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Example:

Solution:

Show that for far-field region VxV =—jgxV =—jgfxV for any vector Wi

such as gpH and E of the radiated fields from antennas.

The radiated fields gpH and E are of the form

\L/LL' K(6.9) —Jkr
mTl r

where K(6, ¢) would, in general, depend upon the current distribution on the

V = V1, 6,0V 1)

antenna.

In spherical coordinates

V(r,0,9)
w_[rm& b NK(@@ |
or r o0 rsin6 o r
. ) o . (2)
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=—jV(FxV)=—jBFxV =—jBxV ®3)

since all terms other than the second term in Eq. 2 are a factor of 1/pr
smaller. For gr =%>>1 , all of these terms can, therefore, be neglected.

This is a powerful relationship which can be applied for radiated fields

from any antenna.
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p. 44, 45,50 Text General Theory of Conduction Current Antennas
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Formulate ﬁ‘ﬁ"i‘

Steps
1. Calculate ﬁ

A:L J(r) J(O)t BR)dV’ H ‘]S e]((Dt BR)dS!

|47t R | 47t R
—7 . \ For surface current radiators
For volume current radiators _n j(ot—BR)
j e ds
R (2-101)
For line current radiators /‘ '
- VxA  BxA  BixA VxE 1. =
2 A=YA_PA_PTA_VXE g (2-107)
Ho Ho Ho —Jopg M
MvxHd" p2¢ . OO . [
3. E=V_>< :_B [ x(rxA)=jor x(xA)
M Jogo  JOEgHg
=—jm[A—(A f’) }——jm(A99+A¢¢) (2-105)
Ax(BxC)=(A-C)B-(A-B)C
fx(fx%):(fu&)f—(f f)A
From Eqg. (2-105) we can write
B —jo A (2-104)
which is transverse to direction of propagation T.
.1 .
4. Calculate S=§Re(ExH ) (2-127)

N

- ds 1 T * * .
5. Total Radiated Power = [S-d§ = SRe | (EeH¢ - E¢H9) rsin 0dody  (2-128)
0
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Calculation of Magnetic Fields of Conduction Current Antennas

Definition of Magnetic Vector Potential A : A Simplifying Mathematical
Intermediate Step

F
—_——————— = — >
R=RR (x,y,2)
From Biot-Savart's law of electromagetism
1
1d¢xR JavixfR e/:v(EJ
. X X
B= Ho 2 =Ho ,[ 2 (1)
7 4nR v 4n(R
B=p, Vx Jdvi (2)
v’ 47R

In going from Eq. 1 to Eq. 2, we have used the following steps

1 R
&) ©)

- 1) 1 ~Q, J
Jxvfﬁjzﬁyydﬁ3—va§J (4)
The first term in Eq. 3 is zero, since the current density J is a function of source
coordinates T =(x',y’,z') whereas the curl VxJ involves derivatives with respect to
field coordinates (X,y,z).
From Eq. 2

V/

EVXA (5)

Thus the magnetic field at the field point can be written as curl of magnetic vector

potential A where A is given by
Ho Jav’
4rt v R

A= (6)

Note that calculation of Bis a lot simpler if the intermediate step of first calculating A is

undertaken since integral of Eq. 6 is much simpler than that of Eq. 5 or Eq. 1.

2a



Note that because of time retardation for propagating fields, Eq. 6 should be modified to

j(—rﬂ)ej(ﬂ)t—BR)

- v’ (7)

Same as Eq. 2-101
of the text

Once, the only complicated step that of integration for Eq. 7 has been done, the magnetic

field B from Eq. 5 can be simplified to

B:VXA:—jBxA=—jB|§xA

(2-107) text
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p. 45 Text A Uniform Line Source

Z A B P
/6 el
- -
T R////(’{) ///
-~
- ~
L/Z -7 -~
//// /{r/’/
’ /—/-’ ~
z 9’///’// T e
0-
z' cos 0
-L2

Fig. 2.9 text. A uniform line source.

L L
I(z)=1y for ——<7' <—
( ) 0 2 2

R=r-27cos0

L2 .
A= gibr [ 1 elPz'cosbg, 5
Anr /2
ul LeIBr sin[(Bzchos 6}
A, =29
amf (le‘cos OJ

E=josinfA, = jo

sm{( jcose}
uloL sin 0
4t (B cosej

From Eq. (2-107)

|_|_|_|1 A ~ e"
H==Egtx0=—L¢
mm M n

Radiation pattern for a plot of normalized values of E(0, ¢) is given by

[E(6, 9)

[Emax|

F(6, ¢) =

For an elemental or Hertzian dipole (BL/2 <<1)

F(6) =sin O

(2-109)

(2-86)

(2-110)

(2-111)

(2-112)

(2-113)



Otherwise

sin HBZL) cos 6}
F(0)=sin 6

(2-114)
(BZL cos 6)

Normalized Pattern factor P(O) = Fz(e) (2-119)

p. 34 An Infinitesimal (Hertzian) Current Dipole or An Ideal Dipole

I=1o L = Az

=

A
L
B7cose<<1

In Equations 2-110 to 2-114; sinx =1

X

jo HIOAZsin 00 (2-74a)
47y
iBlyAz

4nr

E
M
U E o

- sin® ¢ (2-74b)
ﬂ—ﬂ

Eog.
n

2 .2
= Az sihn“0 .
S=—°n(—j F 2-76
by r02 ( )

Radiated Power P = %ﬂ' Re (E x Fl*)-d§

1 21T N “\ 2
:ERG I I(EGH¢—E¢H9)I’ sin 0.do d(I) (2_128)
00
12 (A2 1,
3 7“1( X j 50 r



Valid only for very short length

2 /7,89' » Hertzian dipoles (Az <0.02).)
R, =R, =2n (Ej ’//@Z\Z\(Ej Q 2-169 57
r a=3 n X ‘\\7//3 2 (2-169) p.
S
D="MaX _15 (2-148) p.54
S0

A Linear Center-Fed Dipole
(See also pp. 152-160 of the text)

, L
Z'=+—
2
7 4
l, 27
a <—
0
. L
7 =——
2
1(z") =1, sin (6-1) p.152
Note that la =1(Z)|,_g = Imsin BE (1)
z'=0 2
As previously assumed on p. 3 of these Notes (from Eq. 2-86 of the text),
R=r-2cos
From Eq. 2-101
_ 0 L -
A=t [ sin |:B(—+Z’]j|e”32 cos -
4mr /2 2
(6-3)
L/2 L . _
+ [ sinp (——z’j elPz’cos edz} e IBr 3
2
0
~ R —ipr i A
E=josin®A, 6=jn e4 21, F(0) 0 :MF(O)e_‘Br 0 (6-6) p. 154
nr r

where F(0) is the function that gives the variation of radiated fields with angle 6.
Note that this expression for the radiated 6-directed E field can also be expressed
in terms of the feedpoint antenna current I, using Eq. (1) on this page.
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cos (BL cos ej —CO0S (BLJ
F(o)=— 2 2

sin 0 2)
See p. 154 of the text, Fig. 6-4, for plots of F(0) for several values of L/A.

F(0) is always zero for angle 6=0° i.e. no radiated fields along the length of the
dipole.

* 2
s-1lgr (E9H$)=E9E9f=15 '2m F2(0)
2 2n mr
15 15 o (0 =30 Prag F2(6)
2 2
o sinz(B;J mr® Ra sinZ(B;j (3)

15 |2 2nm
Radiated Power Py = [[S-dS = —r f sz(e)r sin 6 do do
nr?

) 15
:El erzala Ra 4)
R, = 60|ij2(6)S|nede (5)

12

Where Rj is the antenna equivalent resistance at the feed point (z'=0).

The antenna equivalent resistance R; is given by Table | on p. 7.
Thus the directivity D of a linear center-fed antenna of end-to-end length L is
given by:
2
D Smax _120 F (6) max ©
So Ra sin (B 2")




Table 1. Calculated values of the driving point resistance R, for end-fed monopoles of different

lengths h/A. (Multiply by 2 to obtain the driving point resistance for center-fed
dipoles of length L = 2h.)

h/A =L/2% R, h/A = L/2L Ra

1.00E-02 3.9499E-02 5.10E-01 2.4554E 04
2.00E-02 1.5824E-01 5.20E-01 5.9649E 03
3.00E-02 3.5699E-01 5.30E-01 2.5708E 03
4.00E-02 6.3701E-01 5.40E-01 1.3996E 03
5.00E-02 1.0001E 00 5.50E-01 8.6554E 02
6.00E-02 1.4486E 00 5.60E-01 5.7994E 02
7.00E-02 1.9856E 00 5.70E-01 4.1067E 02
8.00E-02 2.6146E 00 5.80E-01 3.0288E 02
9.00E-02 3.3400E 00 5.90E-01 2.3056E 02
1.00E-01 4.1669E 00 6.00E-01 1.8009E 02
1.10E-01 5.1013E 00 6.10E-01 1.4382E 02
1.20E-01 6.1503E 00 6.20E-01 1.1718E 02
1.30E-01 73219E 00 6.30E-01 9.7309E 01
1.40E-01 8.6256E 00 6.40E-01 8.2337E01
1.50E-01 1.0072E 01 6.50E-01 7.1026E 01
1.60E-01 1.1674E 01 6.60E-01 6.2519E 01
1.70E-01 1.3447E 01 6.70E-01 5.6217E 01
1.80E-01 1.5407E 01 6.80E-01 5.1692E 01
1.90E-01 1.7574E 01 6.90E-01 4 8638E 01
2.00E-01 1.9971E 01 7.00E-01 4.6837E 01
2.10E-01 2.2626E 01 7.10E-01 4.6134E 01
2.20E-01 2.5571E 01 7.20E-01 4.6422E 01
2.30E-01 2.8844E 01 7.30E-01 4.7637E 01
2.40E-01 3.2490E 01 7.40E-01 4.9746E 01
2.50E-01 3.6564E 01 7.50E-01 5.2747E 01
2.60E-01 4.1131E 01 7.60E-01 5.6664E 01
2.70E-01 4.6272E 01 7. 70E-01 6.1554E 01
2.80E-01 5.2383E 01 7.80E-01 6.7501E 01
2.90E-01 5.8687E 01 7.90E-01 7.4630E 01
3.00E-01 6.6233E 01 8.00E-01 8.3108E 01
3.10E-01 7TA914E 01 8.10E-01 9.3155E01
3.20E-01 3.4974E 01 8.20E-01 1.0506E 02
3.30E-01 9.6727E 01 8.30E-01 1.1923E 02
3.40E-01 1.1059E 02 8.40E-01 1.3617E 02
3.50E-01 1.2711E 02 8.50E-01 1.5658E 02
3.60E-01 1.4706E 02 8.60E-01 1.8143E 02
3.70E-01 1.7148E 02 8.70E-01 2.1205E 02
3.80E-01 2.0186E 02 8.80E-01 2.5036E 02
3.90E-01 2.4040E 02 8.90E-01 2.9918E 02
4.00E-01 2.9042E 02 9.00E-01 3.6280FE 02
4.10E-01 3.5715E 02 9. 10E-01 4 4794E 02
4.20E-01 4.4924E 02 9.20E-01 5.6578E 02
4.30E-01 5.8183E 02 9.30E-01 7.3589E 02
4.40E-01 7.8350E 02 9.40E-01 9.9525E 02
4.50E-01 1.1136E 03 9.50E-01 1.4208E 03
4.60E-01 1.7137E 03 9.60E-01 2.1960E 03
4.70E-01 2.9936E 03 9.70E-01 3.8530E 03
4_80E-01 6.6033E 03 9.80E-01 8.5364E 03
4.90E-01 2.5836E 04 9.90E-01 3.3546E 04
5.00E-01 3.2730E 33 1.00E 00 1.0671E 33
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Fig. 1. The calculated resistance R, and reactance X, of an end-fed monopole antenna
of length h (in terms of wavelength A). Multiply by 2 to obtain the driving
point resistance R, for a center-fed dipole antenna of length L = 2h.



Example 1:

km.

Calculate and compare the directivities, gains, and power densities including E-fields created by dipole antennas of lengths L =
0.07X,0.18 A, 0.5 A, and 1.1 A. Power radiated by the antenna is 100 W and distance from the antenna to the field point r, = 10

Note that the radiated power and the distance r, are needed to calculate the power density and maximum electric fields.

E2 Including Ohmic losses for Prob. 5 of HW
Smax |=S,D S=— From Eq. 2-153
From p. 7 0=90° 2n antenna efficiency From Eg
of Notes . i - = (ﬁ] D uW/mz Eex = v 217S 1 e = L 2-155
L2 | Roohms | 1. A | F(O . D" Arr? mV/m Ronmic © R.+Romic | G=¢D
0.035 0.994 14.18 0.0241 1.47 0.117 9.39 0.0388 0.9624 1.414
0.09 6.68 5.47 1.844 1516 0.1206 9.54 0.1042 0.9846 1.493
0.25 73.12 1.65 1.0 1.64 0.1305 9.92 0.208 0.997 1.635
0.55 17311 0.34 1.951 2.76 0.2196 12.87 8.758 0.995 2.746
©

* Note that P_, =

rad —

(%) I;Ra from Eq. (4) on p. 6 of Class Notes; I, = 22”"“

a

AL

cos(2 cos 9) - cos(ﬂzl‘) cos(ﬁ/{' cos 9) —CO0S (ﬂLj
" From Eq. (2) on p. 6 of Class Notes, F (9) =

sin@

F(9)

mx =1-c0s(7L/A)
6=90°

F(6
" From Eq. (6) on p. 6 of Notes, D=120 : 2( )|max
R, sin’(zL/A)

sin@

" Ronmic is given by Eq. (9) on p. 13 of Class Notes; Ry =1.988 fMH% : Take 2a = 3.264 mm (0.1285) « 8 AWG wire (App. B on p. 783 of the Text).

For Aluminum, from App. B.1, 6 =3.5 x 10" S/m; take fy, = 10 MHz.

. For L/A < 1.38 — 1.4; F(0) is max. for 6 = 90°.



Example 2:
Prag=1W; f =835 MHz; r=1km

L = 2h = 0.65) = 0.65—-2_ —23.35¢m
0.835

h_L oas
A 20

oy 84.974 J2r 96.727 _181.70

)
e

Tablel
19
Prad :Ela Ra

I, =0.1049 A

l=—a_—_la___qg1177

(5] (4]

B j
l—COS(
60'mF(e)| 601, 2 )| _1p065 MV
0=90° r 1

| max|

2 2
| maxl | rmsl —0.1398 22X HW
2n n m?

Smax -

F2(0 ‘
Olnax _ 120 214
Ra sin (BL) 181.7 sin?(0.65m)

D:1

=1.759 (2.45 dBi)

This is an improvement of only 1.073 times (or 0.3 dB) relative to a half wave dipole.
wW
Smax = So D =0.1398 =
m

10



Radiation patterns Xy plane  H-plane
z Iy

2.45 dBi (0.3 dBd)

Fig. 2. The radiation pattern of a z-directed dipole antenna for the xy plane or H-plane
(normal to the orientation of the dipole).

See also p. 154 (Fig. 6-4)

yz plane (E-plane)

Fig. 3. The radiation pattern of the z-directed dipole antenna for the yz plane or the

E-plane.
HP = 2 x (90° - Bp) (2-126)
p. 49
pL pLY |
cos ( COS Opp j —C0s (j 2

2 2 1 1 (BLJ

- ==|1-cos| — 7)
SINn er 2 2



pp. 57,58 Text Ohmic Losses for a Linear Dipole

z' =112

{—>n

= ] - — e
zl I =]

—_—

—|--| |--l— Z=-112

IMa =2n

From Eq. 6-1, p. 152 Text

IA
N
IA

N

(') =1y sin [B(%—zﬂ 0

=l sin{B(%+z’ﬂ —%g

!

IN

0

N

Iy = I(Z')|Z'=o =1, sin (%}

Ohmic power lost in the antenna

L/2

1 2
Pohmic :E I (I dR)
-L/2
dz’  Rgdz’

R= =
(2mad)c  2ma
where
1 op

S :52 20

1)

@)

3)

4)

()

(2-171)
p. 58

is the surface resistance which depends on the conductivity o of the material and

frequency o (= 2xf). See App. B.1 of the Text for ¢ of various metals.

12



n [LI2 . 0 )
Ponmic =1 | |%sin2B(E—Z'jdz’+ J %sinZB(EH'de’ (6)

4ma| | —L/2
L/2 BL/2 . BL/2
| sinzﬁ(kjtz’jdz’zi [ sinZCdgzi[g——sm(zg)}
0 2 P o 2p 2 0
1|BL sin(BL)
=—{__— (7)
28| 2 2
L _,
where = = (E+Z )
2 R L sin (BL 1.
I:)ohmic = Im 8;& {1_ (B(E) )} =E|A Rohmic (8)
Rs L 1 sin (BL)
Ronmic = 1-
ohmic i 2 (BLJ [ BL) } 9
sinc | ==
2
Antenna efficiency e, = P Pra = Ra (2-177)
in  Prad + Pohmic  Ra + Rohmic
GainG = ¢D (2-155)
For a Short Dipole (L = Az <<A)
2
Az
R, =20 2 (TJ (2-172)
Rohmic = % = RSL (2_175)
6r 6ra

For the general case of a linear dipole or a monopole Ronmic is calculated from the
general Eq. 9 given above.

Example 3:

For a Short Dipole

L2 L2
R, =20 1° (ﬂ ~197.4 (Xj (2-172)

See e.g. Table 1 on page 7 for L/A =0.02, Ry =2 x 0.0394 = 0.0788 Q.

13



Using the conductivity of steel (see App. B.1 of the Text) ¢ =2 x 106 S/m.
From Eq. 2-171 or Eq. 5

Rg=1.4x107 iy, ©

From Eqg. 9, BL is small and we can expand sin x for small x

R L BL- 6L” R L

1 6 .
R ohmic = — 1- =3 Short dipole -

ohmic = 7 — 8L > BL 6ma p (2-175)

)
p. 59
For L/A = 0.02 dipole at f = 1 MHz; taking 2a = 1/8"
A=300m ; L=6m
1.4x1072 x 6
Rohmic = = 0.2807Q

67 x = x 2,54 x 102
16

- R 0.0788
Antenna Efficiency e, = a =
R, +Ropmic  0.0788+0.2807

=0.219  (21.9%)

Gain G = ¢,D=0.219 x1.5 = 0.3285.

Note that for short dipoles of thin wires, the ohmic resistance can be substantial
and even larger than Ra. Therefore, this leads to reduced efficiency of radiation.

Example 4:

For a Half Wave Dipole

L=0.5; Ra=73.12Q; 72—:—; BL==n; f=10MHz; L=15m; 2a=1/8"

From Eqg. 9

R, L (L4x107°V10)x15

Rohmic = Ara =3.33Q2

4nx(1x2.54x10_2j
16

73.12

e =———=° _ —-0.9565 (95.65%)
r
73.12+3.33

G =0.9565 D =0.9565 x 1.64 = 1.568
14



pp. 75-81 Text Dipoles Versus Monopoles Above a Perfect Ground or Reflector

j’f ’,"1 r
.-f'.' 1'_.--'
L/2 - L/2 -7
B .’J x , B —__..d' \
» 15 - -
la E T7 =7 T 1 E
I
I
L2 Image antenna%: Lo
a. A dipole. b. The corresponding monopole above
ground or reflector.
! ! H L ! ! L
I(z") same as on page 5 of the Notes 1(z')=1]sing 5 7710<7'< > 1)
For 0<6<180° For 0<6<90°
E=]j GOr'm F()eo  (2) E'=—J6S'm F(0)e "0 (3)
5150 F?(0)F 4 5150 F?(0)F= 151 F*(0)F (5)
zr? zr? zr? . z(ﬂL]
sin®| ——
2
1 1
P :_IZR 6 P! :_I!ZR! 7
rad 2 a ‘a () rad 2 a ‘a ()

F(0) is given as Eq. (2) on p. 6 of the Notes.

Since a monopole radiates in the upper half space while a dipole radiates both in
the upper and lower half spaces,

Sipole =%S;ﬂmm,e for identical radiated powers (8)
Dr’nonopole = 2Ddipole (9)
R! R

I (10)

almonopole Xa dipole

For identical radiated powers

11 =421, (11)
11 =21, (12)

15



Example 4:

h L
A 2)

0.35 Monopole Antenna

f=15MHz, A=200m; r=1km

h=—==70m; Pyq=10°W (1 KW)

N

From Table 1 on page 7, R} =127.1Q (do not multiply by 2 for monopoles)

From Eq. 7, I3 =3.967A

From Eq. 5,
BL pL
2 COS (cos 9) —Cos ()
S’| _ 15 y (3.967) 2 _ 2 —0.29 MW / m?2
monopole 1t><106 sin2(0.7 TC) sin 6
0=90°
D =L=3.64=2xD|

monopole S - Prad dipole

4rr?

From Eqg. (6) on p. 6 of Class Notes

2
120 F (9)‘max
Ra sinz(m‘]
2

Note that %: h which is the height of the monopole.

D=

16



pp. 84-89 Small Diameter (<< A) Loop Antennas

The loop antenna is a radiating (or receiving) coil of one or more turns of circular
or rectangular form. Ferrite or air core loops are used extensively in radio
receivers, direction finders, aircraft receivers, and UHF transmitters.

The theory of loop antennas is derived in a manner similar to the General Theory
of Conduction Current Antennas given on page 44 of Text and on page 2 of my
handout notes.

We start by assuming, as seen in Fig. 1, that the current I in the loop has the same
magnitude and phase. This is certainly possible for small diameter loops where

2nh < A/10.

/Y||¢ v

z A

R,/’ !

1) et ,,F[X.O.Z} ]

e T 10,0 1§
9" .- T - X
bd¢' |-~ > X

Loop in the xy plane

Fig. 1. A circular loop antenna of radius 'b'.

From General Theory of Conduction Current Antennas, from Eq. 2-101,

m}iZTC I(’I\)re—JBR ,
4" {) R0 @
R:\/(x—x’)2+(y—y’)2+z2 2

x'=bcos¢’; y=bsing’; z/=0; x=rsind; y=0; z=rcoso (3)
Note that we have defined the x-axis (the choice of which is arbitrary) such that
the field point lies in the xz plane. The field point F, therefore, has coordinates (X,
0, z) in Cartesian coordinate system and (r, 0, 0) is spherical coordinate system.

Substituting Eq. 3 into Eq. 2

1/2
R= [rz +b? —2 brsin 0 cos (1)'} ~ r[l—gsin 0 cos (1)'}
r
(4)

=r—bsin6cos¢’

17



since, for the far-field region, r >> b.

Using the far-field approximation for Eq. 1
—jpr 2n

z ule ~r jPbsin 0.cos ¢’ 1
A="——— e bd
- £ ¢ ¢ )

For small radii b = Zchb <<1, we can write

glPosSIN0COs ¢" _1 , 15 sin cos ¢’ (6)
We can also write (see Fig. 1(b))
¢’ = —Xsin ¢’ +¥ cos ¢’ (7)

Also to be noted is that for the field point F
y=49 (8)
From Eq. 5 therefore, we can write

~

—ipr .
pe  sinO¢ 9)
(p. 86 Text Eq. 3-49)

Ty
Ao IS
mn 4nr

where S = ntb? is the area of the loop.

On page 19, we compare the expressions for the radiated fields from a loop
antenna to those for an ideal (infinitesimal) dipole and show duality of the two
sets of fields. Ohmic resistance of a circular loop antenna can be written as
follows:

2nh bR
Rohmic = Rw = =—= (10)
onmic "W 2mad)s  a (3-60)
p. 88 Text

where

Rq ~ 1 1988 /f“’ﬂ
G0 c

where "b" is the mean loop radius and "a" is the wire radius; Rs = 1/cd is the
surface resistance at the frequency of interest previously defined on page 12 of
Class Notes.

The small loop antenna is inherently inductive. For a small circular loop of N
turns wound on a magnetic core

8b
L = N2b pgfr Mo {fn (?) - 2} (11)
(Eq. 3-62 p. 88 Text)
18
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Table 2. Field expressions for small diameter circular loop antennas and an ideal (infinitesimal) dipole antenna [see p. 4 of Class Notes].

Loop Antenna

Ideal (Infinitesimal) Dipole

*"gi? 7 H"$
EQ
: - js . 9) (2-695)
Magnetic Vector Potential (A) iﬁr Ssinge 1 g (3-48) Text 0. 33 Text
Magnetic Field
_ A - A (3-50) i A (2-74b)
H =VXA=_EF><A —ﬁﬂze’””sm 06 p. 86 Text Me"‘”smt%
u 7, 4rr 4rr ) (2-70)
since FxZ =—sin6g p. 33 Text
Electric Field
~ il ~ IS , i .~ (3-49) inlAz o .~ (2-74a)
E = V_X H =-—nfxH n—ﬂze 157 sin ¢ p. 86 Text m—ﬁe 17" sin 06 p. 34 Text
Joe 4drr 4rr
Radiated Power Density
- -, CEC 2g2 ) ~ 2
Slee(ExH ):E E 5 7175 B*sin® oF nl*(Az) 25in? OF 276
2 2 327°r? 2 (2-76)
n 2(47rr
Radiated Power
- 1 2( p2a ) (3-52) @ (2-77)
P=IS'dSE§|2Rr 101 ('B S) p. 86 Text % 1Az)’ p. 33 Text

R, (for single turn loop)

S
Directivity D = %

0

I'IN—turn loop

2
20(p%s) =31 200(%) Q (353

1.5

2
31, 200( Lo %} @ (3-54)

2

2 2
2 (Ej =790 (Ej (2-169)
A A p. 57 Text




For an N-turn loop, Rohmic is also higher proportional to overall length of the wire

bR
Rohmicl = 2 (12)
N-turn a
loop

The effective permeability et depends not only on the permeability p, of the
ferrite core material, but also on the core geometry, i.e., length to diameter ratio
R, given as follows:

U
=——rr 13
et =14 D (1, 1) =
where “D is the demagnetization factor approximately given by D [4]
D=0.37R™* (14)
p. 87 Text

Example 5 (see also Ex. 3-1, p. 88, Text):

Calculate the input impedance, directivity, and gain for an N = 1000 turn loop
antenna wound with a AWG 22 copper wire on a ferrite rod of diameter 3/4".
This antenna is to be used at a frequency of 1.5 MHz. It is given that peff = 50
for the ferrite that is used.

Solution: From p. 783 of the Text, for AWG 22 wire d = 2a = 0.644 mm =
0.0253"”

From p. 58, Eq. 2-171

Ry == |9 _1 988 |TMHz oy (15)
o 20 c

For copper 6 = 5.7 x 107 S/m (p. 783, Text); Rs = 3.22 x104 Q at f = 1.5 MHz

14

Mean loop radius b = % +a=29.847 mm

From Eqg. 12, for N = 1000-turn loop

Rohmic =9.85Q2

From Eqg. 3-54 Text (see also p. 19 of Class Notes)

2
Ry = 31,200 (e 53) =450 (3-54) Text

*R. Pettengill, H. Garland, and J. Mendl, “Receiving antennas for miniature receivers,” IEEE Transactions
on Antennas and Propagation, Vol AP-26, pp. 528-530, July 1977.
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From Eqg. 11 above

L=0232H = olL=2rx15x100x0.232=2.18MQ

D=15 e, =—2 =0.82(82%)

RonmictRr

G=¢D=1.23

pp. 107-111 Antennas in Communication Systems

P, P,
Tr. < > Rer.
G fe— R —>} G,
Fig. 4-4 (p. 107 Text). A communication link.
EQVT.CCT. [~~~ _ -
of receiving WV . =V, I
antenna : :
: : 2L
| |
: Za| |
| |
I [ 1
e e e o= 4

Equivalent circuit for the receiving system.

Maximum available power to the receiver (for Z| = ZZ)

12
i 2
1[VAj2R _Vg\ _E‘E‘(AZ)

Pam == =—A -
AM=9212R, ) ™ BRA 8 Rp

For an ideal (infinitesimal) dipole
Vj =E' Az

2 2
Maximum effective aperture area = Ae m = S A= =0.1194

inc n

21
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12
Sine =€ /2n
D = 1.5 for an ideal dipole

Am _Ar 3,2 15

D=F &M= 927 8n

For a general antenna, therefore

Ac =er Aem  effective aperture area of an antenna

Available power including also the antenna losses

PA =S Ae
_g N
" 47R?
2
Pr =SAgr = (—thtz j Agr =Py GtGrkz
47R (4nR)

or

AA
Pr =P ﬁ Friis transmission formula

We can also write Eq. (4-33) in dB-form as follows:

P, (dBm) = P, (dBm) + G (dB) + G, (dB) — 20 log R (km)
—20logf(MHz) —32.44

Example 6:

For Ground Based TV Stations

Say, Channel5 f=76-82 MHz f =80 MHz
Prad -~ 5 - 10 kW

say, 10 KW = 104 W (40 dBW)

22

4)

(5)
(4-22)

(6)
(4-23) Text

(7)

(4-27)
p. 108 Text

(4-26) Text

(4-31)

(4-33)

(4-33)

(4-34)

A=3.75m



Gt ~ 20 - 50 (factor)

say, G =30 (factor) = (14.77 dB ~ 15 dB)

EIRP = G Pyag — 55 dBW — 10°° W (85 dBm)

Rmax ~ 20 - 30 miles ~ 50 km; since 1 mile = 1.6 km

say
G,=7dB=5
2
Aq X, —56m?
T

Using the logarithmic form of the Friis communication link formula Eq. (4-34)

P (dBm)=70+15+7-34.0—-38.06 —32.44

=-12.5dBm =107 mwW =56.2 uW
Example 7:

Calculate the open-circuit voltage developed across an antenna of resistance Ra=
80 ohms for the above-calculated incident power density

P 562 _, uW

S- = —
A, 56 m?2
Assume Ra= 80Q2
Ve, VA
—9¢ _, A __ power picked up and delivered to a matched load = Sj;,.A,
8Rn S8R

Voo = BRASinoAe, = BXBOP, =/640x56.2x10°8
~188.65 mV =010V

23



Chapter 8 -- Antenna Arrays (see pp. 271..... Text)

For a uniformly excited (UE), equally-spaced linear array (ESLA)

F(x.y.2)

00,0) d00 (24,00
0 1 2

For N identical radiating elements (length, orientation, etc.) that are excited with

identical magnitudes but progressively phase-shifted currents i.e.
I, Tele, 1 g2 ... g l(NDe
- - - LiL
we can write the total electric field f as follows
ET = Eoe JB + ElejB 1+. E 1€ JB IN-1

F='xX+yy + 22
(X —d)X +Vyy + 22

B=p[sin®cos ¢ X+sin Osin ¢ §+cos 0 2]

From Eqg. 1, we can write

Ey

Eoe—jB-F [1+e—jaej[3dsin6cos¢ + e 2j0g2jpdsinBcose +J

N-1
- Bzmw

since
B-(R—F)=—Ppdsin@cos¢; PB-(%—F)=-2pdsin06cosd

24
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(4)
(3-16)
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From Eq. 4

where
N-1 | 1_ejN\V
Array Factor AF= > el ==——_ @)
n=0 1-elV
AF = l(N-Dy /2 Sin(Ny /2) @
sin(y/2)
(8-19) p. 279 Text
: in(N y /2
Normalized AF f(w):M (9)
N sin(y /2)
(8-22 Text)
UE, ESLA
where

v = (Bdy sin 6 cos ¢ — oy ) for an X —directed array
= (de sin 6 sin ¢—ay) for a y —directed array
=(pd, cos 6 —a, ) for a Z—directed array (see Eq. 3-19 Text) (10)

LLLI L1l LLIKIN(N w/2)*

E7 = NE, T(y) = E, oL ¥/2) (1)
M sin(y/2)

(1] ' T

HTZV_XE#J:—_JB PxEq (12)
M J®Ho Jou,

< 1o (o ey ErErs

S—ZRe(ETxHT)_ e (13)

* From Eq. 11, for directions of max radiation %: 0,+m, +2mx,- -

p. 280 Text

A number of trends can be seen by examining the normalized array factor [f(y)).

1. As N increases the main lobe narrows. Peak for the main lobe occurs for
v = 0 where [f(y)| =1.
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[yl

CARTT

L T S B ™
4N -2eN 2N 4N / o \
-2 N W o mN

Plot of |f(y)| as a function of .
Fig. (8-8) p. 280 Text.

For directions of zero (nulls of radiation)

Zero values of [f(y)| occur for

FE =+m +2nr,[]
i.e.
%:iz—h’l‘, +25.00 (14)

2. More than one major lobe will exist if it is possible to get values of v = + 2r, +
4r. The additional lobes are called Grating Lobes.

3. The minor lobes are of width 27/N in the variable y and the major lobes (main
and grating) are twice this width i.e. 47/N in the variable y.

4. The side lobe peaks decrease relative to the major lobe as

1 , 1

1: : (16)
N sin 3n N sin Sm
2N 2N
For large N, SLL decrease as
2 2
1. — : — 17
MM3t 5= - a7
i.e.
2 2
0, 20 1o _,20|0 — , 11
g 3n g 5n
or

0, -13.46, -17.90, ..\ dB (18)

5. As N increases, there are more side lobes in one period of f(y). See also the text,
Fig. 8-8, p. 280.
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Case A. Broadside Arrays
All antennas excited in phase a = 0.
From Eqg. 10, for an antenna stretched along the z-axis

wrEPdcos0=0, +2m, +4n [] (19)

j , cost (i%) (20)

d/A <1 i.e. interelement spacing less than A

for major lobes

0=+—, cos_1 [i

NS
o>

Subcase 1

Two and only two major lobes of radiation for 6 =+ /2 i.e. in directions
broadside to the stretch of the array

21

22)

23)
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BWFN = |‘9|:N et — On right|

cos™ (—ij —cos™t (LJ
Nd Nd

=2sin™ A ;2—/1radians:114.6°i
Nd Nd Nd

for
Nd >> A

Example 6:

d/A=05, N=8
From Eq. 23

T .11 o
——0gy =2sIin 7| = |=1145
> FN (J

BWEFN = 29°

sin (&j
2
ﬁ

8nd
= 4(3d 0)=——cos 0=+
(Bd cos 0) . C0S >

Angle for first-side lobe

I
-+
[EEN

from Eq. 11

Ny
2

0=cos ! (igj —+68°: +112°

(-13.46 dB down relative to major lobe)

Subcase 2

(BN
IA
>la
IA
N

From Eqg. 19, for major lobes
\u:BdcosezO, iZTE, i4TC,|||

cos 0 =0, i&, i&
d d

(24)

(25)

(8-31) p. 283 Text
(26)

(8-33)

(27)

(28)

(29)

(30)

(31)

(31a)

This corresponds to six major lobes and a radiation pattern of the type shown on

the next page.
28



Example 7:
d/A=15

From Eqg. 31, for major lobes
3ncos0=0, +2n, *4rn (32)

For angles of maximum radiation

cos0=0 +2/3 +£A473

(33)
0=+90° +48.2°, +131.80° (34)
Six maxima of radiation
0=180-48.3"
2131.80 9=48.3O
. - —48.3°
-131.8.3°
-90°
Angles for first nulls for each of these maxima are obtained from Eq. 21
27 21
3ncosOpny =+—; X2nt— 35
m FN =+ LRy (35)
Subcase 3
d/A=1.0

For this case, there are four maxima of radiation (major lobes); the two fatter
lobes in the above figure coalesce into single modes with directions of
maximum radiation 6 = 0°, 180°.

From Eq. 31a
cos 0=0, +1, ¥% (36)

29



g+ 905 o 180

Four maxima of radiation

N
sin (A

| &B0O°

-0

From Eqg. 21, directions of first nulls are:

21 271 271
=—dcos Oy =+— +2nt— -
Y X FN N L N
A A
COS Oy == —, +1+—\© -
AN Nd Nd
Example 8:
N=8, diA=10
From Eq. 38a
1 1 1 7 7
COSOpy ==, *lt—=£—, —, ——
8 8 8 8 8

Py = 82820 97.185 28960 -28.96 151.045 208.96

BWEFN = 14.36° for major lobes along + 90°
=57.92° for major lobes along 0°, 180°

30
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(38)

(38a)

(39)
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p. 315 CaseB. Electronically-Scannable (Steerable) Antennas -- Phased Array
Antennas

The phase shift of currents (excitations) for adjacent antennas may be altered

o=-Bdcos6, (phase delay) (41)

From Eq. 11 for directions of maximum radiation (major lobes)

%:o, L, 27,0 (42)

v=0, £2n, +4m1,1. (43)
Bd(cos0—cosBy)=0, +2m, =*4m, ., (44)
Cos 0 =Ccos 0, coseoi%, coseoiz%,... (45)

For two and only two major lobes for 6 = + 6,, d/A should be less than 0.5.

Example 9:

_ /6
N=8, d/A=03; a =-30°; 0p= COS 1( ]=i?3.9°

21 x0.3

For
a variable from -30° to -75°

0o varies from + 73.9° to £ 46°
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For directions of zero radiation, from Eqg. (14) on p. 25 of Class Notes,

M:iﬂ
2
27
=+
# N

27

Bd (cos@—cosd,) =+ N

2
COS O, =C0SO, £ ——

N Ad

-1
6., =C0s™| cosd,

T
N 3

=cos ™| cosf, + L} (45a)
I Nd

Example 9 (continued): dA=03 , N=8

a=-30°=-n/6 0o =%73.9°
0.4167

Ory = 003{0'2773i2%}
=46.05° ; 98.01°
BWFN =51.96°

Example 9, Part B: Let us compare the antenna array of N = 8, d = 0.3\ for the
following three conditions:

Direction of
o max radiation BWFN
from Eq. (26) on p. 28 of Class Notes
0, = +90° 1
i BWFN = 2sin*| —
0 Broadside array from Eq. (20) on p. 27 ( Nd J
of Class Notes = 49.25°
-30° directions of max
from Ex. 9 on this radiation 0,=2%73.9° BWFN = 51.96°
page 0, =+73.9°
End fire antenna BWFN =2cos™ (1_i)
-108° array 0, = 0° Nd
o=-pd =108.6°

See Eq. 52 on p. 36 of Class Notes
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For a one-dimensional antenna array

The array factor of a one-dimensional antenna array from Eq. (8) of Class Notes
p. 25 is as follows:

|AF| = (1)

siny /2

sin(Nl///Z)‘

Where vy is given by Eq. (1) on p. 25 of Class Notes.
From Eqg. (1) here, for directions of max radiation
vy =0,+2m, ...

For directions of zero radiation or nulls of radiation

NW:iﬂ

— 27, ...
2

or y ==£27w/N for first nulls of radiation.

Table of general relationships for one-dimensional z-directed phased array antennas

directions of max. ] ) )
radiation principal lobe/s  directions of first nulls

o y=0 derived on p. 32 BWFN
cos™ [cos 0, + i}
Nd 2sin™* A
0o = +90° y) Nd
0 broadsid =cos™ | +——
roadside array " Nd see Eq. (26) on p. 28 of
see Eq. (22) on p. 27 of Class Notes
Class Notes
a A
COS™| cos 6, im
00 =cos™* (—iJ calculate Ogn1, OFn2
a —cost| L4t
see p. 31 of Class £d - Nd BWFN = 0\ - O

Notes see Eqg. 45a on p. 32

of Class Notes

2cos™ (1— Lj
Nd

0, = cos™ (1) J)
a=-pd =0° cos™ [1——} :4sin‘1( A J

End fire array Nd 2Nd

see Eg. 52 on p. 36
of Class Notes
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Case C. End Fire Arrays

From the previous section, we can see that in order to get a single major lobe for
0o = 0° i.e. along the line or stretch of the array, we need

a=-pd and d/A<05 (47)

For this case, the two major lobes on the previous page coalesce into one major
lobe in the end fire direction.

Example 10:
N=20, dA=04

a=-Bd=———=-144" (48)

For directions of first nulls from Eq. 14

v = Bd(cos By —1):i2Wn (49)
A 1 7
=lt—=1%t-=%, =
cos OpN Nd S ?/ S (49a)
-1 7 )
OpN =t COS (5) =+ 28.96 (50)

BWFN = 20y =57.92° (50a)

It is interesting to note that for a given stretch of the array (N-1)d or
approximately Nd, BWFN is smallest for broadside arrays, intermediate for
phased arrays and broadest (largest) for end fire arrays.

Example 11:

For N = 20, d = 0.4 broadside array (a.=0°)
BWEN =2 sin~L (ij — 2sin~L (Ej ~14.36°
Nd 8

as compared to 57.92° for an end fire array.
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Example 10 (continued): N=20 ;dA=04

For Hanson-Woodyard end fire array (p. 285 Text)

Al 1
| gd+Z 8-37) d<Z1-— 8-38a
a (ﬁ +Nj (8-37) 2( 20] ( )
- _(144°+ 180°j d<0475\
20

= —153°

For directions of first nulls (from Eqgs. 10, 14 on pp. 25, 26 of Class Notes)

w = Bd, cos@ - o, =144°cos 6, —153° = i%”: + 2% _4qge

20
O+ o o o
c0s 6. _153°+18° 171 /135 09375

1447 144° /7 144°  (ather than 7/8 or 0.875 in Eq. 49a

Oy =+c0s™(0.9375)

=+20.36°

BWEFN =40.72° rather than 57.92° for an
ordinary end fire array
(see EQ. 50a on p. 34 of Class Notes)
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| 80"

o0 T

BWEFN
! . . : :
2 5 L0 20 S0
Nd/A
BWEFEN for antenna arrays
BWFN =2 sin ! (%J ——» Broadside array 51
_2cosY1-*
=2C0s “Ng ) 2 End fire arrays (52)
=4sin~? M /
2Nd
Nd

Example 11-1: - =5.0

BWFN =23.07° for a broadside array
BWFN =73.74° for an end fire array

p. 293 Directivity of a Uniformally Excited, Equally Spaced Antenna Array

From Eg. 13 we can write

T
WD e ekt
s=—IL =T_Io 2| ¢ (53)
Zﬂ 211 gini
Ll 2 2
smxzs.o|max AR = N so|max (54)

. 1
Power radiated by the antenna array = 2 I,ZA (Rao+Ra1+"Rn_1)

1 N1
:§|IA|2 Z(:) Rai (55)
i=
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N?D, NiAO (55a)

> Rpi
i=0

where D, and R g pertain to an isolated element of the antenna array.

In general D|

lgnoring Mutual Impedance Effects

Rao =RA1, 111 =RN-1
. 1
Power radiated by the antenna array = §|I A Rag N=NP, (56)

where Py is the power radiated by the zeroth element

2
SmaX F|maX
D_NPO_DO TzDON (57)
2
4nr

where Dy is the directivity of each of the antenna elements.

Example 12:

Calculate the directivity of an antenna array of 20 half wavelength (L = A/2)
dipoles that are fed in phase and consequently radiate in broadside directions.
Neglect the mutual impedance effects for this problem.

Solution:
F2
D=—"Mm& - ND, =20x1.64=32.8
N
Example 13:

a. Calculate the directivity/gain of an array of 30 vertical monopoles above ground
each of length H = L/2 = 0.35 A that are spaced a distance d = 0.2A from each
other.

b. Calculate the relative phase difference between monopoles if the major lobe of
radiation is to be in the end fire direction assuming an ordinary end fire array.

c. Calculate the BWFN for this array.
Solution:
a. D=NDg=230x3.636 =109.08

b. From Eq. 47

a=-pd= == 72t

27nd
M A
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Each of the successive elements should be fed with a current that is lagging in
phase by 72° from the previous element.

c. From Eq. 49a,

A A
COS Oy =1—-—— NG —1—5—1—

CDII—\
cnlo'l

BWFN = 2 cos'! (5/6) = 67.11°

2-D and 3-D Uniformly Excited, Equally-Spaced Antenna Arrays

Ny: No. of antennas in x-direction
Ny: No. of antennas in y-direction

N,: No. of antennas in z-direction

C/
P
C/

A 2-D array of identical elements

Neglecting phase terms
E5 = E@ AR, IAR |AH,
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sin {NZX(de sin 6 cos ¢+ax)}

- sin {1([3d sin 0 cos ¢+ax)}

sin {Nzy(ﬁdy sin 6 sin ¢+ay)}

[AF]y = 1
sin {Z(ﬁdy sin O sin ¢+(xy)}
sin{l\I (Bd, cos e+az)}
|AF|z a i
sin {Z(Bd cos 6+ocz)}

As always

(111
ST = %|AF|2|AF|2|AF|2

where §@ is the radiated power density due to one of the elements. These
arrays are also called mattress Arrays.

Example 14: A Unidirectional Broadside Array

In order to obtain a unidirectional broadside array, we can use a 2-D antenna array
of Nz =1, Ny = 2, Nx which can be an arbitrary number. By using a back row of
antennas that are placed with dy = A/4 and ay = 90°, we can obtain an antenna
pattern as shown.
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Universal field-pattern chart for arrays of various numbers n of
isotropic point sources of equal amplitude and spacing

1.0 _
o NN - T
8 \\ \\\\\\ &22\
IEIVANRNERN
6 \ \\ \ \\

|Array factor]| \ \ =4 \\ N

or |f (\I/)| o \ n=5 \ \\
:3 \n=20 ‘1° \ \‘ \\ \\ ’/’2—
2 \ 2) Jo N N\ %X/‘f/><\< .
J \ \ 2 2 E } P: *

\/ V[\ ] .\ XA~ L2

[o] i
0" 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° 110° 120° (30° 140° 150° 160° I70° 180°
360° 350° 340° 330° 320° 310° 300° 290° 2807 2\;0' 260° 250°240° 230° 220° 210° 200° 190° 180°
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Qe

e

)

| 5007

| 50°

h

An enlarged version of Fig. (b) from previous page.

a=90°% d=MA4

Note a broad unidirectional (cardiod type) pattern possible
with this arrangement.
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Reactance of Linear Dipoles

We have previously calculated Rin = Rz + Ronmic for linear dipole or monopole
antennas. We need to know the input reactance Xj, or Xa in order to design
matching networks to match power in or out of the antenna.

Like the current distribution on a linear dipole, the input reactance can be written
as though a two-wire line of length L/2 had been opened up as shown in the

following:
d EQ
o %
- A | L/2
! 1= A
D'() = _*_ ) E’ ’
-« L/2 > E z
a WL DC—gp
—-=-27=0 27
D' (O— g2
D S(z) .
D!
4-=-=-=--- Y
= “ e
b. c

For a two-wire line of Fig. a, each of diameter d,
120 2S

o Z, :ﬁﬁn (Fj (1)

For the opened-up line of Fig. b, we can define an average characteristic
impedance Z,

_ 1 L/2
. Zorg { Zo(2) dz )
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For the completely opened-up transmission line of Fig. ¢, we can define

(3)

The reactance Zpps of an open-circuited transmission line of length L/2 can be
written from Transmission Line Theory

. L
ZDD’ = Zin = —Jzoa cot (BEJ (4)

Combining Eg. 3 and 4, we can write

] .= L’
Zpp' = JXjn =—]Zp, Cot (BZ j (5)

where L'= (1.02-1.10)L is the effective "electrical" length of the antenna.

Reactance of Linear Monopoles Above Ground

We have previously shown that

R inlmonopole = ‘; Rinl dipole 6)
Similarly,
Zoa|mmpole = % Zoa |dipo|e =60 {En (Zd—"j —1} (7)
From Eq. 5
Xinl oo = %xm |dipole (8)
Example 15:

Calculate the feed point impedances Rjn + jXin for linear dipoles of length (a) L =
0.5M (half wave dipole) and (b) L = 0.3A. Assume that the antenna wire is No. 19
AWG (d = 9.12 x 104 m from Table B.2, p. 623) and frequency f = 30 MHz.
Take copper as the material for the antenna.
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a. From the table on driving point resistance, p. 7 of Class Notes

Ryl =2x36.56=73.12Q 9)
L/2)x=0.25

From p.13 of Class Notes, Eq. 9

R 1 L sin(BL)
Rohmic =— {__ } (10)
ma sinz(nj 4 48
2
Gcopper =58 x 107 S/m
1 -4
Ry =—=2.61x10"/f\nH; for copper
Go
Ry =2.6x1074/30=14.4x10%Q @ f=30MHz (11)
L= > =5m
2
Ry o WAx10° 5 (12)
oI <406 x107% 4
Rin = Rri + Rohmic =74.53Q (13)
From Eqg. 3 on p. 44 of Class Notes
Zy, =120< /n (L]—l =996.3Q2 (14)
°a 9.25x10~ '
Taking L' =1.02 L =0.51A
cot [Z—Rx 0510}”) =-0.0314
A
From Eq. 5 on p. 44 of Class Notes
. . BL’ .
iXjn =—j996.3 cot > |= +j31.3Q (15)
Zin = Rin + inn = 7453+ j313§2 (16)
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Note that if we had constructed a slightly shorter, say L = 0.49A dipole
L'=0.49x1.02x =0.51
Xijn =-1996.3 cot L' = 0
Zin = Ryi + Ronmic + J0 = 69.46 +1.41+ j0 = 71 + jOQ (17)

b. You can solve for the numbers for part b of the problem following the procedure
indicated above.

Example 16:

Feedpoint impedance for a linear monopole of length L/2 = 0.25A..

Solution:

From Eq. 16

Zinl =%zin| =37.27+j15.65Q

monopole dipole

Examples on Calculation of Im (Za) or Reactance of Antennas

Example 17: (See also Fig. 6-6, p. 157 Text)

L/A = 0.4; wire radius a = 0.0005A (same as in Fig. 6-6, p. 157 Text). Assume
L'=1.04L.

From Eqg. 3 on p. 44 of Class Notes

Zoa =120 (n( 082 j—i =682.15Q
0.0011

From Eq. 5 on p. 44 of Class Notes

Zpp' =—]j Zog COt (n;: j =—]682.15 cot (0.4ntx1.04) = —j184.3Q

taking L' =1.04L (from Table 6-2 on p. 159 Text). From the graph in Fig. 6-6, p.
157 Text

Im(Z4) = -j1800

Example 18:

L/A =0.3; wire radius a = 0.0014X (one of the wire radii on p. 8 of Class Notes).
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From Eq. 3, p. 44 of Class Notes

Zoa =120 {fn [ 0.6% j—l}: 524.08Q

0.00281

!

Zpp' =—J524.08 cot (% L'j =—j524.08 cot (0.37: X ij =—j351.4Q

taking L'/L=1.04.

From graph on p. 8 of Class Notes

Reactance X, = -2 x150 = —300Q

which is close.

Examples on Mutual Impedance Effects

Example 19: A half-wave dipole above ground

Distance to ground dg =\l4

A 1 —»z
. . 2 dg
2dg:d|stancet0 image antenna” = A /2 — Id/ o
g Image
_— P 2 . — 2 Imag
From Fig. 8-25a, b, for d/A=0.5 Lo antenna

le =-125- 130, |2 = |1é:|.80o = —|1

Vi = hZyg + 15255 =11 [Z1 - 735 ]

Z, = % = (73+ j42.5) - (~12.5— j30)
1

=855+ j72.5

Feedpoint impedance of the half-wave dipole placed at a distance of A/4 from
the ground = 85.5 +j72.5Q) rather than 73 +j42.5Q .

Radiation Pattern

We can consider the above situation as a 2-element (N = 2) antenna array in the x
direction and write
Er =Eq AF
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60 I T T T
40 1 J .
3 I mi
£ 20+ B
=
: AN
Nﬁ 0 +— 4
= 1.2 .6 0
a d/A
=20 L=04781 A -
a=0.001 A
—40 1 1 ! !
(a)
60 T T T T

20

Im {212], ohms
\ |

L=04781 A -
a=0.001 A
| 1
(b)

Figure 8-25 The mutual impedance between two resonant parallel dipoles as a
function of their spacing relative to a wavelength. (a) The real part. (b) The
imaginary part.
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a=0.001A
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|
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0 AN } ¥ T
9 1.3 1.7 2.1 2.5
u dIn
~10 ' ' ! !
(a)

30 T T T T

L=04781 A

a=0.001 A
m - —

O O ole,

l—z— d/l4>| ]

0 ' /\ } e —
097 1.3 L7 2.1 2.5
dIA

-10 1 | | i
(b)

Im(Z,,], ohms

Figure 8-26 The mutual impedance between two resonant collinear dipoles as a

function of spacing relative to a wavelength. (a) The real part. (b) The imaginary
part.
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|:_sin(Nw/Z)
- sin(y/2)

where
y =Bdy sin 6 cos ¢+ay =2Bdgsin 6 cos dp+n

=msSin0cosd+m

From pp. 36-37 of Class Notes, Eqgs. (54)-(57)

R
DG =D, |AF? Ajisolated =1.64xpd/{4>< 3

max RA,with ground effect 85.5

Without ground effect

D=G=1.64

Example 20: A broadside array of five ;f monopoles (a = 0)

d=1/2
Ant.  #1 #2 #3 #4 #5
dip =A/2
dig =3012 I, =1, =13 =14 =I5 because it is a broadside array

212%22114'212"'213"‘214"'215
1

=%[(73+ j42.5)+(~12.5- j30) + (4 + j18) + (~1.8— j12) + (1+ j9)] =63'7+—2127'5
=31.85+ j13.75Q2
monopoles

Zs =Z; by symmetry
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Same as Z;, dos =3A/2
Ly=2Z1p+2Lyp+2Zp3+2Zps+2Zps
l d24 =7\.
= 2[2(-12.5- [30) + (73+ j42.5) + (4+ 18) + (-1.8~ 12)]

monopoles 1

==150.2-11.5|=25.1-j5.75Q
2

Z, =7, by symmetry

Same as Zy3
23 = 213 + 223 + 233 + 234 + 235v\
=2Z13+22p3+ 233 Same as Zy5

{204+ 19)+ 2(-125- 30) + (73+ j42.5)]

monopoles 56 + j18.5

28+ 9.25
2

Note that for each of the antennas, the input impedances are slightly different and
each of these values are different than

T3+125 L 365421250

for an isolated A/4 monopole.

Directivity

From Eqg. (55a) on p. 37 of the Class Notes, including mutual impedance effects

Ral:
D= DO |AF|r2naX Aé||solated
2.RA
i=1
36.5

:3'28XP‘¢25X| 2x3185 . 2x251 , , 28, L21
+ +
RE(Zl+Z5) RE(22+Z4) RE(Zs)

Dy =3.28= 2x1.64 for a single isolated A/4 monopole above ground

Note that a directivity of 21.1 is higher than ND, of 5 x 3.28 = 16.4 which would
be obtained for this antenna array neglecting mutual impedance effects.
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Inclusion of mutual impedance effects can often lead to an increased gain relative
to the value had the mutual impedance effects been neglected.

Example 21: Two monopole antennas separated by 5 . (Note that the second
antenna is grounded.)

V1 =241l + 24515 /4

0=Z]_2|1+222|2 Il +4M—4> |2

/S LSS S S S S S

Zip, __(36-[29)12

I:— =
27 2y VT (134 j42) 12

—j34.87°
A8 | (e IoAT o0,
84,22 e+1209L" '

For the driven antenna 1

V. |
Zl=|—12211+212|—2 (1)
1 1

From p. 307, Fig. 8-25 of the Text (see also p. 48 of the Class Notes)

~36-j25 —j34.8°
Zigly_s 0 =—F5 —=2191e
w®

From Eq. (1) monopole

Z;= 73+—ZJ42+0.52 ell152 (21.91 e~ i3487 j

=38.4+ j32.2Q

Calculate current I, for a transmitter power of 100 W

Antenna 1 is the only antenna that is driven and is to be fed (current in antenna 2
is created by induction)

Prog =100W :%lf Rap :%If x38.4

| =2.28A

Because of induced current (by mutual impedance effect)
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Example 22: Calculate the feedpoint impedances of two parallel antennae separated by a
distance of A/4 and fed with a phase shift a = -90° Each of the antennas is a A/2

dipole.

A
A

EN Rad. pattern
K

1 2

I] 12 :I]e_'i()o.

From Fig. 8-25, p. 307 Text (p. 48 of Class Notes)

7y, =73+j425; Z,=36-j25
73+j425

(VAR 2 .
Vi=lZy1+ 12 = 24y = |_1 =271 - J(36 - j25)
1

Z, =48+ j6.50

V2 = |1Z]_2 + |2222 = ZZ = % = 1(36— J25) + (73+ 1425)
2

Z, =98+ j78.50

Power fed to Ant. 1 = %Il2 x 48 — 3.29KW
Power fed to Ant. 2 = %|I1|2 %98 — B6.71KW

Total power = %If(RAlJrRAZ):lO KW

|l =11.7 A

R .
G = N2G, Aksoated _ 1 645 13
2 146

D R
i1

=3.28
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Methods of Matching Power to the Antennas

A. Transmission Line Matching Method

Example 23:

Match an antenna of impedance Z; = 10 - j300Q2 to a twin-wire line of
characteristic impedance Zy, = 300Q using (a) series elements and (b) a shunt
element. Take f =30 MHz

This normalized impedance is shown as point A on the Smith Chart on page 55 of
Class Notes. If the antenna is not matched

Voltage reflection coefficient p = Za=Zo _ 09672, 270" (1)
 Za-Z
L+ _
VSWR =— 2L _ 60,0 ©)
=[]
Power reflection coefficient = Pi —|pl* = 0.9354 (3)

Inc

i.e. 93.54% of the input power Pjnc is reflected and only 6.46% of the transmitter
power is radiated -- a truly poor situation!
Approach A: Use of series elements to match the antenna

From point A, we move on the transmission line circle C to point B on p. 55 --
Smith Chart, which corresponds to the intersection with real part zg of 1.0 circle.

Length AB =(0.231+0.125)A =0.356 . = 3.56m (4)
Zgp = 2pZ, = (L + j8)300 = 300 + j2400Q2 (5)

As shown in Fig. 2, we can compensate for j2400Q by using two capacitors as
shown each of reactance

oo =220 200
This gives the values of series capacitances

Cse =442 pF (6)
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Example of the Transmission Line Matching Method

f=30MHz; Ao=10m;

Z, = 10 - j300Q

1NINGaMD) INwISISIV]

2 n
1 o~ P
= -_; > / 3 / ~ ) > e\
s 5 AL
N \
o2 S o \ !
a4\ N 1
sle \' 5 {
> 1
4 v +
T
/
L Ay ! |
! ~ [} ]
' 1 Y -
\ \ ] ) v = / | /
1 SR,
\ LI ST N T / /
\ I / " 1
T X .0 / &,
) ! s
RN ) 2o // ~. ! ! /
— NS 3 A ] s
- '
. 5 X A
s 1 (y
[
e, ~
2 N3 S o LXK > /S
° , 3 o
o KB
N P . <
Lo o N SlTox % >4
l’, .‘ et 0 o
° ;7 & X, o wS
L0 N op, () 3 o ot ad
3 20 P o )
‘o teg e w°
&g 2o s2°0 a0
"o $T°0 (21
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—-j1200Q
o I(—-o A
c VB
I4 Za :
Zy= 300Q2 Zy= 30092 [:l z, ====0.033-]1
0
c
°
N Tp A’
. —-j1200Q _ .
ZCC' =300 + ]OQ g = 1+ ]8
Fig. 2.

Approach B:  An alternative design using a shunt element to match the antenna

An undesirable feature of the above design Approach A is that it takes a fairly
long length [Tag = 0.356A over which the transmission line is not matched. For
the alternative Approach B, we work in terms of admittances.

1 1 .
Yp=——— ————=~0.033+]l 7
ATT0-js00’ AT 0033- ] (7)

This is shown by point a on the Smith Chart on page 55.
Now, we need to move only a distance
frgy = (0.231- 0.125)2 = 0.106A =1.06 m (8)

and use (as sketched in Fig. 3) a shunt element to match the line.

- a
Y, I:I ya=0033+l
— ,
a
Fig. 3.
Y,.—>Y, —L mh =1+18; Y, —L+£mh
o> TeT3pp MO Yo TITIS IBT R0 309 MO
. 8 i
—jYeh =—]— mho = — 9
] Ysh J3OO o Lap 9
300
Lo = ~ 0.2 uH 10
h ™ g « 271 % 30 x10° H (10)
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USE OF LUMPED ELEMENTS FOR MATCHING AN ANTENNA

Example 24: A Matching Circuit for an Antenna of a Cellular Telephone

Topology 1

The antenna impedance is given to be 50 - j20Q2. The solid-state source to which
this impedance is to be matched has an internal impedance, say 15 + j130Q. A
possible matching circuit is sketched as follows:

J Xse
— ]
A
Z5=15+3130Q [p. D 7., =50—j20Q
Ve (D) |_:B

Fig. 1

For maximum power transfer to the antenna

Zpg = Zs =15- j130Q 1)

Xsh (50—-j20) .
_ X
50+ (Xgy —20) %
(20 Xgp +J50 X4 )[ 50— j(Xeh —20) | .
_ _ > + Xee )
(50)* +(Xgh —20)
=15-j130Q

AB

Equating real parts on both sides of Eq. 2

1000 Xgp, +50 Xgpy (X —20) = 15[2900 + X3 40 Xg, }

35 X2, + 600 Xg, — 43,500 =0 3)

 ~600++/(600)2 +4x35x 43,500 600+ 2540
- 70 70
— 4486 +27.710

><sh

Taking the capacitive shunt reactance -j44.86Q2 and equating the imaginary parts
on both sides of Eq. 2, we get

57



1

Xeo =—104.6Q =

*¢ J jU)Cse

1
Xeh| = = 44.86Q2

(DCSh
For f =900 MHz
Cqp, =3.94 pF
1

Xea| = ——=104.6Q
Xeel oo 04.6

Cee =1.69 pF

The matching circuit for Topology 1 is as follows:

Cye =1.69 pF

Ae

Cy, =3.94 pF == Zx =50-j200
B T

Zap=72Z:=15-j130Q

Topology 2

' B

|::|jxsh [] Z A =50-720Q

Zag =Zs =15-j130Q

Fig. 3

This problem may be easier to solve in terms of admittances
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v 1 15+ j130 1 L1 @
AB = - = = - -
15-1130  (15)% +(130)> 50+ j(Xse —20)  jXgp

Equating real parts
15 50

17,125 (50)2 + (X, — 20)2

(5)

2500+ (Xge —20)2 = % =57,083

X, =2536; —213.60

Taking the sines inductance

Xge = 253.6Q = Lg, = 44.85 nH

X, =-85.590 = Cy, = 2.06 pF

Implications for Power Transfer
a.  Without conjugate matching, for an oscillator voltage Vg =2V RMS power

(2)

x50 =12.25 MW
(15+50)2 + (130 — 20)?

— 12
Power transferred to the load = If,sRa =

b. With conjugate matching

2
__ @ i5-667mw

Power transferred to the load = I'lrms2 Re 5
(15+15)

Z

Needed for 600 mW power transferred to the load

V, =6V RMS
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A REACTIVE THREE-ELEMENT CIRCUIT FOR ANTENNA MATCHING

Example 25: A reactive three-element network is a versatile circuit for matching power
onto the antenna. To illustrate the procedure, let us look at the circuit of Fig. 1. The
antenna equivalent impedance is Ra + jXA.

r . - - - o - = 1
A .]X3 JX]
I | D
-
| | |
R
Feed transmission I I % A
line of characteristic | X, |
impedance Z,, | | XA
I I
B
-: ! I D!

A 3-reactance matching network.

Figure 1
In order to match power into the antenna, it is necessary that the impedance of the
network between points A and B be purely resistive and have the same value as Z,, the
characteristic impedance of the transmission line.

From Fig. 1, the expression for the impedance Zag can be written as:

(Ra+1Xa+JX1)iX; X

7 e =
AB TR A+ X a + X + X

1)

We select X1 and X2 such that the reactance in the denominator of the first term is zero,
i.e.,

XA+X1+XZEO (2)
Equation 1 can then be rewritten as:

(RA—sz)szJr

Zpg = X3 3)

We select X2 such that

=% (4)



and X3 such that
X3=-X2 5)

This would then give
ZAB=Zo + 0
and the antenna would then be matched onto the transmission line.

To illustrate the procedure by a numerical example, let us say that the antenna is a
monopole and its impedance Z has been calculated and found to be 1.5 - j460€2.

Let us take Zy = 300 ohms (we must, of course, make sure that the diameter of the
feeder line is not overly thin for the current-carrying requirement). From Eq. 4,

Xj =+/1.5x300 = +21.20 (6)

The upper sign corresponds to an inductance L = 21.1/® and the lower sign corresponds
to a capacitance

C= L .
o x21.2

We can use either type.
Case 1: For inductive element X»
jX2 = j(,l)l_z = JZlZQ
If o is prescribed, L, can be calculated. From Eq. 2,
X1=-Xo-Xa=-21.2 +460

=438.8Q2

This implies an inductor for jX;. From Eq. 5,

X3=-21.2Q

One possible 3-reactance matching network is, therefore, shown in Fig. 2.
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32120 j438.8Q

7., = 3002 feeder line /1

1 i21.2Q

Figure 2

Case 2: For capacitive element X,

Xy = — = 2120
JoCy

From Eqg. 2 on p. 60 of Class Notes,
X1=-Xo - Xa=+21.2 + 460

=481.2Q
JX1 = joly = j481.2Q0  (an inductor)
From Eqg. 5 on p. 60 of Class Notes,
jX3=-jXo=+j21.2Q2 (also an inductor)
and a second possible 3-reactance matching network is shown in Fig. 3.

j21.20 j481.20
— Y

[ 77

Z, =300 feeder line

J‘-j21.2 Q
e il

Figure 3
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Gain in the axial direction for corner reflector antennas with infinite reflectors
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From: K.F. Lee, Principles of Antenna Theory, John Wiley & Sons, 1984
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Length of the reflecting planes in wavelengths, L/A

H. V. Cottany and A. C. Wilson, "Gains of Finite Size Corner Reflector Antennas," IEEE
Transactions on Antennas and Propagation, VVol. AP-6, 1958, pp. 366-369.
Contours of constant gain for a 90° corner reflector
25.12 x 1.64=41.2
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Maximum for infinite reflectors =12.9dB (19.5)
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Some Commonly Used Feeder Lines for Antennas

1. Twin Wire Transmission line
Z, :Eén (§)

o

(Replace €, by €. for relatively thin dielectric sheathing)

Example:

% =12.2 for Zy=300Q (air-filled line)

2. Wire Above Ground Transmission Line

Z —ﬂgn(ﬁj—ﬂgn(ﬂj
NV AN

70
e U

Example:
g =3.05 for Zy=150Q (air-filled line)

3. Coaxial Line
60 (b

rzrfﬁm\a)

Example:
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g = 3.345 for g = 2.1 (Teflon) coaxial line of Z, = 50Q

Some of the other transmission lines useful for printed antennas are:

a. Miscrostripline

b. Slot line etc.

Ground Effect on Radiation Pattern of an Antenna

We have previously considered the effect of ground for the radiation from a
vertical monopole antenna. The net effect was that the monopole antenna of
length L/2 radiates electromagnetic fields much like a dipole of length L albeit for
the upper half plane i.e. for field points above ground.

For a horizontal dipole antenna placed at a distance h from the ground as sketched
in Fig. 1, an image antenna 1" is created, which has a current excitation that is

equal in magnitude (for high conductivity ground) but 180° out of phase with that
in the installed antenna #1.

I
I N/

| %h sin

-— A
» X

%))

Iy h sin ¢
Fig. 1. A horizontal dipole antenna above ground.

From Eq. 10 on p. 24 of the Class Notes, this can be considered as a two-element
array (Ny = 2) with a phase difference oy = 7 or 180°.
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sin(z\'z/) 1
Er= I§1|AF|y =B —°2=E;2 cos{E(ZB h sin@sin ¢+n)}

(v
sm(zj (1)

=E;2sin(BhsinOsing)

neglecting the phase factors both in writing |AF|y and ﬁ Note that Eg. 1 could

also have been written by following a procedure similar to that for Eq. 4 on page
24 of the Class Notes.

Er =B +E =F [1_e—jB(r1’—r1)} _ El[l_e—jﬁ(zh sinesind))}

2
= El[e_m hsinfsing _g-jph Si”esmﬂ =2E;sin(Bhsin0sing) ?
ignoring the phase factors, as also done in writing Eq. 1. From Egs. 1 and 2
|AF| = 2sin(Bh sin 8 sin ¢) = 2 sin (Bh sin ¢) (3)
for 0 = /2 i.e. xy plane.
For maxima of radiation
g sin ¢0:i§, i3§, O 4)
For first nulls of radiation
fhsinopn =0, *m, £2m [ 5)

Example 26

a. Calculate the spacing h to ground for a half-wave dipole antenna if the maximum
of radiation is desired for angle ¢o = 30° off the horizon.

b. Calculate the directions of maximum and zero radiation for the selected h.

c. Calculate the gain of the antenna, without and with mutual impedance effects.

Solution: From Eq. 4 for ¢o = 30°, sin ¢o = 0.5

a.
__ X 3L
4sindy’  4sindgy’
A 3L 5A
:—1 _1 _’ D
mn 2 2 2

(6)
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2hsin ¢,

In order to keep the number of principal maxima to a minimum number, we select
the smallest spacing to the ground plane i.e.

h=a/?2 (7)

For this spacing itself, we note from Eq. 4 that the directions of maximum
radiation are:

Bhsin ¢ = msin ¢q :+g (8)

49= 3om(wanted), bo = 150@ unwanted)

Negative sign is ignored in Eq. 8 since that gives angles ¢o = -30°, -150° (both
into the ground).

We will see later how to eliminate the unwanted radiation for ¢o = 150°. If we
had taken a larger h of say 3 A/2 from Eq. 6, we would have had many more
directions of maximum radiation.

For directions of first null, from Eq. 5, ¢ppn = 0 and sin-1(1) or 0 and 90° for the
principal maximum of ¢o = 30°, and ¢prN = 180° and sin-1(1) or 180° and 90° for
the principal maximum at ¢o = 150°. The radiation pattern is sketched in Fig. 2.

do = 150° . ho=30°
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c. Ignoring mutual impedance effects Ra1 = 73Q (same as for an isolated half wave
dipole). From Eq. 1

E2
Max. — 45,
2n

Emax = 2E1;  Smax =

Gain=4G; =4 x 1.64 =6.56

\ < |
‘ \\ AYAY NN NN
€0 S : A\ N\ —\ 2 "
b [WAYA NAVRARLNEN N
AR SARBVARE SNV R NN
8 ‘1 \ \ ‘\ \ \\‘ \‘ \L~<><
A EIAEINAUNA G NNANEE SRS
_é_ ‘A N " h. . \"\ \\
o \ i \ ~ E I~ I~
‘3‘ ™ P ::_J.\.>’\\4
2 L EENER NSRS .
("] 20 \\ \ ~ ~ e T+ :‘N
> ~C 3 —
* —WNULLS ~—{_ T 1 T 1
——MAXIMA Tt
0]
o A2 v 3N2 2 3 4 5

Height above ground, h/A

Fig. 3. Angles ¢ of maximum and zero radiation for a horizontal dipole
antenna above ground (From Eq. 1, 2, or 3).

Elimination of Unwanted Principal Lobes of Radiation

As seen in Example 24, there is an unwanted principal lobe of radiation for
do = 150°that we would like to eliminate leaving thereby one and only one
principal lobe of radiation for the desired direction ¢o = 30°. A possible solution
for this problem is as sketched in Fig. 4.

/////////////////////////////////////////

I ‘——dl | ?
X 2

Fig. 4. An arrangement of two horizontal dipoles above ground.
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We take two horizontal dipoles 1, 2 above ground. Distance to ground h is the
same for both dipoles 1 and 2. Shown in Fig. 4 also are the two image antennas
1',2". Assuming that antenna #1 is leading in phase by o (i.e. antenna 2 is
lagging in phase by o).

o - B d1 cos ¢p =0 )
for addition of signals along ¢q = 30° principal lobe.

at+Bdicospy=7 (10)
for complete cancellation of radiation in the back direction.

Note in both Egs. 9 and 10, ¢o = 30° and d; cos ¢, = 0.866 d;. From Egs. 9 and
10, both the unknown o and dq can now be found:

o =—=90- (phase lead angle for antenna #1) (11)

mn 2

Bd; cos g =% = d =—— —0.289 (12)
! ° 2 1Y 4cos,

This arrangement would cancel the principal lobe for ¢o = 150° (in Fig. 2) while
reinforcing the principal lobe for the ¢o = 30° angle of radiation.
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p. 349 Text  General Theory of Aperture Antennas (or Displacement Current Antennas). For comparison, see also the General Theory of
Conduction Current Antennas on p. 44 of the Text or p. 2 of Class Notes.

ds’ = % \ R

aperture A

Define Equivalent surface currents Source of Fields E,

Source of Fields H,

Js =fixH, (9-10) M, = E, xi (9-11)
R R=T—F Fo-f [ Ms) giot-pRygg 9
47tS R 47TS R =1
] (9-12) N (9-13) g
pe P - IBET ge BT L igh ©
= A x HaeJB ds’ == n x EaeJB ds’ j|>
r r
T S, T S, £
Q P g
A T = VxFE jpfxF  jBFxT @
- VxA A E,=- = =
Ay = VXA B () 2T e e £ 3) 1
" 3 = —jon Fxf %
_ - - D
— — w
Ve g o
Jogg Jogg
Et =E; +Ey =—joA—jon Fxf (9-16)
= = = _ B e IPr ~E s (Ao —jBF-F o
Er=E1+Ey=- o rxj[ana—nrx(anaﬂe ds (9-17)
a
— VXET JBFXET ’I:XET
HT =— =—— =
~J®Hg Joug n
- =%
§=1Re(|§x|:|*):ﬂf
2 2n

Total radiated power = j S-dS
sphere



p. 466 Text A Rectangular Microstrip Patch Antenna

/‘B—MZ—’/

~
A IYYYONAAAL Notes

1. Note that the E-fields have no
variation in the y direction;
hence are identical for the front
and back edges separated by

LEYWYWAARAZY) width W.

F 2. Because of a separation
distance of A/2, the E-fields at
edges E; and E,are 180° out

E, o of phase; also no variation in y-
—>=x direction.

For the front edge F; also for the back
edge B

Fig. 1. Distributions and variations of electric fields at the four edges of the patch antenna.

M, = E(s)x (9-2b)
p. 346 Text

M, = E(x)2x(9) = —E(x)%

uniform magnitude; - y -directed

M, =[E(x)zx(=9)] = E(x) X
half cycle cosinusoidal variation

Fig. 2. Equivalent surface currents at the four edges.

Maximum radiation in z-direction (normal to the patch) due to two uniform magnitude
"dipoles" corresponding to edges E; and E, ; radiation from edges F and B i.e. the front
and back edges of Fig. 1 cancels out.
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The array factor for the equivalent current dipoles at edges E;, E, can be written from
Egs. 8 and 9 on page 25 of the Class Notes. For an x-directed array of two elements
N=2; ay,=0;

0
=BLsin® cos ¢+ gg

sin(Nzw) 23in(\g]cos(\g) L
Normalized AF = = = cos(B—sin 0cos ¢j @)
2 sin(gj 2 sin% 2

For a two-element (two-edge "currents™) antenna array

Et =E, AF

For a uniformly-excited rectangular aperture of length W (e.g. edges E;, E;), from
Egs. 9-36a, b (note that equivalent current Mg || -y here rather than parallel to X on
page 354 of the text)

Eg =Eycos¢ (6, d) (11-5a)

Ey =—Eg cosOsin ¢ (6, ¢) (11-5b)
where

B— sinOsin <|>j

AF

f(6,0)= (

Sln osin¢

( sinBsin <|>j
Ccos (%sin 0cos ¢)j (11-5¢)

sm 0sin
2 ¢

In Egs. 9-36a, b /thicknesst

sin(BLZuj
2
BL,

—4u
2

-1 since t<<\
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p. 470 Text Microstrip Patch Antenna

y
4
E || % S —
S I - A
Max. rad 1 — Msl 2 (--mme- v lyv
MS
Ms ~ LM

For x-z plane (¢ =0") or E-plane

E field is 0 -directed with components in x- and z-directions

Eg =Eof(6,9); Ey =0
For direction of maximum radiation, E || X

Fe (0) =cos (%sin ej

Maximum for 6 =0 i.e. along z-direction.

BWEN:

&sinezﬁ - eFN:sin_l(ij
2 2 2L

For L= % for xz or E-plane
BWFN = 2sin‘1(ij
2L
=180°

HPBW:

&sinezﬁ - er:sin_l(ij
2 4 4L

HPBW:ZSin_l(Lj —>23in_1(1] —60°
41 2
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For y-z plane (¢ =90°)

sin [Bsin 6}
R, (6) = cos eBWZ— (11-6b)

=—sin0
2
Maximum for 0 =0

E= _Eow
0

For yz or H-plane
BW . . _1( Kj
—sin By =, Oy =SIN 7| —
5 FN =T FN W

BWEFN = 2sin~! (i]
W

2 2
I3 L
Zp =90——| — 11-7
A s,—ltwj (11-7)

for a half-wave rectangular patch antenna.

For Duroid (&, =2.2)and % =27
Zp =50Q

o _1 1 _ o
GFN|yZ plane =SIn (E) =47.8

BWFN =2 sin! (ij =05.6°
W
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Table 7.1. Radiation characteristics of commonly-used horn antennas.

Property that Half-power Beam Widths in
Tvoe of Horn is Optimized Optimum Degrees Directive
yp for a Given Properties H (or xz) E (oryz) Gain
Length Plane Plane
Pyramidal | Gain A = /3L 80 53 0 5147rAB
B =0.81A (A7L) (B/2) T2
Gain=15.3 L/A (9-96)
(optimum)
: 78 51 47AB
Sectoral H- Beam width == T
— 0.63
plane horn inH-plane | A= V3LA (A/2) (B/%) 32
(9-124)
Sectoral E Beam width o8 >4 0.65 4nAB
- Wi _ -— -— .
B=+2LA 2
plane horn in E-plane (A/2.) (B/2.) A
(9-138)
70 60 0.52 4m(area)
Conical Gain D= +28LA (D/k) (D/k) ' 22
Notation: A is the horn dimension in x direction

B is the horn dimension in y direction

D is the horn diameter

L is the length of the horn from the throat to the aperture
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Table 7.2*.
(See also Table 9-2, p. 389 Text).

Comparative characteristics of parabolic reflectors with different illuminations.

3 dB Beam Peak Side . First Null

N s Lobe Relative e
Illumination Width in Level Gain Position in

Degrees (dB) Degrees

A. Rectangular Aperture of Length L
G(x) =cos™ (n—XJ for|x|<£
L 2

m = 0 (uniform) 50.8° /L -13.2 1.00 57.3° A/L

m=1 68.8° /L -23 081 | 85.9° /L
m=2 83.1°L/L -32 0.667 | 114.6°A/L
m=3 951° A/L -40 0575 | 143.2° A/L
m=4 111.2° A /L -48 0515 | 171.9°A/L

B. Circular Aperture of Diameter D
20|
p
G(p)=41-| —
(p) { ( 5 J }

m = 0 (uniform) 58.4°A/D | -17.6 1.00 | 69.9°1/D

m=1 72.8°\ID -24.6 0.75 92.2° L/D
m=2 842°1/ID | -30.7 055 | 116.3°A/D
m=3 94.5° A/D -36.1 0.45 138.7° L/D

* M. I. Skolnik, Radar Handbook, Chapter 9, McGraw-Hill Book Company, Inc., New York,

1970.
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