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1 Introduction

The finite element method (FEM) was originally developed to solve problems related to mechanical
engineering in such fields as fluid dynamics and structural analysis. However, it was not long before
FEM began to find uses in electromagnetics. Since then, FEM has become an essential tool for
simulating complex geometries in electrical devices.

In many respects, FEM is very similar to the finite difference method (FDM). Both methods
can generally be used to solve the same physical problems, and both methods eventually lead to
the inversion of a matrix-vector equation with the form Ax = b. However, the advantage of FEM
over FDM stems from its ability to sample at arbitrary locations in space rather than adhere to
some fixed rectangular grid. This is made possible by the way in which FEM attempts to solve
physical problems. While FDM simply applies a direct numerical approximation to the derivatives
of partial differential equations, FEM attempts to minimize the total energy contained within a
system of discrete volumes, or elements. However, if one were to apply FEM along a the same grid
locations as those typically used in FDM, the ultimate matrix equations are often times equivalent.
It is therefore useful to think of FEM as a more flexible, generalized form of FDM. The trade-off,
of course, is that the added complexity with FEM generally makes implementation more difficult.

This tutorial seeks to introduce FEM through a simple, one-dimensional solution to the Laplace
equation. Doing so helps to focus strictly on the core principles of FEM without getting bogged
down in the excessive book-keeping that tends to occur in higher dimensions.

2 Elements and Shape Functions in 1D

Since the discrete volume element is the core unit of FEM, we begin our discussion by considering
two samples of voltage potential, V1 and V2, located at the points x1 and x2 as illustrated in Figure 1.
Whereas FDM tends to deal strictly with discrete samples in space, FEM seeks to interpolate
all values of the voltage potential between the samples. For example, one of the most common
interpolation methods is called linear interpolation, and is indicated by the straght line connecting
V1 and V2. One could theoretically also resort to various high-order polynomial interpolations for
greater accuracy, but we shall not consider such cases here.

To accomplish linear interpolation between the samples, we seek to express the voltage potential
inside the element as

Ve(x) = V1 α1(x) + V2 α2(x) , x ∈ [x1, x2] , (1)

where α1 and α2 are called shape functions. Note how we deliberately expressed this in a form
where the inerpolation is achieved by simply weighing each shape function with a corresponding
voltage sample.
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Figure 1: A simple one-dimensional volume element, represented by a linear interpolation between two
discrete samples in the voltage potential function V (x).

In order to derive the shape functions, we need to compare them against the general equation
for the line connecting V1 and V2. Remembering the general form y = mx+ b, this leads us to

V1 α1(x) + V2 α2(x) =

(
V2 − V1
x2 − x1

)
x+

V1x2 − V2x1
x2 − x1

=

(
x2 − x
x2 − x1

)
V1 +

(
x− x1
x2 − x1

)
V2 . (2)

Thus, the 1D shape functions are found to be

α1(x) =

(
x2 − x
x2 − x1

)
, (3)

α2(x) =

(
x− x1
x2 − x1

)
. (4)

If we instead consider an arbitrary set of samples in x, then the shape functions for the nth element
between the samples xn and xn+1 satisfy

αn
1 (x) =

(
xn+1 − x
xn+1 − xn

)
=
xn+1 − x

hn
, (5)

αn
2 (x) =

(
x− xn

xn+1 − xn

)
=
x− xn
hn

. (6)

3 Element Energy

The next step is to find an expression for the total energy contained within the element. For a
static electric field, this is given by

W =
1

2

x2∫
x1

ε0|E(x)|2 dx , (7)

where W has units of J/m2 in one dimension. Because we have assumed linear interpolation between
each voltage sample, we have effectively enforced the condition that E is a constant value inside all
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elements. The total energy of the the given element is therefore

W =
1

2
hε0|E|2 . (8)

The next step is to rewrite the electic field in terms of the voltage samples which define the
element. This is a straightforward process that produces

|E|2 =

∣∣∣∣∂V∂x
∣∣∣∣2

=
[
α′1(x)V1 + α′2(x)V2

]2
=

[
−
(

1

h

)
V1 +

(
1

h

)
V2

]2
=

1

h2
(
V 2
1 − 2V1V2 + V 2

2

)
.

Although it may not seem immediately obvious at first, we can rewrite the above expression into a
matrix-vector equation with the form

|E|2 =

(
1

h

)2 [
V1 V2

] [ 1 −1
−1 1

] [
V1
V2

]
. (9)

Let us now define the matrix-vector parameters using

v =
[
V1 V2

]T
(10)

C =

(
1

h

)[
1 −1
−1 1

]
. (11)

The total energy in the element is now written as

W =
1

2
ε0 v

TCv . (12)

The matrix C is traditionally called the stiffness matrix due to its original use in mechanical
engineering applications. Another common name is the element coefficient matrix. If we instead
generalize the energy expression for the nth arbitrary element in the system, we may simply write
the result as

Wn =
1

2
ε0 v

T
nCnvn , (13)

where

vn =
[
Vn Vn+1

]T
, and (14)

Cn =

(
1

hn

)[
1 −1
−1 1

]
. (15)

4 Global Assembly

Equipped now with a general expression for the total energy contained within the nth element,
let us consider the total energy contained within a series of elements sampled arbitrarily along the
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interval x ∈ [a, b]. This is naturally just the summation of all the energies contained within the
individual elements:

W =
N∑

n=1

Wn . (16)

Writing this out more explicitly, we see that

W =
1

2
ε0

[
vT
1 C1v1 + vT

2 C2v2 + · · ·+ vT
NCNvN

]
. (17)

The next step is somewhat counterintuitive, but it allows us to combine all of the individual
summation terms into a single matrix-vector expression. We begin by rewriting the elemental
voltage vectors as M -dimensional vectors with only two nonzero elements, where M = N + 1
(remember that for N elements in 1D there will be N + 1 nodes). For example, the first two
element vectors can be written as

v1 =
[
V1 V2 0 0 · · · 0

]T
, (18)

v2 =
[

0 V2 V3 0 · · · 0
]T

. (19)

By analogy, we can also write the element coefficient matrices as M ×M matrices with only four
nonzero elements. As an example, C1 and C2 would be written as

C1 =

(
1

h1

)


1 −1 0 0 · · · 0
−1 1 0 0 · · · 0

0 0 0 0 · · · 0
...

. . .
...

0 0 0 0 · · · 0

 , (20)

and

C2 =

(
1

h2

)


0 0 0 0 · · · 0
0 1 −1 0 · · · 0
0 −1 1 0 · · · 0

...
. . .

...
0 0 0 0 · · · 0

 . (21)

Notice how incrementing in n simply pushes the block of nonzero elements down along the diagonal
while the scalar constant in front reflects the spacing between samples. Also notice how writing
out the matrices in this way does nothing to change the ultimate scalar value obtained by the
elemental energy Wn = 1

2ε0 v
T
nCnvn. We may therefore rewrite Equation (17) as a single matrix-

vector operation given by

W =
1

2
ε0 v

TCv , (22)

where
v =

[
V1 V2 V3 · · · VN VN+1

]T
(23)

and
C = C1 + C2 + C3 + · · ·+ CN + CN+1 . (24)
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The matrix C is now called the global coefficient matrix because it accounts for the entire energy
of the system. Writing it out explicitly for the 1D Laplace equation, it is easy to see that

C =



u1 −u1 0 0 · · · 0 0
−u1 (u1 + u2) −u2 0 · · · 0 0

0 −u2 (u2 + u3) −u3 · · · 0 0
0 0 −u3 (u3 + u4) · · · 0 0

...
. . .

...
0 0 0 0 · · · (uN−1 + uN ) −uN
0 0 0 0 · · · −uN uN


, (25)

where un = 1/hn is the inverse of the distance between samples.

5 Global Solution

Once we have assembled the global coefficient matrix, our next goal is to minimize the total energy
of the system. The justification for this step arises from the fact that the solution to Laplace’s
equation is also the very same solution that happens minimizes the total energy contained within
the static electric fields. Since C is a symmetric matrix (i.e., CT = C), we may take advantage of
a matrix-vector property which states that

d

dv
vTCv = 2Cv , (26)

which is essentially just the power rule for differentiation when acting on a matrix-vector expression.
Setting the derivative to zero therefore leads us to

Cv = 0 . (27)

Note how the solution to this equation is just the trivial solution v = 0, since this obviously
minimizes energy. The reason for this is because we did not specify any sources or boundary
conditions on v.

If we instead assume that v is a combination of both free nodes vf and prescribed nodes vp, we
can rewrite the global coefficient matrix as a block matrix with a mixture of fixed and prescribed
segments. The total system energy is therefore

W =
1

2
ε0
[
vf vp

] [ Cff Cfp

Cpf Cpp

] [
vf

vp

]
. (28)

Minimizing the energy with respect to the free (i.e., variable) nodes vf then gives us

Cffvf + Cfpvp = 0 , (29)

or
Cffvf = −Cfpvp . (30)

The solution for the free voltage samples along entire domain is therefore

vf = −C−1ffCfpvp , (31)

which we can see is no longer trivial.
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