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Example: Show that for far-field region ˆV j V j r Vβ β∇× = − × = − ×
  

 for any vector 

V  

such as 

A ,


H and


E  of the radiated fields from antennas. 

 

Solution: The radiated fields 

A ,


H and


E  are of the form 

 
  




V =

K(θ,φ)
r

e− jkr ˆ V ⇒ V(r, θ, φ) ˆ V  (1) 

 where K(θ, φ) would, in general, depend upon the current distribution on the 

antenna. 

         In spherical coordinates 

 

  

j rˆ ˆ K( , ) ˆˆV r e V
r r r sin r

1 1 V 1 Vˆ ˆˆ ˆ ˆˆj V(r V) ( V) ( V)
r r r sin

− β ∂ θ ∂ φ ∂ θ φ ∇× = + + ×    ∂ ∂θ θ ∂φ   
∂ ∂ = − − β × + θ× + φ×  ∂θ θ ∂φ 



 (2) 

 

 ˆˆ ˆ( )j V r V j r V j Vβ β β≅ − × = − × = − ×
 

 (3) 

 

 since all terms other than the second term in Eq. 2 are a factor of 1/βr 
smaller.  For 2 1rr πβ

λ
= >>  , all of these terms can, therefore, be neglected. 

          This is a powerful relationship which can be applied for radiated fields 

from any antenna. 

 

  
A j A ˆH j r A∇× β× β

= = − − ×
µ µ µ

 




 (4) 

 

  
H j H ˆ ˆE r H r H

j j
∇× β× β µ

= = − = − × = − ×
ωε ωε ωε ε


 

  

 (5) 

V(r, , )θ φ  
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p. 44, 45, 50 Text General Theory of Conduction Current Antennas 
 

 

 

 

 

Formulate 

J (


′ r ) . 

Steps 

1. Calculate 

A  

 

  

j( t R) j( t R)S

V S

j( t R)

JJ(r )A e dV e dS
4 R 4 R

I e d
4 R

ω −β ω −β

′ ′

ω −β

′µ µ′ ′= =
π π

µ
=

π

∫ ∫

∫










  (2-101) 

 

2.  
o o o o

ˆA A r A E 1 ˆH j j r E
j

∇× β× β × ∇×
= = − = − = = ×

µ µ µ − ωµ η

    

 

 (2-107) 

 

3.  



E =

∇ ×

H 

jωεo
=

β2 ˆ r 
jωεoµo

× (ˆ r ×

A ) = jω ˆ r × (ˆ r ×


A )

 

  

( ) ( )ˆ ˆˆ ˆj A A r r j A Aθ φ = − ω − ⋅ = − ω θ + φ 
 

 

(2-105)

   

  
( ) ( ) ( )

( ) ( ) ( )

A B C A C B A B C

ˆ ˆ ˆ ˆ ˆ ˆr r A r A r r r A

× × = ⋅ − ⋅

× × = ⋅ − ⋅

       

  

 

 
 From Eq. (2-105) we can write 
 

  


E = − jω


A  (2-104) 

 

 which is transverse to direction of propagation ˆ r . 
 

4. Calculate  ( )*1S Re E H
2

= ×
  

 (2-127) 

5. Total Radiated Power = ( )
2

* * 2

0 0

1S ds Re E H E H r sin d d
2

π π

θ φ φ θ⋅ = − θ θ φ∫ ∫ ∫




 (2-128) 

For volume current radiators For surface current radiators 

For line current radiators 

 

r 

R 

r′  

P 
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Calculation of Magnetic Fields of Conduction Current Antennas 
 
Definition of Magnetic Vector Potential 



A :  A Simplifying Mathematical 
Intermediate Step 
 

                               
 
From Biot-Savart's law of electromagetism 
 

                                    o o2 2
V

ˆ ˆI d R J dV RB
4 R 4 R

′× ×
= µ = µ

π π
∫ ∫







                                 

 

                                                    o
V

J dVB
4 R′

′
= µ ∇×

π∫




                                                       (2) 

 
In going from Eq. 1 to Eq. 2, we have used the following steps 
 

                                                         2

ˆ1 R
R R

 ∇ = − 
 

                                                          (3) 

 

                                               1 1 JJ J(r )
R R R

   ′×∇ = ∇× − ∇×  
   



 

                                     (4) 

The first term in Eq. 3 is zero, since the current density J


 is a function of source 

coordinates  r (x , y , z )′ ′ ′ ′=
  whereas the curl J∇×



 involves derivatives with respect to 

field coordinates (x,y,z).   

 From Eq. 2 

                                                o
V

J dVB A
4 R′

′
= µ ∇× ≡ ∇×

π∫




                                            (5) 

Thus the magnetic field at the field point can be written as curl of magnetic vector 

potential A


 where A


 is given by 

                                                          o

V

J dVA
4 R′

′µ
=

π ∫




                                     (6) 

Note that calculation of B


is a lot simpler if the intermediate step of first calculating A


 is 

undertaken since integral of Eq. 6 is much simpler than that of Eq. 5 or Eq. 1. 

ˆR R R=


 (x,y,z) 
F 

I 

1
R

 −∇ 
 

 
(1) 

0 

2 



  b 

Note that because of time retardation for propagating fields, Eq. 6 should be modified to 

 

                                                
j( t R)

o J(r )eA dV
4 R

ω −β′µ ′=
π ∫






  (7) 

                                                                                                                 Same as Eq. 2-101 
                                                                                                                 of the text 
 

Once, the only complicated step that of integration for Eq. 7 has been done, the magnetic 

field B


 from Eq. 5 can be simplified to 

 

ˆB A j A j R A= ∇× = − β× = − β ×
   

 

 

                                                         
o

j AH β×
= −

µ

 



                                       (2-107) text 
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p. 45 Text A Uniform Line Source 

   
 

Fig. 2.9 text.  A uniform line source. 
 

  I( ′ z ) = Io for −
L
2

< ′ z <
L
2

 (2-109) 

 
  R = r − ′ z cos θ  (2-86) 
 

  
L / 2

j r j z cos
o

L / 2
ˆA e I e dz z

4 r
′− β β θ

−

µ ′=
π ∫



 

 

  
j r

o
z

Lsin cos
I Le 2A

L4 r cos
2

− β
 β   θ  µ   =
βπ  θ 

 

 (2-110) 

 

  o
z

Lsin cos
I L 2ˆ ˆE j sin A j sin

L4 r cos
2

 β   θ  µ   = ω θ θ = ω θ θ
βπ  θ 

 



 (2-111) 

 From Eq. (2-107) 
 

  



H =

1
η

Eθ ˆ r × ˆ θ =
Eθ
η

ˆ φ  
 

 Radiation pattern for a plot of normalized values of E(θ, φ) is given by    
 

  
max

E( , )
F( , )

E
θ φ

θ φ =  (2-112) 

 
 For an elemental or Hertzian dipole (βL/2 <<1) 
 
  F(θ) = sin θ (2-113) 

r̂  

⊗  

θ̂  

φ̂  
R 

θ
 

r 



  4 

 
 Otherwise 

  

Lsin cos
2F( ) sin

L cos
2

 β   θ    θ = θ
β θ 

 

 (2-114) 

 
 
           Normalized Pattern factor       P(θ) = F2(θ)  (2-119) 
 
 
 
p. 34 An Infinitesimal (Hertzian) Current Dipole or An Ideal Dipole 
 
  I = Io          L = ∆z 
 

  
βL
2

=
π∆z

λ
<<1 

 

  
βL
2

cos θ <<1 

 
 In Equations 2-110 to 2-114; sin x

x
≅ 1  

   
  




E = jω

µIo∆z
4πr

sin θ ˆ θ 
 

(2-74a) 

 

  



H =

Eθ
η

ˆ φ =
jβIo∆z

4πr
sin θ ˆ φ 

 
(2-74b) 

 

  
22 2

o
2
o

I z sin ˆS r
8 r

∆ θ = η  λ 



 
(2-76) 

 

  

( )
( )

*

2
* * 2

0 0
22

2o
o r

1Radiated Power P Re E H ds
2

1 Re E H E H r sin d d
2

I z 1 I R
3 2

π π

θ φ φ θ

= × ⋅

= − θ θ φ

∆ = πη = λ 

∫∫

∫ ∫

 



 (2-128)  
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2 2

2
r a

2 z zR R 80
3

∆ ∆   = = πη = π Ω   λ λ   
 (2-169) p. 57 

 

  max

o

SD 1.5
S

= =  (2-148) p. 54 

 
A Linear Center-Fed Dipole 
(See also pp. 152-160 of the text) 
 

   
 

  m
L LI(z ) I sin z z
2 2

  ′ ′ ′= β − <    
 (6-1)   

    

 Note that a mz 0
LI I(z ) I sin
2′=

 ′= = β 
   

(1) 

 
 As previously assumed on p. 3 of these Notes (from Eq. 2-86 of the text), 
 
  R = r − ′ z cos θ 
 From Eq. 2-101 
 

  

0
j z cos

m
L / 2

L / 2
j z cos j r

0

LA I sin z e dz
4 r 2

L ˆsin z e dz e z
2

′β θ

−

′β θ − β

µ   ′ ′= β +   π   
 ′ ′+ β −  

  

∫

∫



 (6-3) 

 
 

  
j r

j rm
z m

j60 Ieˆ ˆE j sin A j 2I F( ) F( )e
4 r r

− β
− β= ω θ θ = η θ θ = θ θ

π



 (6-6) p. 154 

 
 where F(θ) is the function that gives the variation of radiated fields with angle θ.  

Note that this expression for the radiated θ-directed E field can also be expressed 
in terms of the feedpoint antenna current Ia using Eq. (1) on this page. 

ẑ  
mI  

789.6 
Valid only for very short length 
Hertzian dipoles ( z 0.02 )∆ ≤ λ  

ˆA z


 

ˆH φ


 

ˆE θ


 

z cos′  

Lz
2

′ = −  

aI  

Lz
2

′ = +  

0 

p. 152 
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L Lcos cos cos
2 2F( )

sin

β β   θ −   
   θ =

θ
                                       (2) 

  
 See p. 154 of the text, Fig. 6-4, for plots of F(θ) for several values of L/λ. 
 
 F(θ) is always zero for angle 0θ =   i.e. no radiated fields along the length of the 

dipole. 

  

( )
* 2

* 2m
2

2 2
2a rad

2 22 2a

E E 15 I1 ˆ ˆS Re E H r F ( ) r
2 2 r

I P15 30 F ( )ˆF ( )r
L LRr rsin sin
2 2

θ θ
θ φ= = = θ

η π

θ
= θ = ⋅

   π πβ β   
   



 (3) 

  
22

2 2m
rad 2

0 0

15 IRadiated Power P S ds F ( )r sin d d
r

π π
= ⋅ = θ θ θ φ

π
∫∫ ∫ ∫




 

  2 2
m rm a a

1 1I R I R
2 2

= =  (4) 

 

  
2

2m
a 2

a 0

60 IR F ( ) sin d
I

π
= θ θ θ∫  (5) 

 
 Where Ra is the antenna equivalent resistance at the feed point ( z 0′ = ). 
 
 The antenna equivalent resistance Ra is given by Table l on p. 7. 
 Thus the directivity D of a linear center-fed antenna of end-to-end length L is 

given by: 

  
2

maxmax
2o a

F ( )S 120D
LS R sin
2

θ
= =

β 
 
 

 (6) 
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Calculated values of the driving point resistance aR  for end fed monopoles of 
different h/λ.  (Multiply by 2 to obtain the driving point resistance for dipoles.) 

Table 1.  Calculated values of the driving point resistance aR for end-fed monopoles of different 
               lengths h/λ.  (Multiply by 2 to obtain the driving point resistance for center-fed  
               dipoles of length L = 2h.) 

aR  aR  h/λ = L/2λ h/λ = L/2λ 
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Fig. 1. The calculated resistance Ra and reactance Xa of an end-fed monopole antenna 
 of length h (in terms of wavelength λ).  Multiply by 2 to obtain the driving 
 point resistance Ra for a center-fed dipole antenna of length L = 2h. 
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Example 1:  Calculate and compare the directivities, gains, and power densities including E-fields created by dipole antennas of lengths L = 
0.07 λ, 0.18 λ, 0.5 λ, and 1.1 λ.  Power radiated by the antenna is 100 W and distance from the antenna to the field point ro = 10 
km. 

 
 Note that the radiated power and the distance ro are needed to calculate the power density and maximum electric fields. 
 

L/2 λ 

From p. 7 
of Notes 

Ra ohms 
*
aI  A ( )

90
F

θ
θ

= 

i Dii 

max
90

oS S D
θ =

=


 

24
radP D
rπ

 =  
 

μW/m2

 

2

2
ES
η

=  

max max2E Sη=  
mV/m 

Including Ohmic losses for Prob. 5 of HW 

Rohmic
iii

 Ω 

From Eq. 2-153 
antenna efficiency 

a
r

a ohmic

Re
R R

=
+

 
From Eq. 

2-155 
G = erD 

0.035 0.994 14.18 0.0241 1.47 0.117 9.39 0.0388 0.9624 1.414 
0.09 6.68 5.47 1.844 1.516 0.1206 9.54 0.1042 0.9846 1.493 
0.25 73.12 1.65 1.0 1.64 0.1305 9.92 0.208 0.997 1.635 
0.55 1731.1 0.34 1.951 2.76 0.2196 12.87 8.758 0.995 2.746 

 

                                                 

* Note that 21
2rad a aP I R =  

 
 from Eq. (4) on p. 6 of Class Notes; 

2 rad
a

a

PI
R

=
 

 

i From Eq. (2) on p. 6 of Class Notes, ( )
cos cos cos cos cos cos

2 2
sin sin

L L L L

F

β β π πθ θ
λ λθ

θ θ

       − −       
       = = .  For L/λ < 1.38 – 1.4; F(θ) is max. for θ = 90°. 

         ( ) ( )max
90

1 cosF L
θ

θ π λ
=

= −


 

ii From Eq. (6) on p. 6 of Notes, 
( )
( )

2
max

2

120
sina

F
D

R L
θ

π λ
=  

iii Rohmic is given by Eq. (9) on p. 13 of Class Notes; 1.988 MHz
S

fR σ= ; Take 2a = 3.264 mm (0.1285) ← 8 AWG wire (App. B on p. 783 of the Text). 

        For Aluminum, from App. B.1, σ = 3.5 × 107 S/m; take fMHz = 10 MHz. 

9 
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 Example 2: 
 
  Prad = 1 W;        f = 835 MHz;        r = 1 km 
 
   

  
30L 2h 0.65 0.65 23.35 cm

0.835
= = λ = =  

 
 

  
h L 0.325

2
= =

λ λ
 

 
 

  Ra
Table1

= 2 ×
84.974 + 96.727

2
= 181.7Ω  

 
 

  2
rad a a

1P I R
2

=  

 
 

  aI 0.1049 A=  
 
 

  a a
m

I II 0.1177
L Lsin sin
2

= = =
β π   

   λ   

 

 

  
90

m m
max

L1 cos
60 I 60 I mV2E F( ) 10.265

r r 1 mθ=

 β  −     = θ = = 
 
  



 

 

  E rms = 0.707 Epeak = 7.26
mV
m

 

 
 

  Smax =
Emax

2

2η
=

Erms
2

η
= 0.1398

µW
m2  

 

  

2
max

22a

F ( )120 120 2.114D 1.759 (2.45 dBi)
LR 181.7 sin (0.65 )sin
2

θ
= = × =

β  π
 
 

 

 
This is an improvement of only 1.073 times (or 0.3 dB) relative to a half wave dipole. 

 

  Smax = So D = 0.1398
µW
m2  
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y

x

2.45 dBi

z

 
    Fig. 2.   The radiation pattern of a z-directed dipole antenna for the xy plane or H-plane 
                 (normal to the orientation of the dipole). 
 
 See also p. 154 (Fig. 6-4) 
 
  yz plane        (E-plane) 
 

 
 
      Fig. 3.  The radiation pattern of the z-directed dipole antenna for the yz plane or the 
                  E-plane. 
 
 
 
 
  HP = 2 × (90° - θHP) (2-126) 
   p. 49 
 
 
 

  

2
2HP

HP

L Lcos cos cos
1 L2 2 1 cos

sin 2 2

 β β    θ −      β       = −   θ     
  

 (7) 

 
 

HP 

HPθ
 

Radiation patterns xy plane H-plane 

(0.3 dBd) 
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pp. 57, 58 Text    Ohmic Losses for a Linear Dipole 
 

 
 
 From Eq. 6-1, p. 152 Text 
 

  
I( ′ z ) = Im sin β L

2
− ′ z  

 
 
 

 
  

 
  0 ≤ ′ z ≤ L

2

= Im sin β
L
2

+ ′ z  
 

 
 

 
  

 
  −

L
2

≤ ′ z ≤ 0
 (1) 

 
 

  
z 0a m

LI I(z ) I sin
2′=

β ′= =  
 

 (2) 

 
 Ohmic power lost in the antenna 
 

  ( )2
ohmic

L/2

L/2

1P I dR
2 −

= ∫  (3) 

 

  dR =
d ′ z 

(2πa δ)σ
=

Rs d ′ z 
2πa

 (4) 

 where 

  s
1R

2
ωµ

= =
σδ σ

 (5) 

   (2-171) 
    p. 58 
 
 is the surface resistance which depends on the conductivity σ of the material and 

frequency ω (= 2πf).  See App. B.1 of the Text for σ of various metals. 

dR 
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L / 2 0

2 2 2 2s
ohmic m m

0 L / 2

R L LP I sin z dz I sin z dz
4 a 2 2−

    ′ ′ ′ ′= β − + β +    π      
∫ ∫  (6) 

  

  
L / 2L / 2L / 2

2 2

00 0

L 1 1 sin (2 )sin z dz sin d
2 2 2

ββ ζ   ′ ′β + = ζ ζ = ζ −   β β   ∫ ∫  

  
1 L sin ( L)
2 2 2

β β = − β  
 (7) 

where ζ = 
L z
2

 ′= β + 
 

 

  2 2s
ohmic m A ohmic

R L sin ( L) 1P I 1 I R
8 a ( L) 2

 β
= − = π β 

 (8) 

 
 

  s
ohmic

2

R L 1 sin ( L)R 1
L4 a ( L)sin
2

 β
= − βπ β    

 

 (9) 

 

  rad a
r

in rad ohmic a ohmic

P RPe
P P P R R

= = =
+ +

Antenna efficiency  (2-177) 

 
  Gain G = re D    (2-155) 
 
 For a Short Dipole (L = Δz << λ) 
 

  
2

2
a

zR 20 ∆ = π  λ 
  (2-172) 

 

  
6 6
s s

ohmic
R z R LR

aπ π
∆

= =   (2-175) 

 
 For the general case of a linear dipole or a monopole Rohmic is calculated from the 

general Eq. 9 given above. 
 
Example 3: 
 
 For a Short Dipole 
 

  
2 2

2
a

L LR 20 197.4   = π ≅   λ λ   
 (2-172) 

 
 See e.g. Table 1 on page 7 for L/λ =0.02, Ra = 2 × 0.0394 = 0.0788 Ω.   
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 Using the conductivity of steel (see App. B.1 of the Text) σ = 2 × 106 S/m. 
 
 From Eq. 2-171 or Eq. 5 
 

  3
s MHzR 1.4 10 f−= × Ω  

 
 From Eq. 9, βL is small and we can expand sin x for small x 
 

  

3

s s
ohmic 2

( L)LR L R L1 6R 1 Short dipole
4 a L 6 aL

2

 β
β − 

 = − =
π β π β 

     

 (2-175) 

   p. 59 
 For L/λ = 0.02 dipole at f = 1 MHz; taking 2a = l/8" 
 
  λ = 300m      ;      L = 6m 
 

  Rohmic =
1.4 ×10−3 × 6

6π × 1
16

× 2.54 ×10−2
= 0.2807Ω  

 

 Antenna Efficiency    a
r

a ohmic

R 0.0788e 0.219 (21.9%)
R R 0.0788 0.2807

= = =
+ +

 

  
 Gain G = re D = 0.219 ×1.5 = 0.3285. 
 
 Note that for short dipoles of thin wires, the ohmic resistance can be substantial 

and even larger than Ra.  Therefore, this leads to reduced efficiency of radiation. 
 
Example 4: 
 
 For a Half Wave Dipole 
 

 L = 0.5λ;   Ra = 73.12 Ω;   
βL
2

=
πL
λ

=
π
2

;    βL = π;   f = 10 MHz;   L = 15m;   2a = 1/8" 

 
 From Eq. 9 

  
( )3

s
ohmic

2

1.4 10 10 15R LR 3.33
14 a 4 2.54 10

16

−

−

× ×
= = = Ω

π  π× × × 
 

 

 

  r
73.12e 0.9565 (95.65%)

73.12 3.33
= =

+
 

 
  G = 0.9565 D = 0.9565 × 1.64 = 1.568 
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pp. 75-81 Text Dipoles Versus Monopoles Above a Perfect Ground or Reflector 
 

 
   For      0 180≤ θ ≤                                    For     0 90≤ θ ≤   
 

 ( )60 ˆj rmIE j F e
r

βθ θ−=


 (2) ( )60 ˆj rmj IE F e
r

βθ θ−′
′ =


 (3) 

 

 ( )
2

2
2

15 ˆmIS F r
r

θ
π

=


 (4) ( ) ( )
2 2

2 2
2 2

2

15 15ˆ ˆ
sin

2

m aI IS F r F r
Lr r

θ θ
βπ π

′ ′
′ = =

 
 
 



 (5) 

 

 21
2rad a aP I R=  (6) 21

2rad a aP I R′ ′ ′=  (7) 

 
 F( )θ  is given as Eq. (2) on p. 6 of the Notes. 
 
 Since a monopole radiates in the upper half space while a dipole radiates both in 

the upper and lower half spaces,  
 

  1
2dipole monopoleS S ′=  for identical radiated powers (8) 

 
  2monopole dipoleD D′ =  (9) 
 

  1
2

a a

a amonopole dipole

R R
X X

′
=

′
 (10) 

 
 For identical radiated powers 
 

  2a aI I′ =  (11) 
 

  2m mI I′ =  (12) 
  

Image antenna 

aI  
aI′  

I(z′) same as on page 5 of the Notes ( ) sin 0
2 2m
L LI z I z zβ  ′ ′ ′ ′= − ≤ ≤ 

 
              (1) 
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Example 4: 
 
  h

λ
=

L
2λ

= 0.35   Monopole Antenna  

 
  f = 1.5 MHz,   λ = 200 m ;   r = 1 km 
 
  h =

L
2

= 70 m ; Prad = 103 W  (1 KW) 

 
 From Table 1 on page 7, ′ R a =127.1 Ω  (do not multiply by 2 for monopoles) 
  
 From Eq. 7, aI 3.967A′ =  
 
 From Eq. 5, 
 

 
monopole

2

2
2

6 2

90

L Lcos cos cos
15 (3.967) 2 2S 0.29 mW / m

sin10 sin (0.7 )
θ=

β β   θ −   
   ′ = × =

θπ× π


 

 

 monopole dipolerad
o 2

SD 3.64 2 DPS
4 r

′
′ = = = ×

=
π

 

 
 From Eq. (6) on p. 6 of Class Notes 
 
 

2
max

2a

F ( )120D
LR sin
2

θ
=

β 
 
 

 

 

 Note that L h
2

=  which is the height of the monopole. 
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pp. 84-89  Small Diameter (<< λ) Loop Antennas 
 
 The loop antenna is a radiating (or receiving) coil of one or more turns of circular 

or rectangular form.  Ferrite or air core loops are used extensively in radio 
receivers, direction finders, aircraft receivers, and UHF transmitters. 

 
 The theory of loop antennas is derived in a manner similar to the General Theory 

of Conduction Current Antennas given on page 44 of Text and on page 2 of my 
handout notes. 

 
 We start by assuming, as seen in Fig. 1, that the current I in the loop has the same 

magnitude and phase.  This is certainly possible for small diameter loops where 
2πb < λ/10. 

 

  
  Fig. 1.  A circular loop antenna of radius 'b'. 
 
 
 From General Theory of Conduction Current Antennas, from Eq. 2-101, 
 

  



A =

µ
4π

I ˆ ′ φ e− jβR

R0

2π
∫ bd ′ φ  (1) 

 

  ( ) ( )2 2 2R x x y y z′ ′= − + − +  (2) 
 
  ′ x = b cos ′ φ ; ′ y = b sin ′ φ ; ′ z = 0; x = r sin θ; y = 0; z = r cos θ (3) 
 
 Note that we have defined the x-axis (the choice of which is arbitrary) such that 

the field point lies in the xz plane.  The field point F, therefore, has coordinates (x, 
0, z) in Cartesian coordinate system and (r, θ, 0) is spherical coordinate system. 

 
 Substituting Eq. 3 into Eq. 2 
 

  

1/ 22 2 bR r b 2 br sin cos r 1 sin cos
r

r bsin cos

  ′ ′= + − θ φ ≅ − θ φ    
′= − θ φ  (4) 

R 

x 

r 

z 
 

  

 
 

 
  

 

Loop in the xy plane 



  18 

(3-60) 
p. 88 Text 

 since, for the far-field region, r >> b. 
 
 Using the far-field approximation for Eq. 1 
 

  
2j r

j b sin cos

0

I e ˆA e bd
2 r

π− β
′β θ φµ ′ ′= φ φ

π ∫


 (5) 

 

 For small radii  βb =
2πb
λ

<<1, we can write 
 

  e jβb sin θ cos ′ φ =1 + jβb sin cos ′ φ  (6) 
 
 We can also write (see Fig. 1(b)) 
 
  ˆ ′ φ = − ˆ x sin ′ φ + ˆ y cos ′ φ  (7) 
    
 Also to be noted is that for the field point F 
 

  ˆ y = ˆ φ  (8) 
 
 From Eq. 5 therefore, we can write 
 
  




A =

jµI S
4πr

βe
− jβr

sin θ ˆ φ  (9) 

   (p. 86 Text Eq. 3-49) 
 where S = πb2 is the area of the loop. 
 
 On page 19, we compare the expressions for the radiated fields from a loop 

antenna to those for an ideal (infinitesimal) dipole and show duality of the two 
sets of fields.  Ohmic resistance of a circular loop antenna can be written as 
follows: 

  Rohmic = Rw =
2πb

(2πaδ)σ
=

bRs
a

 (10) 

 
 where 

MHz
s

s

f1R 1.988= =
σδ σ

 

 
 where "b" is the mean loop radius and "a" is the wire radius; Rs = 1/σδ is the 

surface resistance at the frequency of interest previously defined on page 12 of 
Class Notes. 

 
 The small loop antenna is inherently inductive.  For a small circular loop of N 

turns wound on a magnetic core 
 

  2
eff o

8bL N b n 2
a

  = µ µ −    
  (11) 

    (Eq. 3-62 p. 88 Text)
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Table 2.  Field expressions for small diameter circular loop antennas and an ideal (infinitesimal) dipole antenna [see p. 4 of Class Notes]. 
 

 Loop Antenna Ideal (Infinitesimal) Dipole 
 

 
 

 

 

Magnetic Vector Potential ( )A


 ˆsin
4

j rjIS e
r

ββ θ φ
π

−  
 (9) 
 (3-48) Text ˆ

4
j rI z e z

r
βµ

π
−∆

 
 (2-65) 
 p. 33 Text 

Magnetic Field 

ˆA jH r Aβ
µ µ

∇×
= = − ×





 

 
2 ˆsin

4
j rIS e

r
ββ θθ

π
−−  

 
 (3-50) 
 p. 86 Text 

 

ˆsin
4

j rj I z e
r

ββ θφ
π

−∆
 

since ˆˆ ˆ sinr z θφ× = −  

 
 (2-74b) 
 
 (2-70) 
 p. 33 Text 

Electric Field 

ˆHE r H
j

η
ωε

∇×
= = − ×



 

 

 

 
2 ˆsin

4
j rIS e

r
βη β θφ

π
−  

 
 (3-49) 
 p. 86 Text 

 

ˆsin
4

j rj I z e
r

βη β θθ
π

−∆
 

 
 (2-74a) 
 p. 34 Text 

Radiated Power Density 

( )
*

*1 ˆRe
2 2

E ES E H r
η

= × =
 

  



 

 
2 2

4 2
2 2

ˆsin
32

I S r
r

η β θ
π

 

 

( )
( )

22
2 2

2 ˆsin
2 4
I z

r
r

η
β θ

π

∆
 (2-76) 

Radiated Power 
21

2 rP S ds I R= ≡∫




  

 

( )22 210I Sβ  

 
 (3-52) 
 p. 86 Text 

 

( )2

12
I zωµβ

π
∆  

 
 (2-77) 
 p. 33 Text 

 
Rr (for single turn loop) ( )

2
22

220 31,200 SSβ
λ

 ≅ Ω 
 

 (3-53) 
2 2

280 790z zπ
λ λ
∆ ∆   =   

   
 

 
 (2-169) 
 p. 57 Text 

Directivity  max

o

SD
S

=  
 
1.5 

 
1.5 

 

turn loopr N
R

−
 

2

231,200 eff
NSµ
λ

  Ω 
 

 (3-54) 
 

 

ˆH θ−

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For an N-turn loop, Rohmic is also higher proportional to overall length of the wire 
 
  Rohmic

N− turn
loop

= N
bRs

a
 (12) 

 
 The effective permeability μeff depends not only on the permeability μr of the 

ferrite core material, but also on the core geometry, i.e., length to diameter ratio 
R, given as follows: 

 

  
( )1 1

r
eff

rD
µµ
µ

=
+ −

 (13) 

 
 where 4D is the demagnetization factor approximately given by D [4] 
 
  1.440.37D R−

  (14) 
   p. 87 Text 
 
 Example 5 (see also Ex. 3-1, p. 88, Text): 
 
 Calculate the input impedance, directivity, and gain for an N = 1000 turn loop 

antenna wound with a AWG 22 copper wire on a ferrite rod of diameter 3/4".  
This antenna is to be used at a frequency of 1.5 MHz.  It is given that µeff = 50 
for the ferrite that is used. 

 
 Solution:  From p. 783 of the Text, for AWG 22 wire d = 2a = 0.644 mm ⇒  

0.025 ′ ′ 3  
 
 From p. 58, Eq. 2-171  

  MHz
s

f1R 1.988 ohms
2
ωµ

= = =
σδ σ σ

 (15) 

 
 For copper σ = 5.7 × 107 S/m (p. 783, Text); Rs = 3.22 ×10-4 Ω at f = 1.5 MHz 
 

  Mean loop radius b  =
′ ′ 3 
8

+ a = 9.847 mm  

 
 
 From Eq. 12, for N = 1000-turn loop 
   
 
  Rohmic = 9.85Ω 
 
 From Eq. 3-54 Text (see also p. 19 of Class Notes) 
 

  𝑅𝑟 = 31,200 �𝜇𝑒𝑓𝑓  𝑁𝑆
𝜆2
�
2

= 45Ω (3-54) Text 
 
                                                 
4 R. Pettengill, H. Garland, and J. Mendl, “Receiving antennas for miniature receivers,” IEEE Transactions 
on Antennas and Propagation, Vol AP-26, pp. 528-530, July 1977. 
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 From Eq. 11 above 
 

  6L 0.232H L 2 1.5 10 0.232 2.18 M= ⇒ ω = π× × × = Ω  
 
 
  D = 1.5;    𝑒𝑟 = 𝑅𝑟

𝑅𝑜ℎ𝑚𝑖𝑐+𝑅𝑟
= 0.82 (82%) 

 
 
  G = erD = 1.23 
 
pp. 107-111  Antennas in Communication Systems 
 
 

   
 
 
 Maximum available power to the receiver (for Z L = ZA

∗ ) 
 
 

  

2i 22 2
A A

Am A
A A A

E ( z)V V1 1P R
2 2R 8R 8 R

∆ 
= = = 

 
 (1) 

 
 
 For an ideal (infinitesimal) dipole 
 
  VA = Ei ∆z  (2) 
 

 Maximum effective aperture area = Ae,m = 
2 2Am

inc

P 3 0.119
S 8

= λ = λ
π  (3) 

oc AV V=  

tP  rP  

rG  tG  

Fig. 4-4 (p. 107 Text).  A communication link. 

Equivalent circuit for the receiving system. 
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2i

incS E 2= η  (4) 
 
 
  D = 1.5 for an ideal dipole (5) 
   (4-22) 
 

  2
e,m2 2

4 4 3D A 1.5
8

π π
= = × λ =

πλ λ
 (6) 

   (4-23) Text 
 
For a general antenna, therefore 
 

  G =
4π
λ2 Ae

 
(7) 

 
  Ae = er Aem    effective aperture area of an antenna (4-27) 
   p. 108 Text 
 
 Available power including also the antenna losses 
 
  PA = S Ae  (4-26) Text 
 

  S = Gt
Pt

4πR2  (4-31) 

  
2

t t t r
r er er t2 2

G P G GP SA A P
4 R (4 R)

λ 
= = = 

π π 
 (4-33) 

 or 

  et er
r t 2 2

A AP P
R

=
λ

    Friis transmission formula (4-33) 

 
 We can also write Eq. (4-33) in dB-form as follows: 
 

  r t t rP (dBm) P (dBm) G (dB) G (dB) 20log R(km)
20log f (MHz) 32.44

= + + −

− −
 (4-34) 

 
 Example 6: 
 
 For Ground Based TV Stations 
 
 Say, Channel 5 f = 76 - 82 MHz f ≅ 80 MHz λ = 3.75 m 
 
  Prad ~ 5 - 10 kW 
 
  say, 10 kW = 104 W  (40 dBW) 
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  Gt ~ 20 - 50 (factor) 
  
  say, tG = 30 (factor) ⇒  (14.77 dB ~ 15 dB) 
 
  EIRP = Gt Prad → 55 dBW → 5.510 W (85 dBm) 
 
  Rmax ~ 20 - 30 miles ~ 50 km; since 1 mile = 1.6 km 
 say 
  Gr ≅ 7 dB ≅ 5  

 

  Ae,r =
λ2

4π
Gr = 5.6 m2  

  
 Using the logarithmic form of the Friis communication link formula Eq. (4-34) 
 

  r
12.5

P (dBm) 70 15 7 34.0 38.06 32.44

12.5 dBm 10 mW 56.2 W−

= + + − − −

= − = = µ
 

Example 7: 
 
 Calculate the open-circuit voltage developed across an antenna of resistance RA= 

80 ohms for the above-calculated incident power density 
 

r
inc 2e

P 56.2 WS 10
A 5.6 m

µ
= = =  

 
 Assume RA= 80Ω 

 

 
2 2
oc A

inc e
A A

V V power picked up and delivered to a matched load S A
8R 8R

→ = =   

 
6

oc A inc e,r rV 8R S A 8 80 P 640 56.2 10

188.65 mV 0.19V

−= = × = × ×

= 
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Chapter 8 -- Antenna Arrays (see pp. 271..... Text) 
 

 For a uniformly excited (UE), equally-spaced linear array (ESLA) 
 

   
 
 
 For N identical radiating elements (length, orientation, etc.) that are excited with 

identical magnitudes but progressively phase-shifted currents i.e. 
 
 
  2 ( 1), , ,j j j NI I e I e I eα α α− − − −

  (1) 
 
 
 we can write the total electric field 


E T  as follows 

 
 

  N 11 j rj rj r
T o 1 N 1E E e E e E e −− β⋅β⋅− β⋅

−= + +




   



 (1) 
 
 

  



r = xˆ x + yˆ y + zˆ z 

r 1 = (x − d)ˆ x + yˆ y + zˆ z 

 (2) 

 
 
  [ ]ˆ ˆ ˆsin cos x sin sin y cos zβ = β θ φ + θ φ + θ



 (3) 
 
 From Eq. 1, we can write 
 
 

  

j r j j d sin cos 2 j 2 j d sin cos
T o

N 1
j r jn

o
n 0

E E e 1 e e e e

E e e

− β⋅ − α β θ φ − α β θ φ

−
− β⋅ ψ

=

 = + + + 

= ∑









 



 (4) 

   (3-16) 

since 

  ( ) ( )1 2r r d sin cos ; r r 2 d sin cosβ⋅ − = −β θ φ β⋅ − = − β θ φ
 

   

 (6) 
 

d cos φ  

F(x,y,z) 
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 From Eq. 4 
 
  


E T =


E o ⋅ AF  

 where 
 

  
N 1 jN

jn
j

n 0

1 eArray Factor AF e
1 e

− ψ
ψ

ψ
=

−
= =

−
∑  (7) 

 

  AF = ej(N−1)ψ / 2 sin(Nψ / 2)
sin(ψ / 2)

 (8) 

   (8-19) p. 279 Text 
 

  Normalized AF    f(ψ) =
sin(N ψ / 2)
N sin(ψ / 2)

 (9) 

    (8-22 Text) 
   UE, ESLA 
 
 where 

  
( )
( )

x x

y y

ˆd sin cos for an x directed array

ˆd sin sin for a y directed array

ψ = β θ φ − α −

= β θ φ − α −
  

  ( )z z ˆd cos for a z directed array= β θ − α −  (see Eq. 3-19 Text) (10) 
 
 

  



E T = N


E o f(ψ) =


E o

sin(N ψ / 2)
sin(ψ / 2)

 (11) 

 

  



H T =

∇ ×

E T

jωµo
= −

jβ
jωµo

ˆ r ×

E T  (12) 

 

  ( )
*

* T T
T T

E E1 ˆS Re E H r
2 2

⋅
= × =

η

 

  

 (13) 

 

*  From Eq. 11, for directions of max radiation 0, , 2 ,
2
ψ

= ± π ± π  

 
p. 280  Text 
 
 A number of trends can be seen by examining the normalized array factor |f(ψ)|. 
 
 1. As N increases the main lobe narrows.  Peak for the main lobe occurs for 

ψ = 0 where |f(ψ)| =1. 
   

* 
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  Plot of |f(ψ)| as a function of ψ. 
  Fig. (8-8) p. 280 Text. 
 
For directions of zero (nulls of radiation) 
 
 Zero values of |f(ψ)| occur for 
 
  



Nψ
2

= ± π, ± 2π,  

 i.e.   
   


ψ = ±

2π
N

, ±
4π
N

, (14) 

 
 2. More than one major lobe will exist if it is possible to get values of ψ = ± 2π, ± 

4π.  The additional lobes are called Grating Lobes. 
 
 3. The minor lobes are of width 2π/N in the variable ψ and the major lobes (main 

and grating) are twice this width i.e. 4π/N in the variable ψ. 
 
 4. The side lobe peaks decrease relative to the major lobe as 
 

    
1 11: :

3 5N sin N sin
2N 2N

π π   
   
   

 (16) 

  For large N, SLL decrease as 
 
    


1:

2
3π

:
2

5π
:   (17) 

  i.e. 
    0,  20 log 2

3π
 ,  20 log 2

5π
 ,    

  or 
    0,  -13.46,  -17.90,       dB (18) 
 
 5. As N increases, there are more side lobes in one period of f(ψ).  See also the text, 

Fig. 8-8, p. 280. 
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Case A.  Broadside Arrays 
 
  All antennas excited in phase α = 0.   
 
  From Eq. 10, for an antenna stretched along the z-axis 
 
   ψ = βd cos θ = 0, ± 2π, ± 4π  (19) 
 
  for major lobes 
 

   1 1 2, cos , cos
2 d d

− −π λ λ   θ = ± ± ±   
   

  (20) 

 
  Subcase 1 
 
   d/λ < 1   i.e.  interelement spacing less than λ 
 
  Two and only two major lobes of radiation for θ = ± π/2 i.e. in directions 

broadside to the stretch of the array 
 

 
 
For directions of first nulls ( FNθ ) 
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   FN left FN rightBWFN θ θ= −   (24) 
 

                1 1cos cos
Nd Nd
λ λ− −   = − −   

   
 (25) 

     (8-31) p. 283 Text 

                1 22sin 114.6radians
Nd Nd Nd
λ λ λ−  = ≅ = ° 

 
 (26) 

     (8-33) 
for 
   Nd >> λ 
 

Example 6: 
 

   d/λ = 0.5 ,     N = 8 
  From Eq. 23 
 

   1
FN

1sin 14.5
2 4

−π  − θ = ± = ± 
 

  (27) 

 
   BWFN = 29° (28) 
 
  Angle for first-side lobe 

   
Nsin 1
2
ψ  = ± 

 
 

  from Eq. 11 
 
   Nψ

2
= 4 βd cos θ( ) =

8πd
λ

cos θ = ±
3π
2

 (29) 

 

   1 3cos 68 ; 112
8

−  θ = ± = ± ± 
 

   (30) 

 
  (-13.46 dB down relative to major lobe) 
 
  Subcase 2 
 

   1 ≤
d
λ

≤ 2  

  From Eq. 19, for major lobes 
 
   ψ = βd cos θ = 0, ± 2π, ± 4π ,   (31) 
 

   cos θ = 0, ±
λ
d

, ±
2λ
d  (31a) 

 
  This corresponds to six major lobes and a radiation pattern of the type shown on 

the next page. 
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Example 7: 
   d/λ = 1.5 
 
  From Eq. 31, for major lobes 
    
   3π cos θ = 0,   ± 2π,   ± 4π (32) 
 
  For angles of maximum radiation 
  

   
cos θ = 0, ± 2 / 3, ± 4/ 3

 (33) 
 
   θ = ± 90°;   ± 48.2°,    ± 131.80° (34) 
 
 

 
 
 
  Angles for first nulls for each of these maxima are obtained from Eq. 21 
 
    3π cos θFN = ±

2π
N

; ± 2π ±
2π
N

 (35) 

 
  Subcase 3 
    d/λ = 1.0 
 
  For this case, there are four maxima of radiation (major lobes); the two fatter 

lobes in the above  figure  coalesce  into  single  modes  with  directions  of 
maximum radiation θ = 0°, 180°. 

 
  From Eq. 31a 

     (36) 

Six maxima of radiation 

48.3θ =   

48.3−   

90θ =   
180 48.3

131.8

θ = −

=





 

131.8.3−   

90−   

d/λ > 1 
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    θ = ± 90, 0, 180 (37) 
 
 

    Four maxima of radiation 
 

  
 
From Eq. 21, directions of first nulls are: 
 

   FN
2 2 2d cos ; 2 ,

N N
π π π

ψ = θ = ± ± π ±
λ

  (38) 

 

   FNcos , 1 ,
Nd Nd
λ λ

θ = ± ± ±   (38a) 

 
Example 8: 
    N = 8,   d/λ = 1.0 
 
  From Eq. 38a 
 

   cos θFN = ±
1
8

, ± 1 ±
1
8

= ±
1
8

,
7
8

, −
7
8

 (39) 

 
   θFN = 82.82, 97.18, 28.96, − 28.96, 151.04; 208.96 (40) 
 
 
   BWFN = 14.36° for major lobes along ± 90° 

   = 57.92° for major lobes along 0°, 180° 
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p. 315 Case B. Electronically-Scannable (Steerable) Antennas -- Phased Array 
Antennas 

 
  The phase shift of currents (excitations) for adjacent antennas may be altered 
 
 
   α ≡ −βd cos θo       (phase delay) (41) 
 
  From Eq. 11 for directions of maximum radiation (major lobes) 
 
   ψ

2
= 0 , ± π , ± 2π ,   (42) 

 
   ψ = 0 , ± 2π , ± 4π ,   (43) 
 
   ( )od cos cos 0 , 2 , 4β θ − θ = ± π ± π ,   (44) 
 

   cos θ = cos θo , cos θo ±
λ
d

, cos θo ± 2
λ
d

,   (45) 

 
 
  For two and only two major lobes for θ = ± θo, d/λ should be less than 0.5. 
 
 

 
 
 
Example 9: 

   N = 8 ,   d/λ = 0.3 ;   α  = -30° ;   θo = 1 / 6cos
2 0.3

− π 
 π× 

 = ± 73.9° 

 
  For  

   α variable from -30° to -75° 

   θo varies from ± 73.9° to ± 46° 

 
  

1
o cos

d
−  α

θ = − β 
 

oθ  
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0.4167 

  For directions of zero radiation, from Eq. (14) on p. 25 of Class Notes, 
 

   
2

Nψ π= ±  
 

   2
N
πψ = ±  

 

   ( ) 2cos cos od
N
πβ θ θ− = ±  

 

   2cos cosFN o N d
πθ θ
β

= ±  

 

   1 2cos cosFN o N d
πθ θ
β

−  
= ± 

 
 

 

      1cos cos o Nd
λθ−  = ±  

 (45a) 

 
Example 9 (continued): d/λ = 0.3   ,   N = 8 
 
   α = -30° = -π/6          θo = ±73.9° 
 
 

   1 1cos 0.2773
2.4FNθ −  = ±  

 

 
     = 46.05°   ;   98.01° 
 
   BWFN = 51.96° 
 
Example 9, Part B:  Let us compare the antenna array of N = 8, d = 0.3λ for the 

following three conditions: 
 

α  
Direction of 

max radiation BWFN 

0 Broadside array 
θo = ±90° 

 
from Eq. (20) on p. 27 

of Class Notes 

from Eq. (26) on p. 28 of Class Notes 

12sinBWFN
Nd
λ−  =  

 
 

= 49.25° 
-30° 

from Ex. 9 on this 
page 

directions of max 
radiation 

θo = ±73.9° 
θo = ±73.9° BWFN = 51.96° 

-108° 
End fire antenna 

array 
α = -βd 

θo = 0° 
12cos 1BWFN

Nd
λ−  = − 

 
 

= 108.6° 
See Eq. 52 on p. 36 of Class Notes 
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For a one-dimensional antenna array 
 
 The array factor of a one-dimensional antenna array from Eq. (8) of Class Notes 

p. 25 is as follows: 
 

  ( )sin 2
sin 2

N
AF

ψ
ψ

=  (1) 

 
 Where ψ is given by Eq. (1) on p. 25 of Class Notes. 
 
 From Eq. (1) here, for directions of max radiation 
 
  ψ = 0, ±2π, … 
 
 For directions of zero radiation or nulls of radiation 
 

  , 2 ,
2

Nψ π π= ± ±   

 
 or ψ = ±2π/N for first nulls of radiation. 
 
 
Table of general relationships for one-dimensional z-directed phased array antennas 

 

α 

directions of max. 
radiation principal lobe/s 

ψ = 0 
directions of first nulls 

derived on p. 32 BWFN 

0 θo = ±90° 
broadside array 

1cos cos o Nd
λθ−  ±  

 

1cos
Nd
λ−  = ±  

 

see Eq. (22) on p. 27 of 
Class Notes 

12sin
Nd
λ−  

 
 

 

see Eq. (26) on p. 28 of 
Class Notes 

α 
1coso d

αθ
β

−  
= − 

 
 

see p. 31 of Class 
Notes 

1cos cos o Nd
λθ−  ±  

 

1cos
d Nd

α λ
β

−  
= − ± 

   
see Eq. 45a on p. 32 

of Class Notes 

calculate θFN1, θFN2 
 

BWFN = θFN2 - θFN1 

α = -βd 
θo = cos-1 (1) 

= 0° 
End fire array 

1cos 1
Nd
λ−  −  

 

12cos 1
Nd
λ−  − 

 
 

14sin
2Nd

λ−  
=   

 
 

see Eq. 52 on p. 36 
 of Class Notes 

  

ẑ  
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  Case C.  End Fire Arrays 
   
  From  the previous section, we can see that in order to get a single major lobe for 

θo = 0° i.e. along the line or stretch of the array, we need 
 
    α = - βd     and      d/λ < 0.5 (47) 
 
  For this case, the two major lobes on the previous page coalesce into one major 

lobe in the end fire direction. 
 
Example 10: 
    N = 20 ,   d/λ = 0.4 
 
 
    


α = −βd = −

2πd
λ

= −144 (48) 

 
 
  For directions of first nulls from Eq. 14 
 
 

    ( )FN
2d cos 1
N
π

ψ = β θ − = ±  (49) 

 

     
 

    1
FN

7cos 28.96
8

−  θ = ± = ± 
 

  (50) 

 

    FNBWFN 2 57.92= θ = 

 (50a) 
 
 
  It is interesting to note that for a given stretch of the array (N-1)d or 

approximately Nd, BWFN is smallest for broadside arrays, intermediate for 
phased arrays and broadest (largest) for end fire arrays. 

 
Example 11: 
  
  For N = 20, d = 0.4 broadside array ( 0α =  ) 
 
 

    1 1 1BWFN 2 sin 2 sin 14.36
Nd 8

− −λ   = = =   
   

  

 
 
 as compared to 57.92° for an end fire array. 
 

(49a) 
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rather than 7/8 or 0.875 in Eq. 49a 

Example 10 (continued): N = 20   ; d/λ = 0.4 
 
 For Hanson-Woodyard end fire array (p. 285 Text) 
 

  d
N
πα β = − + 

 
                     (8-37)      ;                 11

2 20
d λ  < − 

 
 (8-38a) 

 

      180144
20

° = − ° + 
 

                                                 d < 0.475 λ 

 
           = −153° 
 
 For directions of first nulls (from Eqs. 10, 14 on pp. 25, 26 of Class Notes) 
 

  2 2cos 144 cos 153 18
20z z FNd

N
π πψ β θ α θ= − = ° − ° = ± = ± = ± °  

 

  153 18 171cos
144 144FNθ ° ± ° °

= =
° °

   ,   135 0.9375
144

°
=

°
 

 
 
   ( )1cos 0.9375FNθ −= ±  
 
                                       = ±20.36° 
 
 
   BWFN = 40.72° rather than 57.92° for an 
    ordinary end fire array 
    (see Eq. 50a on p. 34 of Class Notes) 
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 Nd/λ 
 
 BWFN for antenna arrays 
 

  

                             

Nd 5.0

BWFN 23.07

BWFN 73.74

=
λ

=

=





 

 
p. 293  Directivity of a Uniformally Excited, Equally Spaced Antenna Array 
 
 From Eq. 13 we can write  

  




S =


E T ⋅


E T

*

2η
ˆ r =

Eo
2

2η

sin
Nψ
2

sin ψ
2

2
AF 2



ˆ r  (53) 

  Smax = So max AFmax
2 ⇒ N2 So max  (54) 

   

 Power radiated by the antenna array = ( )2
A A0 A1 N 1

1 I R R R
2 −+ +  

  
N 12

A Ai
i 0

1 I R
2

−

=
= ∑  (55) 

1

1

2cos 1
Nd

4sin
2Nd

−

−

λ = − 
 
 λ

=   
 

 

for a broadside array 

for an end fire array 

Example 11-1: 
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In general                                      2 A0
oarray N 1

Ai
i 0

RD N D
R

−

=

=

∑
 (55a) 

where oD  and A0R pertain to an isolated element of the antenna array. 
 
Ignoring Mutual Impedance Effects 
 
  RA0 = RA1,   = RN-1 
 
  Power radiated by the antenna array = 1

2
IA

2 RA0 N = N Po  (56) 

 
 where Po is the power radiated by the zeroth element 
 

  
2

max max
o o

o
2

AFSD D D NN P N
4 r

= = ⋅ =

π

  (57) 

 
 where Do is the directivity of each of the antenna elements. 
 
Example 12:   
 

  Calculate the directivity of an antenna array of 20 half wavelength (L = λ/2) 
dipoles that are fed in phase and consequently radiate in broadside directions.  
Neglect the mutual impedance effects for this problem. 

 
Solution: 

  
2
max

o
AF

D ND 20 1.64 32.8
N

= = = × =  

Example 13: 
 
 a. Calculate the directivity/gain of an array of 30 vertical monopoles above ground 

each of length H = L/2 = 0.35 λ that are spaced a distance d = 0.2λ from each 
other. 

 
 b. Calculate the relative phase difference between monopoles if the major lobe of 

radiation is to be in the end fire direction assuming an ordinary end fire array. 
 
 c. Calculate the BWFN for this array. 
 
Solution: 
 
 a. D = N Do = 30 × 3.636 = 109.08 
 
 b. From Eq. 47 
   


α = −βd = −

2πd
λ

= −72 

 



  38 

  Each of the successive elements should be fed with a current that is lagging in 
phase by 72° from the previous element. 

 
 

 
 
 c. From Eq. 49a, 
 

   cos θFN = 1 −
λ

Nd
=1 −

λ
6λ

= 1−
1
6

=
5
6

 

 
   BWFN = 2 cos-1 (5/6) = 67.11° 
 
 
2-D and 3-D Uniformly Excited, Equally-Spaced Antenna Arrays 
 
   Nx:  No. of antennas in x-direction 
 
   Ny:  No. of antennas in y-direction 
 
   Nz:  No. of antennas in z-direction 
 

    
 
   A 2-D array of identical elements 
 
 
  Neglecting phase terms 
 
 

   


E T =


E 1 AF x AF y AF z  
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( )

( )

x
x x

x
x x

Nsin d sin cos
2AF
1sin d sin cos
2

 β θ φ + α 
 =
 β θ φ + α 
 

 

 

   
( )

( )

y
y y

y
y y

N
sin d sin sin

2
AF

1sin d sin sin
2

 
β θ φ + α 

 =
 β θ φ + α 
 

 

 

   
( )

( )

z
z z

z
z z

Nsin d cos
2AF
1sin d cos
2

 β θ + α 
 =
 β θ + α 
 

 

  As always 
 

   



H T =

∇ ×

E T

− jωµo
=

− jβˆ r ×

E T

− jωµo
=

ˆ r ×

E T

η
 

 

   


T =


1 AF x

2 AF y
2 AF z

2S S
 

 
 

  where 

S 1  is the radiated power density due to one of the elements.  These 

arrays are also called mattress Arrays. 
 
 
Example 14:  A Unidirectional Broadside Array 
 
  In order to obtain a unidirectional broadside array, we can use a 2-D antenna array 

of Nz = 1, Ny = 2, Nx which can be an arbitrary number.  By using a back row of 
antennas that are placed with dy = λ/4 and αy = 90°, we can obtain an antenna 
pattern as shown. 

 

    
 
 
 
 

S


 1 

/ 4λ  
x̂  

ŷ  
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Universal field-pattern chart for arrays of various numbers n of 
isotropic point sources of equal amplitude and spacing 

 
 
 

 

 
|Array factor| 
or f ( )ψ  
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   An enlarged version of Fig. (b) from previous page. 
 
   α = 90°;     d = λ/4 
 
 
 
   Note a broad unidirectional (cardiod type) pattern possible  
   with this arrangement. 

     

0∠   90∠   
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Reactance of Linear Dipoles 
 
  We have previously calculated Rin = Ra + Rohmic for linear dipole or monopole 

antennas.  We need to know the input reactance Xin or Xa in order to design 
matching networks to match power in or out of the antenna. 

 
  Like the current distribution on a linear dipole, the input reactance can be written 

as though a two-wire line of length L/2 had been opened up as shown in the 
following: 

 
 

 

d
D

S

E

L/2

′ D ′ E 
E

D

′ D 

′ E 

S(z)

L/2

E

L/2

D

′ D 

′ E 

z = 0
g/2

-g/2
2 ′ z 

′ z 

− ′ z 

a.

b. c.

 
 For a two-wire line of Fig. a, each of diameter d, 
 

•      o
r

120 2SZ n
d

 =  ε  
  (1) 

 
 
 For the opened-up line of Fig. b, we can define an average characteristic 

impedance Z o  
 

•       
L / 2

o o
0

1Z Z (z) dz
L / 2

= ∫  (2) 
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 For the completely opened-up transmission line of Fig. c, we can define 
 
 

 

g / 2 L / 2

oa
rg / 2

r

2 120 4zZ n dz
L d

120 2Ln 1
d

+ ′  ′=  ε  

  = −  ε   

∫ 



 (3) 

 
 
 The reactance ZD ′ D  of an open-circuited transmission line of length L/2 can be 

written from Transmission Line Theory 
 

 DD in oa
LZ Z jZ cot
2′

 = = − β 
 

 (4) 

 
 Combining Eq. 3 and 4, we can write 
 

  DD in oa
LZ jX j Z cot
2′

′β = = −  
 

 (5) 

 
 where L (1.02 1.10)L′ ≅ −   is the effective "electrical" length of the antenna. 
 
 
Reactance of Linear Monopoles Above Ground 
 
 We have previously shown that  
 
  Rin monopole

=
1
2

Rin dipole
 (6) 

 Similarly, 
 

  
dipolemonopole

oa oa
1 2LZ Z 60 n 1
2 d

  = = −  
  

  (7) 

  
 From Eq. 5 

  
monopole dipolein in

1X X
2

=  (8) 

 
Example 15:  
 
 Calculate the feed point impedances Rin + jXin for linear dipoles of length (a)  L = 

0.5λ (half wave dipole) and (b) L = 0.3λ.  Assume that the antenna wire is No. 19 
AWG (d = 9.12 × 10-4 m from Table B.2, p. 623) and frequency f = 30 MHz.  
Take copper as the material for the antenna. 
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 a. From the table on driving point resistance, p. 7 of Class Notes 
 
   

L / 2 0.25riR 2 36.56 73.12
λ=

= × = Ω  (9) 

 
  From p.13 of Class Notes, Eq. 9 
    

   s
ohmic

2

R 1 L sin ( L)R
a 4 4sin

2

 β
= − ππ β    

 

 (10) 

 
   σcopper = 5.8 × 107 S/m 
 

   4
s MHz

1R 2.61 10 f−= = ×
σδ

        for copper 

 

   4 4
sR 2.6 10 30 14.4 10 @ f 30 MHz− −= × = × Ω =  (11) 

 

   L =
λ
2

= 5 m  

 

   Rohmic =
14.4 ×10−4

π × 4.06 ×10−4
5
4

=1.411Ω (12) 

 
 
   Rin = Rri + Rohmic = 74.53Ω (13) 
 
  From Eq. 3 on p. 44 of Class Notes 
 

   oa 4
10Z 120 n 1 996.3

9.25 10−
  

= − = Ω  
×  

  (14) 

 
  Taking ′ L ≅ 1.02 L = 0.51λ  
 

   
2 0.510cot 0.0314

2
π λ × = − λ 

 

 
  From Eq. 5 on p. 44 of Class Notes 
 

   in
LjX j 996.3 cot j 31.3
2

′β = − = + Ω 
 

 (15) 

 
   Zin = Rin + jX in = 74.53 + j31.3Ω  (16) 
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  Note that if we had constructed a slightly shorter, say L = 0.49λ dipole 
 
   ′ L = 0.49 ×1.02λ = 0.5λ  
 
   jX in = −j 996.3 cot β ′ L ⇒ 0 
 
   Zin = Rri + Rohmic + j0 = 69.46 +1.41+ j0 ≅ 71 + j0Ω  (17) 
 
 b. You can solve for the numbers for part b of the problem following the procedure 

indicated above. 
 
Example 16: 
 
  Feedpoint impedance for a linear monopole of length L/2 = 0.25λ. 
 
Solution: 
 
  From Eq. 16 
   Zin monopole

=
1
2

Zin dipole
= 37.27 + j15.65Ω  

 
Examples on Calculation of Im (ZA) or Reactance of Antennas 
 
Example 17:    (See also Fig. 6-6, p. 157 Text) 
 
  L/λ = 0.4; wire radius a = 0.0005λ (same as in Fig. 6-6, p. 157 Text).  Assume 

′ L = 1.04 L . 
 
  From Eq. 3 on p. 44 of Class Notes 
 

   oa
0.8Z 120 n 1 682.15

0.001
 λ  = − = Ω  λ  
  

 
  From Eq. 5 on p. 44 of Class Notes 
 

   DD oa
LZ j Z cot j682.15 cot (0.4 1.04) j184.3′

′π = − = − π× = − Ω λ 
 

 
  taking ′ L = 1.04L  (from Table 6-2 on p. 159 Text).  From the graph in Fig. 6-6, p. 

157 Text 
 
   ( )AIm Z j180= − Ω  
 
Example 18: 
 
  L/λ = 0.3; wire radius a = 0.0014λ (one of the wire radii on p. 8 of Class Notes). 
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  From Eq. 3, p. 44 of Class Notes 
 

   oa
0.6Z 120 n 1 524.08

0.0028
 λ  = − = Ω  λ  
  

 

   DD
LZ j524.08 cot L j524.08 cot 0.3 j351.4
L′
′π   ′= − = − π× = − Ω   λ   

 

   
  taking  L / L 1.04′ = . 
 
 
  From graph on p. 8 of Class Notes 
 
   Reactance Xa = −2 ×150 = −300Ω  
 
  which is close. 
 
 
Examples on Mutual Impedance Effects 
 
Example 19:  A half-wave dipole above ground 
 
 Distance to ground gd / 4= λ  
 
 g2d = distance to image antenna2 = / 2λ  
 
 From Fig. 8-25a, b, for d/λ = 0.5 
 
  12Z 12.5 j30;= − −       2 1 1I I 180 I= ∠ = −  
 
  [ ]1 1 11 2 12 1 11 12V I Z I Z I Z Z= + = −  
 

  
1

1
1

VZ (73 j42.5) ( 12.5 j30)
I

85.5 j72.5

= = + − − −

= +
 

 
 Feedpoint impedance of the half-wave dipole placed at a distance of / 4λ  from 

the ground = 85.5 + j72.5Ω rather than 73 + j42.5Ω . 
 
Radiation Pattern 
 
 We can consider the above situation as a 2-element (N = 2) antenna array in the x 

direction and write 

T 1E E AF=
 

 

gd  

x 

z 1 

1 

gd  
2 Image 

antenna 
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Figure 8-25   The mutual impedance between two resonant parallel dipoles as a 
function of their spacing relative to a wavelength.  (a)  The real part.  (b) The 
imaginary part. 
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Figure 8-26   The mutual impedance between two resonant collinear dipoles as a 

function of spacing relative to a wavelength. (a) The real part. (b) The imaginary 
part. 
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( )
( )

sin N / 2
AF

sin / 2
ψ

=
ψ

 

 
 where 

  x x gd sin cos 2 d sin cos

sin cos

ψ = β θ φ + α = β θ φ + π

= π θ φ + π
 

 
 
 From pp. 36-37 of Class Notes, Eqs. (54)-(57) 
 

2 A,isolated 2
o max

A,with ground effect

R 73D G D AF 1.64 N 4 5.60
R 85.5

= = = × × =  

 
 Without ground effect 
 

D = G = 1.64 
 

 
Example 20:  A broadside array of five λ/4  monopoles (α = 0) 
 
 d / 2= λ  
 

 
 
 12d / 2= λ    
 
 13d = λ                            15d 2= λ  
 
 14d 3 / 2= λ   1 2 3 4 5I I I I I= = = =  because it is a broadside array 
 

[ ]

1
1 11 12 13 14 15

1

VZ Z Z Z Z Z
I
1 63.7 j27.5(73 j42.5) ( 12.5 j30) (4 j18) ( 1.8 j12) (1 j9)
2 2
31.85 j13.75

= = + + + +

+
= + + − − + + + − − + + =

= + Ω

 

 
 

5 1Z Z=   by symmetry 
 

Ant. #1 #2 #3 #4 #5 

monopoles 
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[ ]

[ ]

2 12 22 23 24 25Z Z Z Z Z Z
1 2( 12.5 j30) (73 j42.5) (4 j18) ( 1.8 j12)
2
1 50.2 j11.5 25.1 j5.75
2

= + + + +

= − − + + + + + − −

= − = − Ω

 

 
2 4Z Z=   by symmetry 

 
 
 

[ ]

3 13 23 33 34 35

13 23 33

Z Z Z Z Z Z
2Z 2Z Z
1 2(4 j18) 2( 12.5 j30) (73 j42.5)
2
56 j18.5 28 j9.25

2

= + + + +

= + +

= + + − − + +

+
= = +

 

 
 

 Note that for each of the antennas, the input impedances are slightly different and 
each of these values are different than 

 
73 j42.5

2
+   or   36.5 + j21.25Ω 

 
 for an isolated λ/4 monopole. 
 
Directivity 
 
 From Eq. (55a) on p. 37 of the Class Notes, including mutual impedance effects 
 

( ) ( ) ( )

A2 isolated
o max 5

Ai
i 1

2

1 5 2 4 3

R
D D AF

R

36.53.28 N 25 21.12 31.85 2 25.1 28
Re Z Z Re Z Z Re Z

=

=

= × × =
× ×

+ +
+ +

∑
 

 
oD 3.28 2 1.64= ⇒ ×   for a single isolated λ/4 monopole above ground 

 
 

 Note that a directivity of 21.1 is higher than oND  of 5 × 3.28 = 16.4 which would 
be obtained for this antenna array neglecting mutual impedance effects. 

 

monopoles 

Same as 12Z  

24d = λ  

monopoles 

Same as 23Z  

Same as 13Z  

25d 3 / 2= λ  
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 Inclusion of mutual impedance effects can often lead to an increased gain relative 
to the value had the mutual impedance effects been neglected. 

 
Example 21:  Two monopole antennas separated by λ/4 . (Note that the second 
antenna is grounded.) 
 
  1 11 1 12 2V Z I Z I= +  
 
  12 1 22 20 Z I Z I= +  
 

  

12
2 1 1

22

j34.87
j64.78 j180

1 1j29.91

j115.2
1

Z (36 j25) / 2I I I
Z (73 j42) / 2

43.8 e I 0.52 e e I
84.22 e

0.52 e I

−
−

+

+

−
= − = −

+

= − =

=



 





 

  
 For the driven antenna 1 
 

  1 2
1 11 12

1 1

V IZ Z Z
I I

= = +  (1) 

 
 From p. 307, Fig. 8-25 of the Text (see also p. 48 of the Class Notes) 
 

  j34.8
12 d / 4

36 j25Z 21.91e
2

−
=λ

−
= =



 

 From Eq. (1) 
 

j115.2 j34.87
1

73 j42Z 0.52 e 21.91e
2

38.4 j32.2

−+  = +  
 

= + Ω

 

 

 
 

 Calculate current 1I  for a transmitter power of 100 W 
 
 Antenna 1 is the only antenna that is driven and is to be fed (current in antenna 2 

is created by induction) 

  2 2
rad 1 A1 1

1 1P 100W I R I 38.4
2 2

= = = ×  

 
  1I 2.28A=  
 
 Because of induced current (by mutual impedance effect) 
 

λ/4 
λ/4 

1I  2I
 

monopole 
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  j115.2 j115.2
2 1I 0.52 I e 1.19 e A= × =

 

 
 
Example 22:  Calculate the feedpoint impedances of two parallel antennae separated by a 

distance of λ/4 and fed with a phase shift α = -90º.  Each of the antennas is a λ/2 
dipole. 

 

 
  
 From Fig. 8-25, p. 307 Text (p. 48 of Class Notes) 

 
11 12Z 73 j42.5 ; Z 36 j25= + = −  

    

  1
1 1 11 2 12 1 11

1

VV I Z I Z Z Z j(36 j25)
I

= + ⇒ = = − −  

 
   1Z 48 j6.5= + Ω  
 

2
2 1 12 2 22 2

2

VV I Z I Z Z j(36 j25) (73 j42.5)
I

= + ⇒ = = − + +  

 
  2Z 98 j78.5= + Ω  
 

 Power fed to Ant. 1 = 2
1

1 I 48
2

×                  3.29 KW→  

 Power fed to Ant. 2 = 2
1

1 I 98
2

×               6.71 KW→  

 Total power = ( )2
1 A1 A2

1 I R R 10 KW
2

+ =  

 
1I 11.7 A=  

 

 

A,isolated2
1 2

Ai
i 1

R 73G N G 4 1.64
146

R

3.28
=

= = × ×

=

∑

1 2 
 

 

73 j42.5+  

Rad. pattern 
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Methods of Matching Power to the Antennas 
 
 A. Transmission Line Matching Method 
 
Example 23: 
 
  Match an antenna of impedance Za = 10 - j300Ω to a twin-wire line of 

characteristic impedance  Zo = 300Ω  using (a)  series  elements  and  (b)  a shunt 
element.  Take f = 30 MHz 

 
   za =

Za
Zo

=
10 − j300

300
= 0.033 − j1 

 
  This normalized impedance is shown as point A on the Smith Chart on page 55 of 

Class Notes.  If the antenna is not matched  
 
   Voltage reflection coefficient 


ρ =

Za − Zo
Za − Zo

= 0.9672∠270 (1) 

 

   
1

VSWR 60.0
1

+ ρ
= =

− ρ
 (2) 

 
   Power reflection coefficient = Pr

Pinc
= ρ 2 = 0.9354  (3) 

 
  i.e. 93.54% of the input power Pinc is reflected and only 6.46% of the transmitter 

power is radiated -- a truly poor situation! 
 
 
Approach A:  Use of series elements to match the antenna 
 
  From point A, we move on the transmission line circle C to point B on p. 55 -- 

Smith Chart, which corresponds to the intersection with real part zB of 1.0 circle.  
 
   Length AB = (0.231 + 0.125)λ = 0.356λ ⇒ 3.56m  (4) 
 
   ZB ′ B = zBZo = (1 + j8)300 = 300 + j2400Ω  (5) 
 
  As shown in Fig. 2, we can compensate for j2400Ω by using two capacitors as 

shown each of reactance  
 
   jXse = − j

2400
2

= − j1200 

 
  This gives the values of series capacitances  
 
   Cse = 4.42 pF (6) 
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   Example of the Transmission Line Matching Method 
 
   f = 30 MHz ;    λo = 10 m ;    Za = 10 - j300Ω 
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   Fig. 2. 
 
Approach B: An alternative design using a shunt element to match the antenna 
 
  An undesirable feature of the above design Approach A is that it takes a fairly 

long length AB = 0.356λ over which the transmission line is not matched.  For 
the alternative Approach B, we work in terms of admittances. 

 
   YA =

1
10 − j300

; yA =
1

0.033 − j1
≅ 0.033 + j1 (7) 

 
  This is shown by point a on the Smith Chart on page 55.  
 
  Now, we need to move only a distance  
 
   ab = (0.231− 0.125)λ = 0.106λ = 1.06 m  (8) 
 
  and use (as sketched in Fig. 3) a shunt element to match the line. 
 

        

   Fig. 3. 
     

    
 

   − j Ysh = − j
8

300
mho ⇒ −

j
ω Lsh

 (9) 

 

   Lsh =
300

8 × 2π × 30 ×106 = 0.2 µH  (10) 
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USE OF LUMPED ELEMENTS FOR MATCHING AN ANTENNA 
 
Example 24:  A Matching Circuit for an Antenna of a Cellular Telephone 
 
Topology 1 
 
  The antenna impedance is given to be 50 - j20Ω.  The solid-state source to which 

this impedance is to be matched has an internal impedance, say 15 + j130Ω.  A 
possible matching circuit is sketched as follows: 

 

   
   Fig. 1 
 
  For maximum power transfer to the antenna 
 
   ZAB = ZS

∗ = 15 − j130Ω  (1) 
 
 

   

( )
( ) ( )

( )

sh
AB se

sh

sh sh sh
se22

sh

jX (50 j20)Z jX
50 j X 20

20 X j50 X 50 j X 20
j X

(50) X 20
15 j130

−
= +

+ −

 + − − = +
+ −

= − Ω

 (2) 

 
  Equating real parts on both sides of Eq. 2 
 

   ( ) 2
sh sh sh sh sh1000 X 50 X X 20 15 2900 X 40 X + − = + −   

 
   35 Xsh

2 + 600 Xsh − 43,500 = 0  (3) 
 

   

2

sh
600 (600) 4 35 43,500 600 2540X

70 70
44.86 ; 27.71

− ± + × × − ±
= =

= − + Ω
 

 
  Taking the capacitive shunt reactance -j44.86Ω and equating the imaginary parts 

on both sides of Eq. 2, we get 
 

sV  
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   se
se

1X j104.6
j C

= − Ω =
ω  

 

sh
sh

1X 44.86
C

= = Ω
ω

 

 
  For f = 900 MHz 

shC 3.94 pF=  
 

se
se

1X 104.6
C

= = Ω
ω

 

 
seC 1.69 pF=  

 
  The matching circuit for Topology 1 is as follows: 
 

 
Fig. 2 

 
Topology 2 

 
Fig. 3 

 
  This problem may be easier to solve in terms of admittances 
 

 

 

A 

B 

 

 

 

A 

B 
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                           AB 2 2 se sh

1 15 j130 1 1Y
15 j130 50 j(X 20) jX(15) (130)

+
= = = +

− + −+
 (4) 

 
  Equating real parts 

                                               2 2
se

15 50
17,125 (50) (X 20)

=
+ −

 (5) 

 
2

se
50 171252500 (X 20) 57,083

15
×

+ − = =  

 
eX 253.6; 213.6= − Ω  

 
  Taking the sines inductance 
 

se seX 253.6 L 44.85 nH= Ω ⇒ =  
 

sh shX 85.59 C 2.06 pF= − Ω ⇒ =  
 

 
Implications for Power Transfer 
 
 a. Without conjugate matching, for an oscillator voltage sV 2V= RMS power  
 

      Power transferred to the load = 
2

2
rms A 2 2

(2)I R 50 12.25 mW
(15 50) (130 20)

= × =
+ + −

 

 
 b. With conjugate matching 
 

                 Power transferred to the load = 
2

2
rms s 2

(2)I Re Z 15 66.7 mW
(15 15)

∗′ = × =
+

 

    
           Needed for 600 mW power transferred to the load 
 

sV 6V RMS=  
 
  



  60 

 A REACTIVE THREE-ELEMENT CIRCUIT FOR ANTENNA MATCHING 
 
Example 25:  A reactive three-element network is a versatile circuit for matching power 
onto the antenna.  To illustrate the procedure, let us look at the circuit of Fig. 1.  The 
antenna equivalent impedance is RA + jXA. 
 
 

  
 
  Figure 1 
 
 In order to match power into the antenna, it is necessary that the impedance of the 
network between points A and B be purely resistive and have the same value as Zo, the 
characteristic impedance of the transmission line. 
 
 From Fig. 1, the expression for the impedance ZAB can be written as: 
 

  
( )A A 1 2

AB 3
A A 1 2

R jX jX jX
Z jX

R jX jX jX
+ +

= +
+ + +

 (1) 

 
We select X1 and X2 such that the reactance in the denominator of the first term is zero, 
i.e., 
 
  A 1 2X X X 0+ + ≡  (2) 
 
Equation 1 can then be rewritten as: 
 

  
( )A 2 2

AB 3
A

R jX jX
Z jX

R
−

= +  (3) 

 
We select X2 such that 

  
2
2

o
A

X Z
R

=  (4) 

A 3-reactance matching network. 

AjX  

AR  

D′  
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and X3 such that 
  X3 = -X2 (5) 
 
This would then give 
  ZAB = Zo + j0 
 
 
and the antenna would then be matched onto the transmission line. 
 
 To illustrate the procedure by a numerical example, let us say that the antenna is a 
monopole and its impedance AZ has been calculated and found to be 1.5 - j460Ω. 
 
 Let us take Zo = 300 ohms (we must, of course, make sure that the diameter of the 
feeder line is not overly thin for the current-carrying requirement).  From Eq. 4, 
 
 
  2X 1.5 300 21.2= ± × = ± Ω  (6) 
 
The upper sign corresponds to an inductance L = 21.1/ω and the lower sign corresponds 
to a capacitance 
 

  C =
1

ω × 21.2
 . 

 
We can use either type. 
 
 
Case 1:  For inductive element X2 
 
  2 2jX j L j21.2= ω = Ω  
 
If ω is prescribed, 2L can be calculated.  From Eq. 2, 
 
  X1 = - X2 - XA = -21.2 + 460 
 
  = 438.8Ω 
 
This implies an inductor for 1jX .   From Eq. 5, 
 
   
  X3 = - 21.2Ω 
 
 
One possible 3-reactance matching network is, therefore, shown in Fig. 2. 
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  Figure 2 
 
Case 2:  For capacitive element X2 
 

  2
2

1jX j21.2
j C

= = − Ω
ω

 

 
 From Eq. 2 on p. 60 of Class Notes, 
 
  X1 = -X2 - XA = +21.2 + 460 
 
  = 481.2Ω 
 
 

1 1jX j L j481.2= ω = Ω     (an inductor) 
 

 
 From Eq. 5 on p. 60 of Class Notes, 
 
 
  jX3 = - jX2 = + j21.2Ω    (also an inductor) 
 
 
and a second possible 3-reactance matching network is shown in Fig. 3. 
 

  

Zo = 300Ω feeder line

j481.2

-j21.2

j21.2

 
 
  Figure 3 

 
  

Ω 

Ω 

Ω 

Ω 

Ω Ω 
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From:  K. F. Lee, Principles of Antenna Theory, John Wiley & Sons, 1984 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

α 
= 

30
° 

α 
= 

30
° 
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H. V. Cottany and A. C. Wilson, "Gains of Finite Size Corner Reflector Antennas," IEEE 
Transactions on Antennas and Propagation, Vol. AP-6, 1958, pp. 366-369. 

 
 
 
 
 Contours of constant gain for a 90º corner reflector 
 
  25.12 × 1.64 = 41.2 

  
 Width of the reflecting planes in wavelengths, W/λ 
 
 Maximum for infinite reflectors = 12.9 dB    (19.5) 
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Some Commonly Used Feeder Lines for Antennas 
 
 1. Twin Wire Transmission line 

   o
r

120 2SZ n
d

 =  ε  
  

  (Replace rε by effε  for relatively thin dielectric sheathing) 

    
  Example: 
   
   2S

d
=12.2   for  Zo = 300Ω (air-filled line) 

 
 2. Wire Above Ground Transmission Line 
 
 

   o
r r

60 2S 60 4hZ n n
d d

   = =   ε ε   
   

 

    
  Example: 
 
   h

d
= 3.05  for  Zo = 150Ω (air-filled line) 

 
 3. Coaxial Line 

   


Zo =
60
εr

n
b
a

 
 

 
  

 

    
 
  Example: 
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   b

a
= 3.345  for  εr = 2.1 (Teflon) coaxial line of Zo = 50Ω 

 
  Some of the other transmission lines useful for printed antennas are: 
 
  a.    Miscrostripline 
 
  b.    Slot line etc. 
 
 
Ground Effect on Radiation Pattern of an Antenna 
 
  We have previously considered the effect of ground for the radiation from a 

vertical monopole antenna.  The net effect was that the monopole antenna of 
length L/2 radiates electromagnetic fields much like a dipole of length L albeit for 
the upper half plane i.e. for field points above ground. 

 
  For a horizontal dipole antenna placed at a distance h from the ground as sketched 

in Fig. 1, an image antenna ′ 1  is created, which has a current excitation that is 
equal in magnitude (for high conductivity ground) but 180º out of phase with that 
in the installed antenna #1.   

 

    
 
   Fig. 1.  A horizontal dipole antenna above ground. 
 
 
  From Eq. 10 on p. 24 of the Class Notes, this can be considered as a two-element 

array (Ny = 2) with a phase difference αy = π or 180º. 

90 − φ  
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( )

( )

T 1 1 1y

1

sin 2
12E E AF E E 2 cos 2 h sin sin
2sin

2
E 2 sin h sin sin

ψ 
    = = = β θ φ + π ψ   
 
 

= β θ φ

   



  

     
  neglecting the phase factors both in writing |AF|y and 


E 1.  Note that Eq. 1 could 

also have been written by following a procedure similar to that for Eq. 4 on page 
24 of the Class Notes. 

 

   
( ) ( )

( )

1 1j r r j 2h sin sin
T 1 i 1 1

j h sin sin j h sin sin
1 1

E E E E 1 e E 1 e

E e e 2 E sin h sin sin

′− β − − β θ φ

− β θ φ − β θ φ

   = + = − = −      
 = − = β θ φ 

  



   

 

  ignoring the phase factors, as also done in writing Eq. 1.  From Eqs. 1 and 2 
 
   ( ) ( )AF 2 sin h sin sin 2 sin h sin= β θ φ ⇒ β φ  (3) 
 
  for θ = π/2  i.e.  xy plane. 
 
  For maxima of radiation 
 
   


βh sin φo = ±

π
2

, ± 3
π
2

,  (4) 

 
  For first nulls of radiation 
 
   βh sin φFN = 0, ± π, ± 2π,   (5) 
    
Example 26 
 
 a. Calculate the spacing h to ground for a half-wave dipole antenna if the maximum 

of radiation is desired for angle φo = 30º off the horizon. 
 
 b. Calculate the directions of maximum and zero radiation for the selected h. 
 
 c. Calculate the gain of the antenna, without and with mutual impedance effects. 
 
Solution:   From Eq. 4 for φo = 30º, sin φo = 0.5 
 
 a.  

   



h = λ
4 sin φo

, 3λ
4 sin φo

, 

=
λ
2

,
3λ
2

,
5λ
2

, 

 

    (6) 

(1) 

(2) 
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  In order to keep the number of principal maxima to a minimum number, we select 

the smallest spacing to the ground plane i.e.  
 
   h = λ/2 (7) 
 
 b. For this spacing itself, we note from Eq. 4 that the directions of maximum 

radiation are: 
 
   βh sin φo = π sin φo = +

π
2

 (8) 

 
   φo = 30(wanted), φo = 150(unwanted) 
 
  Negative sign is ignored in Eq. 8 since that gives angles φo = -30º, -150º (both 

into the ground). 
 
  We will see later how to eliminate the unwanted radiation for φo = 150º.  If we 

had taken a larger h of say 3 λ/2 from Eq. 6, we would have had many more 
directions of  maximum  radiation.   

 
  For directions of first null, from Eq. 5, φFN = 0 and sin-1(1) or 0 and 90º for the 

principal maximum of φo = 30º, and φFN = 180º and sin-1(1) or 180º and 90º for 
the principal maximum at φo = 150º.  The radiation pattern is sketched in Fig. 2. 

 
 
 

    
 
 
   Fig. 2. 

o2h sin φ  
οφ  

h / 2= λ  

φo = 150º φo = 30º 
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 c. Ignoring mutual impedance effects Ra1 = 73Ω (same as for an isolated half wave 
dipole).  From Eq. 1 

 

   Emax = 2E1;     Smax =
Emax

2

2η
= 4S1 

 
   Gain = 4G1 = 4 × 1.64 = 6.56 
 

    
   Height above ground, h/λ 
 

Fig. 3. Angles φ of maximum and zero radiation for a horizontal dipole 
antenna above ground (From Eq. 1, 2, or 3). 

   
 
Elimination of Unwanted Principal Lobes of Radiation 
 
  As seen in Example 24, there is an unwanted principal lobe of radiation for         

φo = 150º that we would like to eliminate leaving thereby one and only one 
principal lobe of radiation for the desired direction φo = 30º.  A possible solution 
for this problem is as sketched in Fig. 4. 

 

   
 
   Fig. 4.  An arrangement of two horizontal dipoles above ground. 
 

joe  
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  We take two horizontal dipoles 1, 2 above ground.  Distance to ground h is the 
same for both dipoles 1 and 2.  Shown in Fig. 4 also are the two image antennas 

′ 1 , ′ 2 .  Assuming that antenna #1 is leading in phase by α (i.e. antenna 2 is 
lagging in phase by α). 

 
   α - β d1 cos φo = 0 (9) 
 
 
  for addition of signals along φo = 30º principal lobe. 
 
 
   α + β d1 cos φo = π (10) 
 
 
  for complete cancellation of radiation in the back direction. 
 
 
  Note in both Eqs. 9 and 10, φo = 30º and d1 cos φo = 0.866 d1.  From Eqs. 9 and 

10, both the unknown α and d1 can now be found: 
 
 
   


α =

π
2

= 90  (phase lead angle for antenna #1) (11) 

 
 

   βd1 cos φo =
π
2

⇒ d1 =
λ

4 cos φo
= 0.289λ  (12) 

 
 
  This arrangement would cancel the principal lobe for φo = 150º (in Fig. 2) while 

reinforcing the principal lobe for the φo = 30º angle of radiation. 
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p. 349 Text     General Theory of Aperture Antennas (or Displacement Current Antennas).  For comparison, see also the General Theory of 
Conduction Current Antennas on p. 44 of the Text or p. 2 of Class Notes. 

 
 
 
 
 
  Source of Fields aH



     Source of Fields aE


  
 

s aˆJ n H= ×
 

    (9-10) s a ˆM E n= ×
 

  (9-11) 
 

a

a

j( t R)

S
j r

ˆj r r
a

S

J(r )A e dS R r r
4 R

e n̂ H e dS
4 r

ω −β

− β
′β ⋅

′µ ′ ′= = −
π

µ ′= ×
π

∫

∫








 



 (9-12) a

a

j( t R)s

S
j r

ˆj r r
a

S

M (r )F e dS
4 R

e n̂ E e dS
4 r

ω −β

− β
′β ⋅

′ε ′= −
π

ε ′= ×
π

∫

∫










 (9-13) 

 

1
A j AH ∇× β×

= = −
µ µ

  



 (1) 2
ˆ ˆF j r F j F rE

ˆj F r

∇× β × β ×
= − = = −

ε ε ε
= − ωη ×

  





 (3) 

1 1
1

o o

H j HE j A
j j

∇× β×
= = − = − ω

ωε ωε

 



 (2) 

                                          T 1 2 ˆE E E j A j F r= + = − ω − ωη ×
   

                                (9-16) 

( )
a

j r
ˆj r r

T 1 2 a a
S

j e ˆ ˆ ˆ ˆE E E r n E r n H e dS
4 r

− β
′− β ⋅β   ′= + = − × × − η × × π ∫


    

                      (9-17) 

T T T
T

o o

ˆ ˆE j r E r EH
j j

∇× β × ×
= = − = −

− ωµ ωµ η

  



 

( ) T TE E1 ˆS Re E H r
2 2

∗
∗ ⋅

= × =
η

 

  

 

Total radiated power = 
sphere

S dS⋅∫
 

 

Q P 

 
R 

aperture 

C
hapter 9 – A

perture A
ntennas 
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Define Equivalent surface currents 
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p. 466 Text        A Rectangular Microstrip Patch Antenna 
 
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Distributions and variations of electric fields at the four edges of the patch antenna. 
 
 

 

z y 
x  

 

uniform magnitude; - -directed 

half cycle cosinusoidal variation 

Fig. 2.  Equivalent surface currents at the four edges. 

Maximum radiation in z-direction (normal to the patch) due to two uniform magnitude 
"dipoles" corresponding to edges  and  ; radiation from edges F and B i.e. the front 
and back edges of Fig. 1 cancels out. 

 

Notes 
 

1. Note that the E-fields have no 
variation in the y direction; 
hence are identical for the front 
and back edges separated by 
width W. 

 
2. Because of a separation 

distance of λ/2, the E-fields at 
edges 1E  and 2E are 180º out 
of phase; also no variation in y-
direction. 

W 
y 

/ 2λ  

1E  2E  

zE  

(9-2b) 
p. 346 Text 
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 The array factor for the equivalent current dipoles at edges 1 2E , E  can be written from 
Eqs. 8 and 9 on page 25 of  the  Class Notes.  For an x-directed array of two elements 
N = 2; x 0α = ;  

 
xL sin cosψ = β θ φ + α  

 

                       Normalized AF = 

Nsin
2

2 sin
2

ψ 
 
 

ψ 
 
 

2 sin cos
L2 2 cos sin cos
22 sin

2

ψ ψ   
    β    = = θ φ ψ  

       (1) 

  
 For a two-element (two-edge "currents") antenna array 
 
   

T oE E AF=
 

 
 

 For a uniformly-excited rectangular aperture of length W (e.g. edges 1 2E , E ), from 
Eqs. 9-36a, b (note that equivalent current s ˆM || y−



 here rather than parallel to x̂  on 
page 354 of the text) 

 
 oE E cos f ( , )θ = φ θ φ  (11-5a) 

 
 oE E cos sin f ( , )φ = − θ φ θ φ  (11-5b) 
 where 
 
 

                              

Wsin sin sin
2f ( , ) AFW sin sin

2
Wsin sin sin

L2 cos sin cos )W 2sin sin
2

β θ φ 
 θ φ =
β

θ φ

β θ φ  β  = θ φ β  θ φ

 

 
 

 In Eqs. 9-36a, b 

                                                              

z

z

Lsin u
2 1L u

2

β 
 
  →
β

       since   t << λ 

 
 
 

0 

yL  

thickness t 

(11-5c) 
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p. 470 Text     Microstrip Patch Antenna 
 

 
 For x-z plane ( 0φ =  ) or E-plane 
 

E


 field is θ̂ -directed with components in x- and z-directions 
 

oE E f ( , )θ = θ φ ;            Eφ  = 0 
 

 For direction of maximum radiation, ˆE || x


 
 

                     E
LF ( ) cos sin
2

β θ = θ 
 

                                              (11-6a) 

 
Maximum for θ = 0  i.e. along z-direction. 

 
  
 BWFN: 
 

1
FN

L sin sin
2 2 2L

−β π λ θ = → θ =  
 

            

 For  L
2
λ

 , for xz or E-plane   

BWFN = 12 sin
2L

− λ 
 
 

 

   = 180º  
 
 HPBW: 

1
HP

L sin sin
2 4 4L

−β π λ θ = → θ =  
 

 

 

HPBW = 1 1 12 sin 2 sin 60
4L 2

− −λ   → →   
   

  

 

 

 

 

 W x  . Max. rad. 

 

L
  

y 
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      For  y-z plane ( 90φ =  ) 
 

                                     H

Wsin sin
2F ( ) cos W sin

2

β θ  θ = θ
β

θ
  (11-6b) 

 
  Maximum for θ = 0 

 
 

  oE E cos F( , )= − θ θ φ


 
 
 

  For yz or H-plane 
 

1
FN FN

W sin ; sin
2 W

−β λ θ = π θ =  
 

 

 
1BWFN 2sin

W
− λ =  

 
 

 

                   
22

r
A

r

LZ 90
1 W

ε  =  ε −  
           (11-7) 

 
  for a half-wave rectangular patch antenna. 
 

 

  For Duroid  ( r
W2.2) and 2.7
L

ε = =  

 
 

AZ 50= Ω  
 
 

1
FN yz plane

1sin 47.8
1.35

−  θ = = 
 

  

 
 

BWFN = 2 1sin
W

− λ 
 
 

 = 95.6º 

 
 

   

HF ( )θ  
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Table 7.1.  Radiation characteristics of commonly-used horn antennas. 
 
 

Type of Horn 

Property that 
is Optimized 
for a Given 

Length 

Optimum 
Properties 

Half-power Beam Widths in 
Degrees Directive 

Gain H (or xz) 
Plane 

E (or yz) 
Plane 

Pyramidal 
 
 
 
 
 

Sectoral H-
plane horn 
 
 
 
Sectoral E-
plane horn 
 
 
 
Conical 

Gain 
 
 
 
 
 
Beam width 
in H-plane 
 
 
 
Beam width 
in E-plane 
 
 
 
Gain 

A = 3Lλ  
B = 0.81A 
Gain = 15.3 L/λ 
(optimum) 
 
 
A = 3Lλ  
 
 
 
B = 2Lλ  
 
 
 
D = 2.8Lλ  
 

( )
80

A / λ
 

 
 
 

( )
78

A / λ
 

(9-124) 
 

( )
68

A / λ
 

 
 

( )
70

D / λ
 

( )
53

B / λ
 

 
 
 

( )
51

B / λ
 

 
 

( )
54

B / λ
 

(9-138) 
 

( )
60

D / λ
 

2
4 AB0.51 π

λ
 

(9-96) 
 
 

2
4 AB0.63 π

λ
 

 
 

2
4 AB0.65 π

λ
 

 
 

2
4 (area)0.52 π

λ
 

 
Notation: A is the horn dimension in x direction 
 B is the horn dimension in y direction 
 D is the horn diameter 
 L is the length of the horn from the throat to the aperture 
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Table 7.2*.  Comparative characteristics of parabolic reflectors with different illuminations.  
(See also Table 9-2, p. 389 Text). 

 
 

Illumination 
3 dB Beam 
Width in 
Degrees 

Peak Side 
Lobe 
Level 
(dB) 

Relative 
Gain 

First Null 
Position in 

Degrees 

 
A.  Rectangular Aperture of Length L 

 
m x LG(x) cos for | x |

L 2
π = < 

 
 

m = 0 (uniform) 

m = 1 
m = 2 

m = 3 

m = 4 

 
 
 
 

 
50.8 / Lλ  

68.8 / Lλ  

83.1 / Lλ  

95.1 / Lλ  

111.2 / Lλ  

 
 
 
 

 
-13.2 

-23 

-32 

-40 

-48 

 
 
 
 

 
1.00 

0.81 

0.667 

0.575 

0.515 

 
 
 
 

 
57.3 / Lλ  

85.9 / Lλ  

114.6 / Lλ  

143.2 / Lλ  

171.9 / Lλ  
 

 
B.  Circular Aperture of  Diameter D 

m22G( ) 1
D

 ρ  ρ = −  
   

 

m = 0 (uniform) 

m = 1 
m = 2 

m = 3 
 

 
 

 
 
 

58.4 / Dλ  

72.8 / Dλ  

84.2 / Dλ  

94.5 / Dλ  

 
 

 
 

-17.6 

-24.6 

-30.7 

-36.1 

 
 

 
 

1.00 

0.75 

0.55 

0.45 

 
 
 
 
 
 

69.9 / Dλ  

92.2 / Dλ  

116.3 / Dλ  

138.7 / Dλ  

 
*   M. I. Skolnik, Radar Handbook, Chapter 9, McGraw-Hill Book Company, Inc., New York,   

1970. 
 
 

 


