -22.3477 (no value)

Average error: -479.19  percent



Problem 2, part 1:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gauss-Seidel iterative solver V1.0
% Carlos J. Cela, Jan 2012
%
% Solves a linear system of the form A x = b
%
% Usage:
%
%         x = GSsolve(A, b, tolerance)
%
% where 
%         A = square coefficient matrix 
%         b = constant term vector
%         tolerance = small number indicating the target tolerance 
%                     (error to achieve convengence)
%
% returns 
%         x = unknown vector
%
% Example:
%            GSsolve(A,b,0.001)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = GSsolve(A, b, tolerance)

  n = size(A,1);  % Get matrix size
  x = zeros(n,1); % Result vector for iteration n
  xn= zeros(n,1); % Result vector for iteration n+1
  done = false;   % Flag to exit iteration loop
  ni = 0;         % Number of iterations
 
  while done==false
    % Count the number of iterations
    ni = ni+1;
    % Do one iteration for each element of the unknown vector
    for i = 1:n
      t1 = 0;
      t2 = 0;

      % First summation term
      for j = 1:i-1
        if j>0
          t1 = t1 + A(i,j)*xn(j);
        end
      end

      % Second summation term
      for j = i+1:n
          t2 = t2 + A(i,j)*x(j);
      end
      
      % Assemble the iteration equation and calculate unknowns
      xn(i) = 1/A(i,i)*(b(i)-t1-t2);
    end

    % Calculate relative difference between results of 
    % this and last iteration
    d = sum(abs(xn-x))/sum(abs(xn));



    
    % Report iteration number and error
    disp([num2str(ni) '  ' num2str(d)]);

    % Update unknown vector with the recently-calculated values
    x = xn;

    % Check for convergence
    if(d<tolerance)
      done = true;
    end    
  end
end

Code verification:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Linear solver code verification
% Carlos J. Cela, 2012
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all

% Setup system
A = [
  10 -7 0; ...
  -3  6 1; ...
   2 -1 5; ...
];

b =[ 7; 4; 6];

% Solve using matlab
A\b

% Solve using GSsolve()
GSsolve(A, b, 0.001)

Output:

Matlab:
   1.64921
   1.35602
   0.81152

GSsolve:
   1.64852
   1.35560
   0.81171

Result values are consistent within the error requested. 



Problem 2, part 2:

The routine GSsolve was modified to return a vector with the error for each iteration (trivial). A plot 
was made showing the convergence error vs iteration number.

It can be observed that the error decays in an exponential form, fast at the beginning, and slow later on.


