IMPEDANCE MATCHING

EXAMPLE 4-7—Cont.
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Fig. 4-44.-Solution to Example 4-7.
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Fig. 4-45. Lines of constant Q.
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Fig. 4-46. Smith Chart solution for Example 4-8.
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EXAMPLE 4-8
Design a T network to match 2 Z = 15 -+ j15-chm source
to a 225-ohm load at 30 MHz with a loaded Q of 5.

Solution

Following the procedures previously outlined, draw the
arcs for Q = 5 first and, then, plot the load impedance
and the complex conjugate of the source impedance. Obvi-
ously, normalization is necessary as the impedances are too
large to be located on the chart. Divide by a convenient
value (choose N = 75) for normalization. Therefore:

7Z.* = 0.2 — j0.2 ohm
Z1 = 3 ohms

The construction details for the design are shown in Fig.
4-46.

The design statement specifies a T network. Thus, the
source termination will determine the network Q because
Rs < R

Following the procedure for Rs < Ru (Step 4, above),
first plot point I, which is the intersection of the Q = 5
curve and the R = constant circuit that passes through Z.*.
Then, move from the load impedance to point 1 with two
elements.

Element 1 = arc AB = series L = j2.5 ohms

Element 2 = arc BI = shunt C = j1.15 mhos
Then, move from point I to Z.® along the R = constant
circle.

Element 3 = arc IC = series L. = j0.8 ohm

Use Equations 4-11 through 4-14 to find the actual element
values.
Element 1 = series L:

L= (2.5)75
— 27(30 x 108)
— 995 nH
Element 2 = shunt C:
1.15
27 (30 % 108)75
= 81 pF

Element 3 = series L:

C=

Lo (08)75
= (30 X 109)
— 318nH

The final network is shown in Fig. 4-47.

15 4§15
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Fig. 4-47. Final circuit for Example 4-8.

treasure trove containing an infinite number of possible
solutions. To get from point A to point B on a Smith
Chart, there is, of course, an optimum solution. How-
ever, the optimum solution is not the only solution. The
two-element network gets you from point A to point
B with the least number of components and the three-
element network can provide a specified Q by follow-
ing a different route. If you do not care about Q,
however, there are 3-, 4-, 5-, 10-, and 20-element (and
more) impedance-matching networks that are easily
designed on a Smith Chart by simply following the
constant-conductance and constant-resistance circles
until you eventually arrive at point B, which, in our
case, is usually the complex conjugate of the source
impedance. Fig. 4-48 illustrates this point. In the
Jower right-hand corner of the chart is point A In
the upper left-hand corner is point B. Three of the
infinite number of possible solutions that can be used
to get from point A to point B, by adding series and
shunt inductances and capacitances, are shown. Solu-

tion 1 starts with a series-L. configuration and takes 9
elements to get to point B. Solution 2 starts with a
shunt-L procedure and takes 8 elements, while Solu-
tion 3 starts with a shunt-C arrangement and. takes 5
elements. The element reactances and susceptances
can be read directly from the chart, and Equations
4-11 through 4-14 can be used to calculate the actual
component values within minutes.

SUMMARY

Impedance matching is not a form of “black magic”
but is a step-by-step well-understood process that is
used to help transfer maximum power from a source
to its load. The impedance-matching networks can be
designed either mathematically or graphically with
the aid of a Smith Chart. Simpler networks of two and
three elements are usually handled best mathemati-
cally, while networks of four or more elements are very
easily handled using the Smith Chart.
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Fig. 4-48. Multielement matching.




