Na	Name:	omework TL2 ext
	1. If the voltage at the receiving-end of a transmission line is too low to raise the voltage?	w, what can the power company do at the receiving-end
	2. If the voltage at the receiving-end of a transmission line is too hig lower the voltage?	gh, what can the power company do at the receiving-end to
3.	3. Why and/or where are HVDC used?	
4.	4. What is the purpose of phase-shifting transformers?	
	Where are they often found?	

1. A 230 kV transmission line is 70 km long and has line parameters shown in "Transmission Line typical Values" table in "Transmission Line Notes" handout (p6). $|V_{SLL}|$ is 230 kV. Assume the phase angle of $|V_S|$ is 0° and that the source sees a pf = 0.8, lagging.

From Table: $r := 0.055 \ \Omega/km$ $x := 0.489 \ \Omega/km$ $y := j \cdot \left(3.373 \cdot 10^{-6}\right) \ S/km$ Assume: g := 0 S/km

a) The source provides $170~\rm MVA$ at $0.8 \rm pf$ (lagging) to the source end of the transmission line. Use the short-length model to find $\bf I_R$ and $\bf V_R$.

b) What is the angle δ ?

c) What is the power factor of the load?

Solve the following problems in your textbook, starting on p.489.

ECE 3600 homework TL2 p3

2. 9-11 A 138 kV, 200 MVA, 60 Hz, three-phase, power transmission line is 100 km long, and has the following characteristics:

 $r := 0.103 \cdot \frac{\Omega}{km} \hspace{1cm} x := 0.525 \cdot \frac{\Omega}{km} \hspace{1cm} y := j \cdot \left(3.3 \cdot 10^{-6}\right) \cdot \frac{S}{km} \hspace{1cm} len := 100 \cdot km$

a) What is per phase series impedance and shunt admittance of this transmission line?

Series impedance:

Shunt admittance:

Shunt impedance:

- b) Should it be modeled as a short, medium, or long transmission line?
- d) Sketch the phasor diagram of this transmission line when the line is supplying rated voltage and apparent power at a 0.90 power factor lagging.
- e) Calculate the sending-end line-voltage if the line is supplying rated voltage and apparent power at 0.90 PF lagging.

- f) This part asks for the voltage regulation, a number of dubious value given it's dependance on the power factor of the load. You can read more on p. 469 of your textbook, but no answer is required here.
- g) What is the efficiency of the transmission line for the conditions in (e)?
- h) 9-13 What is the "power angle", δ ?

4. A 765 kV transmission line is 200 km long and has line parameters shown in "Transmission Line typical Values" table. Use the medium-length model to find $\mathbf{V_S}$ and $\mathbf{I_S}$ if the line is loaded to 1800 MVA and $|\mathbf{V_{RLL}}|$ is 770 kV. Assume the phase angle of $\mathbf{V_R}$ is 0° and assume load pf = 1.

Answers

1. a) 426.7·A <u>/</u> - 36.87·deg

123.2·kV /_ -4.98·deg

2. a) $(10.3 + j.52.5) \cdot \Omega$ $j.0.00033 \cdot S$ $\frac{\mathsf{V}_{\mathsf{S}}}{\mathsf{V}_{\mathsf{R}}}$

e) $111.8 \cdot kV \cdot \sqrt{3}$ f) no ans.

3. 21.8·deg

b) 4.98·deg

c) 0.8494. 443 kV /12.0°

1375 A <u>/18.56</u>°

b) medium

g) 89.4·% h) 18.74·deg