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IMPEDANCE MATCHING

Impedance matching is often necessary in the de-
sign of rf circuitry to provide the maximum possible
transfer of power between a source and its load. Prob-
ably the most vivid example of the need of such a
transfer of power occurs in the front end of any sensi-
tive receiver. Obviously, any unnecessary loss in a
circuit that is already carrying extremely small signal
levels simply cannot be tolerated. Therefore, in most
instances, extreme care is taken during the initial de-
sign of such a front end to make sure that each device
in the chain is matched to its load.

In this chapter, then, we will study several methods
of matching a given source to a given load. This will
be done both numerically and with the aid of the
Smith Chart and, in both cases, exact step-by-step pro-
cedures will be presented making any calculations as
painless as possible.

BACKGROUND

There is a well-known theorem which states that,
for dc circuits, maximum power will be transferred

from a source to its load if the load resistance equals
the source resistance. A simple proof of this theorem
is given by the calculations and the sketches shown
in Fig. 4-1. In the calculation, for convenience, the
source is normalized for a resistance of one ohm and
a source voltage of one volt.

In dealing with ac or time-varying waveforms,
however, that same theorem states that the maximum
transfer of power, from a source to its load, occurs
when the load impedance (Zy) is equal to the com-
plex conjugate of the source impedance. Complex
conjugate simply refers to a complex impedance hav-
ing the same real part with an opposite reactance.
Thus, if the source impedance were Z, = R +iX, then
its complex conjugate would be Z;= R —jX.

If you followed the mathematics associated with
Fig. 4-1, then it should be obvious why maximum
transfer of power does occur when the load impedance
is the complex conjugate of the source. This is shown

schematically in Fig. 4-2. The source (Z,), with a

series reactive component of X (an inductor), is
driving its complex conjugate load impedance con-

RS= 10

1
|

(A) Circuit.

Py

0.1 1.0 10

Ry,

(B) Graph.
Fig. 4-1. The power theorem.

Proof that P, MAX occurs when Ry =
Ry, in the circuit of Fig. 4-14, is given by the
formula:

- R
YRR

Set V=1 and Rg=1, for convenience.
Therefore,

__ R

T 1+R,

Then, the power into Ry, is:

V12

Pl:ﬁ;
Ry

Ry
—__ Ry
“(I1+Ry)?
If you plot P, versus Ry, as in the preceding

equation, the result is shown by the curve of
the graph in Fig. 4-1B.

A4

66




ImMPEDANCE MATCHING

sisting of a —jX reactance (capacitor) in series with
Rr. The +X component of the source and the —jX
component of the load are in series and, thus, cancel
each other, leaving only Ry and Ry, which are equal
by definition. Since Ry and Ry are equal, maximum
power transfer will occur. So when we speak of a
source driving its complex conjugate, we are simply
referring to a condition in which any source reactance
is resonated with an equal and opposite load reactance;
. thus, leaving only equal resistor values for the source
and the load terminations.

The primary objective in any impedance matching
scheme, then, is to force a load impedance to “look
like” the complex conjugate of the source impedance
so that maximum power may be transferred to the load.
This is shown in Fig. 4-3 where a load impedance of
2 —j6 ohms is transformed by the impedance matching
network to a value of 5 +j10 ohms. Therefore, the
source “sees” a load impedance of 5 +j10 ohms, which
just happens to be its complex conjugate. It should be
noted here that because we are dealing with reac-
tances, which are frequency dependent, the perfect
impedance match can occur only at one frequency.
That is the frequency at which the +jX component
exactly equals the —jX component and, thus, cancel-
lation or resonance occurs. At all other frequencies
removed from the matching center frequency, the im-
pedance match becomes progressively worse and
eventually nonexistent. This can be a problem in broad-
band circuits where we would ideally like to provide
a perfect match everywhere within the broad passband.
There are methods, however, of increasing the band-
width of the match and a few of these methods will be
presented later in this chapter.

There are an infinite number of p0531ble networks
which could be used to perform the impedance match-
ing function of Fig. 4-3. Something as simple as a 2-
element LC network or as elaborate as a 7-element
filter, depending on the application, would work
equally well. The remainder of this chapter is devoted
to providing you with an insight into a few of those
infinite possibilities. After studying this chapter, you
should be able to match almost any two complex loads
with a minimum of effort.

THE L NETWORK

Probably the simplest and most widely used match-
ing circuit is the L network shown in Fig. 4-4. This cir-
cuit receives its name because of the component
orientation which resembles the shape of an L. As
shown in the sketches, there are four possible ar-
rangements of the two L and C components. Two of
the arrangements (Figs. 4-4A and 4-4B) are in a
low-pass configuration while the other two (Figs.
4-4C and 4-4D) are in a high-pass configuration. Both
of these circuits should be recognized from Chapter 3.

Before we introduce equations which can be used to
design the matching networks of Fig. 4-4, let’s first
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Zs

. Xs Rg
vt1111A0
=2

ZL RL

L el

Fig. 4-2. Source impedance driving its complex conjugate
and the resulting equivalent circuit.

5 ~j10 Impe&ance
|—- Matching
Network I
2
5 4§10

Fig. 4-3. Impedance transformation.

ZS L ZS L
(A) Low-pass. (B) Low-pass.
zg C

Zs C
L Z %; L% ZL%

(C) High-pass. (D) Hzgh-pass

Fig. 4-4. The L network.

1000 ©

Fig. 4-5. Simple impedance-match network between a
100-ohm source and a 1000-ohm load.

analyze an existing matching network so that we can
understand exactly how the impedance match occurs.
Once this analysis is made, a little of the “black magic”
surrounding impedance matching should subside.
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—333 1000 ©

Z

———t

Fig. 4-6. Impedance looking into the parallel
combination of Ry, and X..

Z;
Fig. 4-7. Equivalent circuit of Fig. 4-6.

+§300 © I —

—j300 Q

—§300 ©

100 Q

—A—)

100 Q

100 ©
Zz ZZ

Fig. 4-8. Completing the match.

Fig. 4-5 shows a simple L network impedance-
matching circuit between a 100-ohm source and a
1000-ohm load. Without the impedance-matching net-
work installed, and with the 100-ohm source driving
the 1000-ohm load directly, about 4.8 dB of the
available power from the source would be lost. Thus,
roughly one-third of the signal available from the
source is gone before we even get started. The im-
pedance-matching network eliminates this loss and
allows for maximum power transfer to the load. This
is done by forcing the 100-ohm source to see 100 ohms
when it looks into the impedance-matching network.
But how?

If you analyze Fig. 4-5, the simplicity of how the
match occurs will amaze you. Take a look at Fig.
4-6. The first step in the analysis is to determine what
the load impedance actually looks like when the
—j333-ohm capacitor is placed across the 1000-ohm
load resistor. This is easily calculated by:

X.Ry,
X.+ Ry
_ —i333(1000)
—j333 + 1000
=315 £/ —=71.58°
= 100 —j300 ohms
Thus, the parallel combination of the —~j333-ohm ca-

7=
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pacitor and the 1000-ohm resistor looks like an im-
pedance of 100 —j300 ohms. This is a series combina-
tion of a 100-ohm resistor and a —j300-ohm capacitor
as shown in Fig. 4-7. Indeed, if you hooked a signal
generator up to circuits that are similar to Figs. 4-6
and 4-7, you would not be able to tell the difference
between the two as they would exhibit the same char-
acteristics (except at dc, obviously).

Now that we have an apparent series 100 —j300-ohm
impedance for a load, all we must do to complete the
impedance match to the 100-ohm source is to add an
equal and opposite (+j300 ohm) reactance in series
with the network of Fig. 4-7. The addition of the
+j300-ohm inductor causes cancellation of the —j300-
ohm capacitor leaving only an apparent 100-ohm load
resistor. This is shown in Fig. 4-8. Keep in mind here
that the actual network topology of Fig. 4-5 has not
changed. All we have done is to analyze small portions
of the network so that we can understand the function
of each component.

To summarize then, the function of the shunt com-
ponent of the impedance-matching network is to
transform a larger impedance down to a smaller value
with a real part equal to the real part of the other
terminating impedance (in our case, the 100-ohm
source ). The series impedance-matching element then
resonates with or cancels any reactive component
present, thus leaving the source driving an apparently
equal load for optimum power transfer. So you see,
the impedance match isn’t “black magic” at all but
can be completely explained every step of the way.

Now, back to the design of the impedance-matching
networks of Fig. 4-4. These circuits can be very easily
designed using the following equations:

Q=Q= /-1 (Eq.41)
Qs:é: . (Eq4-2)
Qp=§g (Eq. 43)

where, as shown in Fig. 4-9:
Qs = the Q of the series leg,
Qp = the %of the shunt leg,
R, = the shunt resistance,
X, = the shunt reactance,
R, = the series resistance,
X, = the series reactance.

The quantities X, and X, may be either capacitive or
inductive reactance but each must be of the opposite
type. Once X, is chosen as a capacitor, for example,
X, must be an inductor, and vice-versa. Example 4-1
illustrates the procedure.

DEALING WITH COMPLEX LOADS

The design of Example 4-1 was used for the simple
case of matching two real impedances (pure resis-
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Qs = Xs/Rg
A e,
Rs
Xs
Xp Rp
= T = =
Qs =Qp = R L Qp = Rp/Xp

Fig. 4-9. Summary of the L-network design.

EXAMPLE 4.1

Design a circuit to match a 100-ohm source to a 1000-
ohm load at 100 MHz. Assume that a d¢ voltage must also
be transferred from the source to the load.

Solution

The need for a dc path between the source and load dic-
tates the need for an inductor in the series leg, as shown in
Fig. 4-4A. From Equation 4-1, we have:

000
Q=Q=/T5 —1!
=9
=3
From Equation 4-2, we get:
Xo = Q:R.
= (3)(100)
- = 300 ohms (inductive)
Then, from Equation 4-3,

= 333 ohms ( capacitive)
Thus, the component values at 100 MHz are:
X

_ 300
" 2x(100 X 108)
=477 nH

C=—

= 27(100 x 100)(333)
=4.8 pF

This yields the circuit shown in Fig. 4-10. Notice that what
you have done is to design the circuit that was previously
given in Fig. 4-5 and, then, analyzed.

10092 477 nH

Fig. 4-10. Final circuit for Example 4-1.
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tances ). It is very rare when such an occurrence ac-
tually exists in the real world. Transistor input and

output impedances are almost always complex; that

is they contain both resistive and reactive components
(R =jX). Transmission lines, mixers, antennas, and
most other sources and loads are no different in that
respect. Most will always have some reactive com-
ponent which must be dealt with. It is, therefore,
necessary to know how to handle these stray reactances
and, in some instances, to actually put them to work
for you. :

There are two basic approaches in handling complex
impedances: -

1. Absorption—To actually absorb any stray reactances

into the impedance-matching network itself. This .

can be done through prudent placement of each
matching element such that element capacitors are
placed in parallel with stray capacitances, and ele-
ment inductors are placed in series with any stray
inductances. The stray component values are then
subtracted from the calculated element values leav-
ing new element values (C’, L), which are smaller
than the calculated element values.

2. Resonance—To resonate any stray reactance with an
equal and opposite reactance at the frequency of
interest. Once this is done the matching network
design can proceed as shown for two pure resis-
tances in Example 4-1.

Of course, it is possible to use both of the approaches
outlined above at the same time. In fact, the majority
of impedance-matching designs probably do utilize
a little of both. Let’s take a look at two simple examples
to help clarify matters.

Notice that nowhere in Example 4-2 was a conjugate
match even mentioned. However, you can rest assured
that if you perform the simple analysis outlined in the
previous section of this chapter, the impedance looking

into the matching network, as seen by the source, will

be 100 —j126 ohms, which is indeed the complex con-
jugate of 100 +j126 ohms.

Obviously, if the stray element values are larger
than the calculated element values, absorption cannot
take place. If, for instance, the stray capacitance of
Fig. 4-11 were 20 pF, we could not have added a
shunt element capacitor to give us the total needed
shunt capacitance of 4.8 pF. In a situation such as
this, when absorption is not possible, the concept of
resonance coupled with absorption will often do the
trick.

Examples 4-2 and 4-3 detail some very important’

concepts in the design of impedance-matching net-
works. With a little planning and preparation, the de-
sign of simple impedance-matching networks between
complex loads becomes a simple number-crunching
task using elementary algebra. Any stray reactances
present in the source and load can usually be absorbed
in the matching network (Example 4-2), or they can

e
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EXAMPLE 4-2

Use the absorption approach to match the source and
load shown in Fig. 4-11 (at 100 MHz).

+j126
Z Match

2pF
100 —j126 :_[

100 @

1000 Q

Fig. 4-11. Complex source and load circuit
for Example 4-2.

Solution

The first step in the design process is to totally ignore the
reactances and simply match the 100-ohm real part of the
source to the 1000-ohm rea! part of the load (at 100 MHz).
Keep in mind that you would like to use a matching net-
work that will place element inductances in series with
stray inductance and element capacitances in parallel with
stray capacitances. Thus, conveniently, the network circuit
shown in Fig. 4-4A is again chosen for the design and,
again, Example 4-1 is used to provide the details of the -
procedure. Thus, the calculated values for the network, if
we ignore stray reactances, are shown in the circuit of Fig.
4-10. But, since the stray reactances really do exist, the de-
sign is not yet finished as we must now somehow absorb
the stray reactances into the matching network. This is done
as follows. At the load end, we need 4.8 pF of capacitance
for the matching network. We already have a stray 2 pF
available at the load so why not use it. Thus, if we use a
2.8-pF element capacitor, the total shunt capacitance be-
comes 4.8 pF, the design value, Similarly, at the source, the
matching network calls for a series 477-nH inductor. We
already have a +j126-ohm, or 200-nH, inductor available
in the source. Thus, if we use an actual element inductance
of 477 ntH — 200 nH = 277 nH, then the fotal series in-
ductance will be 477 nH-—which is the calculated design
value. The final design circuit is shown in Fig. 4-12.

1
]
. : .
277 nH E
r 2.8 pF E 2 pF
= :
100 —j126 I E I
= 1 = =

________________

1002 200 nH

1000 ©

Fig. 4-12. Final design circuit for Example 4-2.

be resonated with an equal and opposite reactance,
which is then absorbed into the network (Example
4-3).

THREE-ELEMENT MATCHING

. Equation 4-1 reveals a potential disadvantage of the
2-element L networks described in the previous sec-
tions. It is a fact that once R, and R,, or the source and
load impedance, are determined, the Q of the network
is defined. In other words, with the L network, the

RF Cmcurr DEsiGN

designer does not have a choice of circuit Q and

simply must take what he gets. This is, of course,
usually the case because the source and load imped-
ance are typically given in any design and, thus, R,
and R, cannot be changed.

The lack of circuit-Q versatility in a matching net-
work can be a hindrance, however, especially if a
narrow bandwidth is required. The 3-element network
overcomes this disadvantage and can be used for
narrow-band high-Q applications. Furthermore, the
designer can select any practical circuit Q that he
wishes as long as it is greater than that Q which is
possible with the L-matching network alone. In other
words, the circuit Q established with an L-matching
network is the minimum circuit Q available in the 3-
element matching arrangement.

The 3-element network (shown in Fig. 4-17) is
called a Pi network because it closely resembles the
Greek letter 7. Its companion network (shown in
Fig. 4-18) is called a T network for equally obvious
reasons.

The Pi Network

The Pi network can best be described as two “back-
to-back” L networks that are both configured to match
the load and the source to an invisible or “virtual” re-
sistance located at the junction between the two
networks. This is illustrated in Fig. 4-19. The signifi-
cance of the negative signs for —X;; and —X is sym-
bolic. They are used merely to indicate that the X,
values are the opposite type of reactance from Xy
and X2, respectively. Thus, if Xy, is a capacitor, Xu
must be an inductor, and vice-versa. Similarly, if
X, is an inductor, X, must be a capacitor, and vice-
versa. They do not indicate negative reactances (ca-
pacitors).

The design of each section of the Pi network pro-
ceeds exactly as was done for the L networks in the
previous sections. The virtual resistance (R) must be
smaller than either Rg or Ry, because it is connected to
the series arm of each L section but, otherwise, it can
be any value you wish. Most of the time, however, R
is defined by the desired loaded Q of the circuit that
you specify at the beginning of the design process. For
our purposes, the loaded Q of this network will be de-
fined as:

R
Q=_/+w -1 (Eq. 4-4)
where,

Ry = the largest terminating impedance of R; or Ry,
R = the virtual resistance.

Although this is not entirely accurate, it is a widely
accepted Q-determining formula for this circuit, and
is certainly close enough for most practical work. Ex-
ample 4-4 illustrates the procedure.

Any of the networks in Fig. 4-21 will perform the
impedance match between the 100-ohm source and the
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EXAMPLE 4-3

Design an impedance matching network that will block
the flow of dc from the source to the load in Fig. 4-13. The
frequency of operation is 75 MHz. Try the resonant ap-
proach.

Z Match
50 Q

I40 pF 36009

Fig. 4-13. Complex load circuit for Example 4-3.

Solution

The need to block the flow of de from the source to the
load dictates the use of the matching network of Fig. 4-4C.
But, first, let’s get rid of the stray 40-pF capacitor by reso-
nating it with a shunt inductor at 75 MHz.

1
L= w2Citrly

_ 1

~ [2w(75 x 108)]2(40 X 10—12)
= 112.6 nH

Z Match '
50 2 l
112.6 nH I‘m pF 6000

Fig. 4-14. Resonating the stray load capacitance,

This leaves us with the circuit shown in Fig. 4-14. Now that
‘we have eliminated the stray capacitance, we can proceed
with matching the network between the 50-ohm load and
the apparent 600-ohm load. Thus,

Q=0= /R 1

X, = %
_ 600
=332

= 181 ohms

Therefore, the element values are:

1

C= =
_ 1
— 27(75 X 108)(166)
= 12,78 pF
L%
T
_ . 181
" 2x(75 x 108)
= 384 nH
Matching Network
It .
v 1t
50@ 1278 pF _
112.6
384 nH oH I40 pF  $600Q
1 =

|
o
1
.||

Fig. 4-15. The circuit of Fig. 4-14 after
impedance matching.

These values, then, yield the circuit of Fig, 4-15. But notice
that this circuit can be further simplified by simply replac-
ing the two shunt inductors with a single induector. There-
fore, :

_(384)(112.8)
=384+ 1126

= 87 nH
The final circuit design appears in Fig. 4-16.

Matéhing Network
| ]

Y y !
\/—660—- i 12.78 pF : J-
= /=51 i |
50 I 87nH : 40pF 26000
=332 ! ! I
X, = QsRu = 5 = I; = =
= (3.32)(50) N — 4
= 166 ohms Fig. 4-16. Final design circuit for Example 4-3.
Rs RS
—AAA- X, X1 X3
Xq X3 Ry Xz RL

Fig. 4-17. The three-element Pi network.

Fig. 4-18. The three-element T network.
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—AAA Xs1

& Virtual
>

X «,
1 R :[Resistor

Fig. 4-19. The Pi network shown as two
back-to-back L networks.

o]

4

1000-ohm load. The one that you choose for each par-
ticular application will depend on any number of
factors including:

L. The elimination of stray reactances.
2. The need for harmonic filtering,
3. The need to pass or block dc voltage.

The T network

The design of the 3-element T network is exactly
the same as for the Pi network except that with the T,
you match the load and the source, through two L-type
networks, to a virtual resistance which is larger than
either the load or source resistance. This means that
the two L-type networks will then have their shunt
legs connected together as shown in Fig, 4-22.

The T network is often used to match two low-
valued impedances when a high-Q arrangement is
needed. The loaded Q of the T network is determined
by the L section that has the highest Q. By definition,
the L section with the highest Q will occur on the
end which has the smallest terminating resistor. Re-
member, too, that each terminating resistor is in the
series leg of each network. Therefore, the formula
for determining the loaded Q of the T network is:

R
= -1
Q= fao-1
where,

R = the virtual resistance,
Roman = the smallest terminating resistance.

(Eq. 4-5)

This formula is exactly the same as the Q formula that
was previously given for the Pi-type networks. How-
ever, since we have reversed or “fip-flopped” the L
sections to produce the T network, we must also make
sure that we redefine the Q formula to account for
the new resistor placement, in relation to those L
networks. In other words, Equations 4-4 and 4-5 are
only special applications of the general formula that
is given in Equation 4-1 (and repeated here for con-
venience ).

0= %ﬂq (Eq. 4-1)
8
where,
R, = the resistance in the shunt branch of the L
network,
R; = the resistance in the series branch of the L
network. :

RF Cmrcurr DEesioN

So, try not to get confused with the different definitions
of circuit Q. They are all the same, '
Each L network is calculated in exactly the same
manner as was given in the previous examples and, as
we shall soon see, we will also end up with four pos-
sible configurations for the T network (Example 4-5).

LOW-Q OR WIDEBAND
MATCHING NETWORKS

Thus far in this chapter we have studied: (1) the

L network, which has a circuit Q that is automatically -

defined when the source and load impedances are set,
and (2) the Pi and T networks, which allow us to
select a circuit Q independent of the source and load
impedances as long as the Q chosen is larger than that
which is available with the L network. This seems to
indicate, and rightfully so, that the Pi and T networks
are great for narrow-band matching networks. But
what if an impedance match is required over a fairly
broad range of frequencies. How do we handle that?
The answer is to simply use two L sections in still

another configuration as shown in Fig, 4-25. Notice.

here that the virtual resistor is in the shunt leg of
one L section and in the series leg of the other L
section. We, therefore, have two series-connected L
sections rather than the back-to-back configuration
of the Pi and T networks. In this new configuration,
the value of the virtual resistor ( R) must be larger
than the smallest termination impedaqce and, also,
smaller than the largest termination impedance. Of
course, any virtual resistance that satisfies these criteria
may be chosen. The net result is a range of loaded-Q
values that is less than the range of Q values obtain-
able from either a single L section, or the Pi and T
networks previously described.

The maximum bandwidth (minimum Q) available
from this network is obtained when the virtual resistor
(R) is made equal to the geometric mean of the two
impedances being matched.

R=+/R:Ry (Eq. 4-6)
The loaded Q of the network, for our purposes, is
defined as:

= R —_ 1 = Blarger__
Q-\AI‘\/_“ R -1 (Eq.47)

where,
R = the virtual resistance,
Remaner = the smallest terminating resistance,
1arger = the largest terminating resistance.

If even wider bandwidths are needed, more L net-
works may be cascaded with virtual resistances be-
tween each network. Optimum bandwidths in these
cases are obtained if the ratios of each of the two
succeeding resistances are equal:

R, _R_Rs
Rsmaller Rl R2 T Rn

— Rlnrger (Eq- 4'8) '

> L it ioaroim.
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EXAMPLE 4-4

'Using Fig. 4-19 as a reference, design four different Pi
networks to match a 100-ohm source to a 1000-ohm load.
Each network must have a loaded Q of 15.

Solution

From Equation 4-4, we can find the virtual resistance we
will be matching.

= 4.42 ohms
To find X,: we have:

Similarly, to find X..:

X-z = QR-anea
= 15(R)
= (15)(4.42)
= 66.3 ohms

This completes the design of the L section on the load side
of the network. Note that Ryerses in the above equation was
substituted for the virtual resistor R, which by definition is
in the series arm of the L section.

The Q for the other L network is now defined by the
ratio of R, to R, as per Equation 4-1, where:

Notice here that the source resistor is now considered to be
in the shunt leg of the L network. Therefore, R, is defined
as Ry, and
R
Xpl = 6‘:

_ 100

4.8

= 21.7 ohms
Similarly,

Xu = Q]Rlarlau
= QR
= (4.6)(4.48)
= 20.51 ochms

The actual network design is now complete and is shown in
Fig. 4-20. Remember that the virtual resistor (R) is not
really in the circuit and, therefore, is not shown. Reactances
—Xu and —X.. are now in series and can simply be added
together to form a single component.

So far in the design, we have dealt only with reactances
and have not yet computed actual component values. This

66.7 1000

Fig, 4-20. Calculated reactances for Example 4-4.

is because of the need to maintain a general design ap-
proach so that four final networks can be generated quickly
as per the problem statement.

Notice that Xp, Xa, Xpe, and X, can all be either ca-
pacitive or inductive reactances. The only constraint is that
Xt and Xa are of opposite types, and X;. and X.. are of
opposite types. This yields the four networks of Fig. 4-21
(the source and load have been omitted). Each component
in Fig. 4-21 is shown as a reactance (in ohms). Therefore,
to perform the transformation from the dual-L to the Pi net-
work, the two series components are merely added if they
are alike, and subtracted if the reactances are of opposite
type. The final step, of course, is to change each reactance
into a component value of capacitance and inductance at
the frequency of operation.

20.5Q 66.9 Q

¢> 87.4Q°

IZL?Q :[66.79 ]:21.79 :[66.79
(4)
— it —{—
20.5Q 66.9 Q C> 87.4Q
21.7Q 66.7 Q 21.7Q 66.7 Q

66.7 Q

——i—
N
S
=]
&
O -
[}
AU e
&
&
fo)
——
N
S
=}
U VTTTT e

(D)

Fig. 4-21. The transformation from
double-L to Pi networks.
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Rg
Xs1 ' [ ' Xs2
Vlr{t{ual‘:[ )

Fig. 4-22. The T network shown as two
back-to-back L networks.
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where,

Rsmaner = the smallest terminating resistance,
larger = the largest terminating resistance,

1, Re, . .. R, = virtual resistors.

This is shown in Fig, 4-26.

The design procedure for these wideband matching
given for the
previous examples. To design for a specific low Q,
simply solve Equation 4-7 for R to ‘find the virtual

networks is precisely the same as was

EXAMPLE 4-5

Using Fig, 4-22 as a reference, design four different net-
works to match a 10-ohm source to a 50-ohm load. Each
network is to have a loaded Q of 10.

Solution

Using Equation 4-5, we can find the virtual resistance
we need for the match,

R = Riman ( Q2 +1)
= 10(101)

= 1010 ohms
From Equation 4-2:

KXo = QRs
=10(10)
= 100 ohms

From Equation 4-3;

Xp1 =

o=

_ 1010

10

= 101 ohms

Now, for the L network on the load end, the Q is defined
by the virtual resistor and the load resistor. Thus,

R
Q= R

1010
=V ® !
=44

Therefore, yd
R

sz = 62'
_ loio
T 44
== 230 chms
Xe2 = Q:Ry
= (4.4)(50)
= 220 ohms

The network is now complete and is shown in Fig. 4-23
without the virtual resistor,

The two shunt reactances of Fig. 4-
bined to form a single element by
value that is equal to the combined
actance of the two.

23 can again be com-
simply substituting a
equivalent parallel re-

The four possible T-type networks that can be used for
matching the 10-ohm source to the 50-ohm load are shown

in Fig. 4-24.

100

101 [~ Xpy| 231/~ Xp,

220
Xs1 7 Xsz

]

Fig. 4-23. The calculated reactances of Example 4.5,

100 220 100

101 I 231 I :> 70

]

(D)

231 :[ 179

(A)
100 220 100 220
—— —— — —
=
101 231 70
(B)
100 220 100 220
— —
101.[ 231" 179 I
(C)
100 220 100 220
—
101 =

Fig. 4-24. The transformation of circuits from

double-L to T-type networks.
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Rg
N— Xs1 ' Xsz
- Virtuall
(A) Rin shunt leg.
Rs
Xs1 l Xs2
Virtual
—Xpy 1 e [xpzl Ry > Rg

(B) R in series leg.

Fig. 4-25. Two series-connected L networks for
lower Q applications.

Rsma ler
A Xs1 [‘] Xsz l Xs3
n,

Ry :: —Xpy R, ]:. Xp3 Rlarger

ff— §<

A

Fig. 4-26. Expanded version of Fig. 4-25 for
even wider bandwidths.

resistance needed. Or, to design for an optimally wide
bandwidth, solve Equation 4-6 for R. Once R is known,
the design is straightforward.

THE SMITH CHART

Probably one of the most useful graphical tools
available to the rf circuit designer today is the Smith
Chart shown in Fig. 4-27. The chart was originally
conceived back in the Thirties by a Bell Laboratories
engineer named Phillip Smith, who wanted an easier
method of solving the tedious repetitive equations that
often appear in rf theory. His solution, appropriately
named the Smith Chart, is still widely in use.

At first glance, a Smith Chart appears to be quite
complex. Indeed, why would anyone of sound mind
even care to look at such a chart? The answer is really
quite simple; once the Smith Chart and its uses are
understood, the f circuit designer’s job becomes much
Jess tedious and time consuming. Very lengthy complex
equations can be solved graphically on the chart in
seconds, thus lessening the possibility of errors creep-
ing into the calculations.

Smith Chart Construction

The mathematics behind the construction of a
Smith Chart are given here for those that are inter-
ested. It is important to note, however, that you do not
need to know or understand the mathematics surround-
ing the actual construction of a chart as long as you
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understand what the chart represents and how it can
be used to your advantage. Indeed, there are so many
uses for the chart that an entire volume has been writ-
ten on the subject. In this chapter, we will concentrate
mainly on the Smith Chart as an impedance matching
tool and other uses will be covered in later chapters.
The mathematics follow.

The reflection coefficient of a load impedance when
given a source impedance can be found by the formula:

Zs— 1y,

P=7 %7, (Step1)
In normalized form, this equation becomes:
-1
p=2T1 (Step 2)

where Z, is a complex impedance of the form R +jX.
The polar form of the reflection coefficient can also
be represented in rectangular coordinates:

p=p+iq
Substituting into Step 2, we have:
R+X—1

p+iq=————R+].x+1 (Step 3)

If we solve for the real and imaginary parts of
p -+iq, we get:

R2—1+ X2
PERFIEF X (Step 4)
and,

2x
I RIF X (Step 5)

Solve Step 5 for X: .

. 2 — R2 %

x=(ﬂR+ilpR'+5 (Step 6)

Then, substitute Step 6 into Step 5 to obtain:

R \? 1 )2
(p- 1)+ (r31) D
Step 7 is the equation for a family of circles whose .
centers are at:

- _R
PERF
q=0
and whose radii are equal to:
L
R+1

These are the constant resistance circles, some of which
are shown in Fig. 4-28A.
Similaxly, we can eliminate R from Steps 4 and 5

to obtain:
-1+ (a-g) =(x) (sep®
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LA

G +iB 3

or

Y=G+ijB

Y=G-3B

Fig. 4-34. Circuit representation for admittance.

tion on the chart. For instance, rather than locating a
point 180° away from our original starting point, why
not just rotate the chart itself 180° while fixing the
starting point in space? The result is the same, and it
can be read directly off of the rotated chart without
performing a single construction. This is shown in Fig.
4-36 (Smith Chart Form ZY-01-N)* where the rotated
chart is shown in black. Notice that the impedance
plotted (solid lines on the red coordinates) is located
at Z=1+ijl ohms, and the reciprocal of that (the
admittance) is shown by dotted lines on the black
coordinates as Y = 0.5 — j0.5. Keep in mind that be-
cause we have rotated the chart 180° to obtain the ad-
mittance coordinates, the upper half of the admittance
chart represents negative susceptance (—jB) which is
inductive, while the lower half of the admittance chart
represents a positive susceptance (-+jB) which is
capacitive. Therefore, nothing has been lost in the ro-
tation process.

The chart shown in Fig. 4-36, containing the super-
imposed impedance and admittance coordinates, is
an extremely useful version of the Smith Chart and is
the one that we will use throughout the remainder of
the book. But first, let’s take a closer look at the admit-
tance coordinates alone.

Admittance Manipulation on the Chart

Just as the impedance coordinates of Figs. 4-32 and
4-33 were used to obtain a visual indication of what
occurs when a series reactance is added to an im-
pedance, the admittance coordinates provide a visual
indication of what occurs when a shunt element is
added to an admittance. The addition of a shunt ca-
pacitor is shown in Fig. 4-37. Here we begin with an
admittance of Y=02—j0.5 mho and add a shunt
capacitor with a susceptance (reciprocal of reactance)
of +j0.8 mho. Mathematically, we know that parallel
susceptances are simply added together to find the
equivalent susceptance. When this is done, the result
becomes:

Y=02—-j0.5+j0.8
= 0.2+ §0.3 mho

If this point is plotted on the admittance chart, we
quickly recognize that all we have done is to move
along a constant conductance circle (G) downward
(clockwise) a distance of jB = 0.8 mho. In other words,

© Smith Chart Form ZY-01-N is a copyright of Analog Instruments Com-
pany, P.O. Box 808, New Providence, NJ 07974. It and other Smith Chart
accessories are available from the company.
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the real part of the admittance has not changed, only
the imaginary part has. Similarly, as Fig. 4-38 indicates,
adding a shunt inductor to an admittance moves the
point along a constant conductance circle upward
(counterclockwise) a distance (—jB) equal to the
value of its susceptance. _

If we again superimpose the impedance and admit-
tance coordinates and combine Figs. 4-32, 4-33, 4-37,
and 4-38 for the general case, we obtain the useful
chart shown in Fig. 4-39. This chart graphically illus-
trates the direction of travel, along the impedance
and admittance coordinates, which results when the
particular type of component that is indicated is added
to an existing impedance or admittance. A simple ex-
ample should illustrate the point (Example 4-6).

IMPEDANCE MATCHING
ON THE SMITH CHART

Because of the ease with which series and shunt
components can be added in ladder-type arrangements
on the Smith Chart, while easily keeping track of the

impedance as seen at the input terminals of the struc-

ture, the chart seems to be an excellent candidate for
an impedance-matching tool. The idea here is simple.
Given 2 load impedance and-given the impedance that
the source would like to see, simply plot the load im-
pedance and, then, begin adding series and shunt
elements on the chart until the desired impedance is
achieved—just as was done in Example 4-6.

Two-Element Matching

Two-element matching networks are mathematically
very easy to design using the formulas provided in
earlier sections of this chapter. For the purpose of il-
lustration, however, let’s begin our study of a Smith
Chart impedance-matching procedure with the simple
network given in Example 4-7. _

To make life much easier for you as a Smith Chart
user, the following equations may be used. For a
series-C component:

1

For a series-L. component:

_ XN

| =— (Eq. 4-12)

For a shunt-C component:

_B

=N (Eq. 4-13)
For a shunt-L, component:

=N

=B (Eq.4-14)
where,

o = 2nf,

X = the reactance as read from the chart,
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Fig. 4-37. Addition of a shunt capacitor.
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Fig, 4-39. Summary of component addition on a Smith Chart.
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B = the susceptance as read from the chart,
N = the number used to normalize the original im-
pedances that are to be matched.

If you use the preceding equations, you will never
have to worry about changing susceptances into re-
actances before unnormalizing the impedances. The
equations take care of both operations. The only thing
you have to do is read the value of susceptance (for
shunt components) or reactance (for series compo-
nents) directly off of the chart, plug this value into
the equation used, and wait for your actual component
values to pop out.

Three-Element Matching

In earlier sections of this chapter, you learned that
the only real difference between two-element and
three-element matching is that with three-element
matching, you are able to choose the loaded Q for the
network. That was easy enough to do in a mathe-
matical-design approach due to the virtual resistance
concept. But how can circuit Q be represented on a
Smith Chart?

As you have seen before, in earlier chapters, the Q
of a series-impedance circuit is simply equal to the
ratio of its reactance to its resistance. Thus, any point
on a Smith Chart has a Q associated with it. Alter-
nately, if you were to specify a certain Q, you could
find an infinite number of points on the chart that
could satisfy that Q requirement. For example, the
following impedances located on a Smith Chart have
aQof5:

R+iX=1=%=j5
=05=%=j25
=02=ijl
=0.1==j0.5
= 0.05 £ j0.25

These values are plotted in Fig. 4-45 and form the
arcs shown. Thus, any impedance located on these
arcs must have a Q of 5. Similar arcs for other values
of Q can be drawn with the arc of infinite Q being
located along the perimeter of the chart and the Q=0
arc (actually a straight line) lying along the pure
resistance line located at the center of the chart.

The design of high-Q three-element matching net-
works on a Smith Chart is approached in much the
same manner as in the mathematical methods pre-
sented earlier in this chapter. Namely, one branch of
the network will determine the loaded Q of the cir-
cuit, and it is this branch that will set the character-
istics of the rest of the circuit.

The procedure for designing a three-element im-
pedance-matching network for a specified Q is sum-
marized as follows:

1. Plot the constant-Q arcs for the specified Q.

RF Cmcuir DEsieN

2. Plot the load impedance and the complex conjugate
of the source impedance.

3. Determine the end of the network that will be
used to establish the loaded Q of the design. For
T networks, the end with the smaller terminating
resistance determines the Q. For Pi networks, the
end with the larger terminating resistor sets the Q.

4. For T networks:

R: >R,

EXAMPLE 4-6

What is the impedance looking into the network shown
in Fig, 4-40? Note that the task has been simplified due to
the fact that shunt susceptances are shown rather than shunt
reactances.

iX = 0.9 —jX =1.4 iX=1

. I —iB
+iB = 1.1I =03

Fig. 4-40. Circuit for Example 4-6.

N

Solution

This problem is very easily handled on a Smith Chart and
not a single calculation needs to be performed. The solution
is shown in Fig. 4-42, It is accomplished as follows.

First, break the circuit down into individual branches as
shown in Fig. 4-41. Plot the impedance of the series RL
branch where Z = 1 + j1 ohm. This is point A in Fig. 4-42.
Next, following the rules diagrammed in Fig. 4-39, begin
adding each component back into the cirbuit—one at a time.
Thus, the following constructions (Fig. 4-42) should be
noted:

c
iX =09 —[X‘=14 iX =1 -
_Jrnes J' T
r r +iB =11 ,——'o’g R=1
E D I B A

Fig. 4-41. Circuit is broken down into individual
branch elements.

Arc AB = shunt L, = —jB = 0.3 mho
Arc BC = series C = —jX = 1.4 ohms
Arc CD = shunt C = +jB = 1.1 mhos
Arc DE = series L = +jX = 0.9 ohm

The impedance at point E (Fig. 4-42) can then be read
directly off of the chart as Z = 0.2 + j0.5 ohm.

Continued on next page
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EXAMPLE 4.6—Cont.

NAME

TITLE

DWG. NO.

' SMITH CHART FORM ZY-01-N

ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974

DATE

NORMALIZED IMPEDANCE AND ADMIT TANCE COORDINATES

H

PRINTED IN U.S.a.

e
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Fig. 4-42. Smith Chart solution for Example 4-8,

COPYRIGHY 1970 ¥ ANALOG INSTRUMENTS COMPARY. HEW PROVIDENCE, N.y,
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Move from the load along a constant-R circle (series
element) and intersect the Q curve. The length of
this move determines your first element. Then, pro-
ceed from this point to Z,* (Z,* = Z, conjugate) in
two moves—first with a shunt and, then, with a se-
ries element.

Rg<RL

Find the intersection (I) of the Q curve and the
source impedance’s R = constant circle, and plot
that point. Move from the load impedance to point
I with two elements—first, a series element and,
then, a shunt element. Move from point I to Z,*
along the R = constant circle with another series
element.

. For Pi networks:

Rs >Ry

Find the intersection (I) of the Q curve and the
source impedance’s G = constant circle, and plot
that point. Move from the load impedance to point

RF Cmcurr DEsieN

I with two elements—first, a shunt element and, then,
a series element. Move from point I to Z* along the
G = constant circle with another shunt element.

Rs<Rg

Move from the load along a constant G circle (shunt
element) and intersect the Q curve. The length of
this move determines your first element. Then, pro-
ceed from this point to Z,* in two moves—first, with
a series element and, then, with a shunt element.

The above procedures might seem complicated to the
neophyte but remember that we are only forcing the
constant-resistance or constant-conductance are, lo-
cated between the Q-determining termination and .the
specified-Q curve, to be one of our matching elements.
An example may help to clarify matters (Example 4-8).

Multielement Matching

In multielement matching networks where there is
no Q constraint, the Smith Chart becomes a veritable

EXAMPLE 4.7

Design a two-element impedance-matching network on a
Smith Chart so as to match a 25 — j15-obm source to a
100 — j25-ohm load at 60 MHz. The matching network
must also act as a low-pass filter between the source and
the load.

Solution

Since the source is a complex impedance, it wants to
“see” a load impedance that is equal to its complex conju-
gate (as discussed in earlier sections of this chapter). Thus,
the task before us is to force the 100 — j25-ohm load to
look like an impedance of 25 + j15 ohms.

Obviously, the source and load impedances are both too
large to plot on the chart, so normalization is necessary.
Let’s choose a convenient number (N = 50) and divide all
impedances by this number. The results are 0.5 -+ j0.3 ohm
for the impedance the source would like to see and 2 — jo.5
ohms for the actual load impedance. These two values are
easily plotted on the Smith Chart, as shown in Fig, 4-44,
where, at point A, Zy. is the normalized load impedance
and, at point C, Z,* is the normalized complex conjugate of
the source impedance.

The requirement that the matching network also be a
low-pass filter forces us to use some form of series-L,
shunt-C arrangement. The only way we can get from the
impedance at point A to the impedance at point € and still
fulfill this requirement is along the path shown in Fig. 4-44.

Thus, following the rules of Fig. 4-39, the arc AB of F ig.

4-44 is a shunt capacitor with a value of +jB = 0.73 mho.

The arc BC is a series inductor with a value of +iX =1.2

ohms.
The shunt capacitor as read from the Smith Chart is a
susceptance and can be changed into an equivalent reac-

tance by simply taking the reciprocal.

= j0.73 mho
= —j1.37 ohms

To complete the network, we must now unnormalize all
impedance values by multiplying them by the number
N = 50—the value originally used in the normalization pro-
cess. Therefore:

XL =60 ohms
X = 68.5 ohms

The component values are:

_X%

- 60
~ 2w (60 X 108)
= 159 nH

1

C=mXc

1
~ 27(60 X 108)(88.5)
= 38.7 pF

The final circuit is shown in Fig. 4-43.

25—{15Q

Ny 38.7 pF% 100—j25 @
Fig. 4-43. Final circuit for Example 4-7.

Continued on next page




