| Name |              |  |
|------|--------------|--|
|      | Please print |  |

## UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

## ANTENNA THEORY AND DESIGN

ECE 5324/6324

MIDTERM I

February 20, 2013

1. (25 points)

- <u>pts</u> 13 a. Calculate the directivity of a dipole antenna of length  $L=12\ cm$  at a frequency of 835 MHz.
- b. For this dipole antenna, calculate the feed point resistance  $R_{\text{A}}$ . 5
- 7 c. Calculate the maximum power received  $P_r$  for an incident power density  $S_{\text{inc}}$  =  $10 \mu W/m^2$ .

1. b. From p. 7 of the class Notes, for this antenna 
$$\frac{L}{\lambda} = \frac{12}{35.93} = \boxed{0.334}$$

$$\frac{L}{2\lambda} = 0.167$$

$$R_{a} = 2 \left[ 11.674 + (13.447 - 11.674) \times 0.07 \right]$$

$$= \left[ 25.83 \ \Omega \right]$$

a. From Eq. (6) on p. 6 of class Notes

$$D = \frac{120}{Ra} \frac{F^2(\theta)}{Si^2(\Pi^L)} \sim x(\theta \theta = 9)$$

From Eq.(2) on p. 6 of class Notes
$$F(\theta) = \cos\left(\frac{\pi L}{\lambda} \times 0\right) - \cos\left(\frac{\pi L}{\lambda}\right) = 1 - \cos\left(\frac{\pi L}{\lambda}\right) = 0.5018$$

$$\theta = 93$$

$$D = \frac{120}{25.83} \times \frac{(0.5018)^2}{5.2(11)0.7518} = 1.556$$

This is reasonable since for L=0.5 h; D=1.64

$$\frac{4\pi A_{\text{em}}}{\lambda^{2}} = D = 1.556 \Rightarrow A_{\text{em}} = \frac{\lambda^{2}}{4\pi} \times 1.556$$

$$= (35.93)^{2} \times \frac{1.556}{100)^{2}} = [0.016 \text{ m}]$$

$$P_{V} = 15 \times 0.016 = [1.6 \times 10^{7} \text{ W}]$$

## 2. (25 points)

pts

- a. Calculate the pulsed power received by a monostatic radar antenna radiating 100 kW pulsed power at 10 GHz given that the gain of the radar antenna is 37 dBi and the target has a radar cross section (RCS) of 30 m<sup>2</sup> and is at a distance of 25 km.
- 7 b. Calculate the effective area  $A_e$  for the radar antenna in  $m^2$ .

2. From Eq. 4-66 on p. 122 of the Text  $R = 25 \times 10 \text{ m}$   $P_{V} = P_{t} \frac{\lambda^{2} G_{V} G_{t} O}{(4\pi)^{3} R^{4}} = \frac{15}{(0.03)^{3} \times 10^{14} \times 30}$   $= \frac{1984}{1984} \times 39.06 \times 10^{10} = 8.75 \times 10^{10} \text{ W}$ 

b. 
$$\frac{4\pi A_e}{\lambda^2} = \frac{G_t = 13.7}{5011.9}$$
  
 $A_e = \frac{3.7}{4\pi} \times \frac{(0.03)^2}{4\pi} = \frac{4.51}{4\pi} = \frac{0.359 \text{ m}^2}{4\pi}$ 

## 3. (25 points)

<u>pts</u>

- a. Calculate the power received by a cellular telephone antenna of gain 1 dBi from a base station radiating 25 W of power at a frequency of 835 MHz. It is given that the gain of the base station antenna is 12 dBi, and the base station is located at a distance of 10 km from the user of the cell phone.
- b. What is the open-circuit voltage developed across the cell phone antenna given that its feed point resistance is 50 ohms?

From Eq. 4-33

$$b_{1} = b_{f} \frac{(4 \mu k)_{5}}{(4 \mu k)_{5}}$$

$$G_{\tau} = 10^{\circ 1} = 1.259$$
 $G_{t} = 10^{\circ 2} = 15.85$ 
 $R = 10 \, \text{Km} = 10^{\circ 4} \, \text{m}$ 
 $\lambda = 0.3593 \, \text{m}$ 

Friis transmission formula

$$P_{Y} = 25 \times 15.85 \times 1.259 \times (0.3593)^{2} = 64.4 \times 10^{8}$$

$$= (4\pi)^{2} \times 10^{8} \times 10^{8} \times 10^{10} \times 10^$$

ECE 5324/6324 Midterm I February 20, 2013

| Name   |           | 2             |    | ¥.     |
|--------|-----------|---------------|----|--------|
| Score: |           |               |    |        |
|        | Problem 1 | of a possible | 25 | points |
|        | Problem 2 | of a possible | 25 | points |
|        | Problem 3 | of a possible | 25 | points |
|        | Total     | of a possible | 75 | points |