

UNIVERSITY OF UTAH ELECTRICAL AND ENGINEERING DEPARTMENT

ECE 5960

WIRELESS TRANSMISSION SYSTEMS

MIDTERM #1

YOU MAY USE A CALCULATOR & PORTFOLIO

February 7, 2003

1. (33 points)

A hexagonal cell within a seven-cell cluster has a radius of 1 km. The cluster is allocated a frequency band of 100 MHz, and each channel is 1 MHz wide. The average user makes one 10-minute call per hour.

What is the load per user?

How many users can the cluster support while having a 1% probability of b.

Erlang C |
$$M = \frac{A}{A\mu} = \frac{7}{16} = 42 \text{ users/celle}$$
 $19/0 = 3.01$

A= 7

 $M_c = \frac{7}{2000} = 42 \text{ users/celle}$

This must be per cell not

 $M_c = \frac{394}{2000} = \frac{14.28}{2000} = \frac{14.$

per cluste

What is the probability the call will be delayed more than 10 seconds?

Pr [dulay 7 10s] = Pr [dulay >0]
$$exp[-(C-A)t]$$

= (.01) $exp[-(14-7)(10sec)(\frac{min}{60vec})]$
= .008898 = 0.8898%

2. (33 points) A person is sitting inside a car talking on a cell phone. Determine how many watts of power that should be transmitted by the base station given:

Bandwidth = 0.5 MHz

Temperature = 294°K

Noise figure of amplifier = 2 dB

Required S/N = 10 dB

Power lost in body = 50%

Reflection coefficient at car roof = 1/3

Mobile antenna is a dipole.

Base station antenna has a gain of 6 dBd

Loss in base station cable = 2 dB

Mobile can transmit 0.6 W of power

Show all of your work.

Power =		Watts
---------	--	-------

PloBLEM 2

	RX Path Base up	Mobile dn		
Noise	Dase up	MODIIO GII		
Channel BW	500	500	kHz(IS136)
Temperature	294		kelvin	,
Boltzman	1.38E-23			
Noise	2.03E-15		kTB (linear	r)
Noise	-1.47E+02		•	•
Noise Figure	2	2	dB	
Noise	-1.15E+02	-1.15E+02	dBm	NOISE
Losses				
Cable Length	0		ft	
Cable Loss per 100 ft	0.8		dB	•
Cable Loss	2	0	dB	
Body		3	dB	
Vehicle		9.542425094	dB	
Building		0	dB	
Total Losses	2	12.54242509	dΒ	LOSS
Gains				
Receiver Antenna Gain	6	0	dBd	
Dipole Gain	1.64		Linear	
Receiver Antenna Gain	8.1484385	2.14843848	dB	
Receiver Diversity Gain	. 0			
Total Gains	8.1484385	2.14843848		GAIN
Hardware			_	
SNR (required for 3% BER)	10		dB	SNR IS136
Min Input Power	-1.11E+02		dBm	P=SNR-Gain+Loss+No
	Transmit F			
	Mobile Up	Base Dn		
Hardware	0.0	0.005.04	14/	
Transmit Power	0.6		_	Dt-Dia DL CAINLLOC
Transmit Power	27.781513	2.78E+01	Jobin	Pt=Pin-PL-GAIN+LOS:
Losses Coble Longth		0	ft	
Cable Length Cable Loss per 100 ft			dB	
Cable Loss			dB	
Transmit Combiner		0		
Body	3	·	dB	
Vehicle	9.5424251		dB	
Building	0.01.21.201		dB	
Slow Fade Margin	0	0	dB	
Total Losses	12.542425		dB	LOSS
Gains				
Receiver Antenna Gain	0	6	dBd	
Dipole Gain	1.64		Linear	
Receiver Antenna Gain	2.1484385			GAIN
Effective Transmitted Power	17.387526		dBm	Pt-LOSS+GAIN
PATH BALANCE				
Min Input Power	-1.11E+02	-9.45E+01		dBm (from above)
Max Path Loss (PL)	-1.28E+02	-1.28E+02		dB =Pin - Pt

3. (33 points)

A 0.6 W cell phone transmitter is located 1 km from the base station. The frequency is 915 MHz, and the bandwidth is 1 MHz. $\lambda = c/(1 = 0.32)$

a. How much power does the base station receive according to the Friis transmission equation assuming no additional losses or gains?

$$P_{r} = P_{t} \left(\frac{\lambda}{4\pi d} \right)^{2} = 4.8 \times 10^{-10} \text{ W}$$

$$= -93.9 \text{ JB}$$

$$= -63.9 \text{ JBm}$$

b. How much power does the base station receive according to the Okumura model in a suburban area where the mobile is 1.5 m high, and the base station is 10 m high?

Ghte = 20 log hte 2000 1000m 7hte 730m

= 20 los
$$\left(\frac{10}{2000}\right) = -26 \text{ dB}$$

Ghre = 10 los $\left(\frac{1}{3}\right)$ hre $\leq 3m$

= 10 los $\left(\frac{1}{3}\right) = -3 \text{ dB}$
 $d = 1 \text{ km}$ $F = 915 \text{ mHz}$ Fy 4.23

A $(f_1d) \sim 18 \text{ dB}$

Suburbane

GAREA $\sim 9 \text{ dB}$
 $L_F = -10 \log \left(\frac{1}{4\pi d}\right)^2 = +93.9 \text{ dB}$
 $L_{50} = L_{F} + A (f_1d) - G(h_{F}) - GAREA$
 $= +93.9 + 1/8 + 26.1 - 3 - 9 = 1/31.9$
 $P_{F} = P_{f} - L_{50} = 10 \log_{10} \cdot 6 - 1/319 = 1/30 \text{ dB}$