
1. A one-line diagram of a 3ϕ system is shown below. Manufacturer's information is shown for the generator and each transformer.

a) Choose an S_{base} to minimize the per-unit base conversions. Then choose regions and a V_{base} for each region.

b) Find I_{base} and Z_{base} in each of the regions.

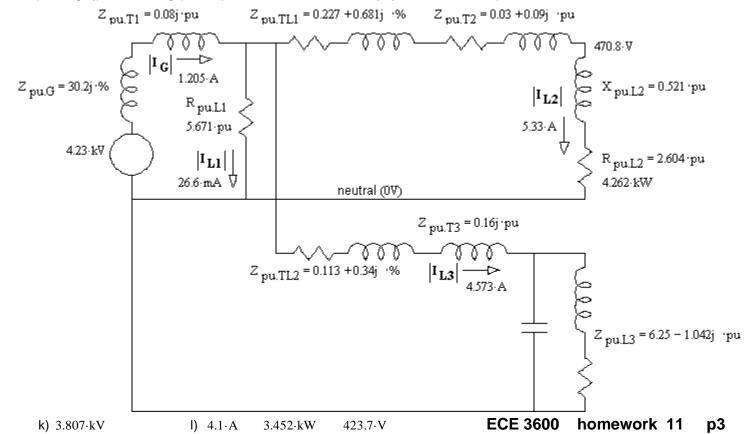
c) Make the necessary per-unit \boldsymbol{S}_{base} conversions.

d) Find the impedances of the two transmission lines and convert to pu.

e) Draw the per-phase diagram on separate paper, showing all the per-unit numbers found or given so far.

ALL calculations made to this point ONLY need to be made ONCE for this system and S_{base}!!

f) Find the pu values of the 3 loads and add that information to the per-phase diagram.


g) The line voltage at bus1 is measured and found to be $V_{bus1} = 46.00 \cdot kV$ Assume the phase angle is 0° . Find all 3 load line-current magnitudes and the magnitude of the generator line-current. Please remember that you can't add magnitudes, so may need some complex values.

- h) Find the power delivered to Load 2, both in pu and in kW.
- i) Find the line voltage at Load 2 (magnitude).
- j) Find the line voltage at the generator (magnitude).

- I) Find the magnitude of Load-3 line current and repeat parts h) and i) for this new generator voltage.
 - Note: It may be helpful to realize that if one voltage in the system drops by 10%, so do all the rest, and so do all the currents. Drop by 10% means multiply by 0.9. All powers drop too, but use $(0.9)^2$ as the factor.

Answers

- 1. a) 12·kVA 4·kV 46·kV etc
 - b) $1.732 \cdot A$ $1.333 \cdot k\Omega$
- $0.151 \cdot A$ $176.3 \cdot k\Omega$ etc
- c) through j) see drawing (mix of pu values and real values, pay attention to units)

