ECE 3600 homework 8A Non-Ideal transformers

- 1. The parameters of a 5:1 step-down transformer are shown below. The transformer is loaded with $\mathbf{Z}_{\mathbf{L}} := (2.5 + 0.8 \cdot \mathbf{j}) \cdot \Omega$ and the secondary voltage is $V_2 := 36 \cdot V$
 - $R_m := 2 \cdot k\Omega$ $R_s := 2 \cdot \Omega$ $X_m := 800 \cdot \Omega$ $X_s := 5 \cdot \Omega$ N := 5
 - a) Draw the model with the load connected. Label parts, voltages and currents as needed for the rest of the problem.
 - b) Find the primary, source voltage. Magnitude only. $|V_{S}| = ?$
 - c) Find the total complex power supplied the primary, source voltage. $S_{S} = P_{S} + j \cdot Q_{S} = ?$
 - d) Find the magnitude of the current flowing from the primary, source voltage. $|I_S|$ = ?
 - e) Find the efficiency of the transformer. $\eta = ?$
 - f) The transformer would be fully loaded if $V_S := 208 \cdot V$ and $Z_L := 2 \cdot \Omega$ all real Find the voltage regulation as defined in your notes. %VR = ?
- 2. The parameters of a 4:1 step-down transformer are shown below. The primary voltage is V $_{S}$ = 120 V

The transformer is loaded with $Z_L = R_L + jX_L$ and the secondary current is $I_2 = 3.2 \cdot A$

$$R_m := 1.5 \cdot k\Omega$$
 $R_s := 5 \cdot \Omega$ $X_m := 1 \cdot k\Omega$ $X_s := 7 \cdot \Omega$ $N := 4$

- a) The primary, source voltage provides $40~\rm VARs~Q$ $_S$ = $40~\rm VAR~$ Find ~X $_L$ Hint: draw the model with the load.
- b) Find R_L
- c) Find the efficiency of this transformer. $\eta = ?$

Answers

