1. The following are questions from p 78 of the textbook. These could be good closed-book exam questions.
 a) 2.1. What types of connections are possible for three-phase generators and loads?
 b) 2.2. What is meant by the term “balanced” in a balanced three-phase system?
 c) 2.3. What is the relationship between phase and line voltages and currents for a wye (Y) connection?
 d) 2.4. What is the relationship between phase and line voltages and currents for a delta (Δ) connection?
 e) 2.5. What is phase sequence?
 f) 2.7. What is a Y-Δ transform?

2. Textbook 2-1. Three impedances of $4 + j3 \, \Omega$ are Δ-connected and tied to a three-phase 208-V power line. Find I_L, P, Q, S, and the power factor of this load.

3. A balanced three-phase 480-V source (three line-to-neutral voltages of 277 V) supplies a balanced three-phase inductive load. The load draws a total of 9 kW at a power factor of 0.9. Calculate the phase currents and the magnitude of the per-phase load impedances, assuming a Y-connected load. Draw a phasor diagram showing all three voltages and currents, assume V_a is 0°.
 - In order to correct the power factor, three capacitors are connected in parallel with the load impedances. Find the value of the capacitors.

4. Repeat problem 3, assuming a delta-connected load.

5. The voltmeter shown measures 120 V. Let this voltage be the phase reference (0°). The phase impedance is $Z_φ = 5.2 + j2.7 = 5.86/27.44° \, \Omega$.
 a) What is V_{AB} as a phasor?
 b) What would the ammeter measure?
 c) What is the apparent power?
 d) What is the real power?
 e) Correct the power factor with capacitors connected in a delta configuration, that is, find the value of the capacitors.

Answers
1. a) 2.1. Y & Δ
 b) 2.2. The 3 voltages are equal, the 3 currents are equal and the 3 loads are equal.
 c) 2.3. $V_φ = \frac{V_{LL}}{\sqrt{3}} = \frac{V_L}{\sqrt{3}}$
 d) 2.4. $V_φ = V_{LL} = V_L$
 e) 2.5. abc or acb
 f) 2.7. $Z_Y = \frac{Z_Δ}{3}$

2. a) 41.6 A
 b) 72.1 A
 c) 20.8 kW
 d) 15.6 kVAR
 e) 26.0 kVA

3. a) 12 Alagging by 25.8°
 b) 23 Ω
 c) 50.2 μF
 d) 208 V $e^{j30°}$
 e) 20.5 A
 f) 7.37 kVAR
 g) 6.54 kW
 h) 69.5 μF

5. a) 168 A
 b) 117 kVA
 c) 108 kW
 d) 51.541 °

ECE 3600 homework # 4