Name			ECE 3600	Homework	8A	Non-Ideal transformers	С
1. The parameters of a step-down transformer are shown below. Due: Sat, 2/1/25 The transformer is loaded with $\mathbf{Z}_{\mathbf{L}} := (2.5 + 0.8 \cdot j) \cdot \Omega$ and the secondary voltage is $\mathbf{V}_2 := 36 \cdot \mathbf{V}$							
R _m :	=2·kΩ	$R_{s} = 2 \cdot \Omega$	$X_m = 800 \cdot \Omega$	$X_{s} := 5 \cdot \Omega$	N := 5	;	

a) Draw the model with the load connected. Label parts, voltages and currents as needed for the rest of the problem.

b) Find the primary, source voltage. Magnitude only. $\left| \mathbf{V}_{S} \right| = ?$

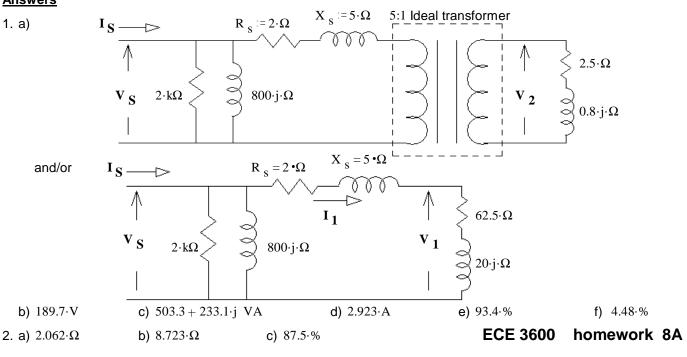
c) Find the total complex power supplied the primary, source voltage. S $_{S}$ = $P_{S} + j \cdot Q_{S}$ = ?

d) Find the magnitude of the current flowing from the primary, source voltage. $|\mathbf{I}_{\mathbf{S}}|$ = ?

f) The transformer would be fully loaded if $V_S = 208 \cdot V$ and $Z_L = 2 \cdot \Omega$ all real Find the voltage regulation as defined in your notes. %VR = ?

2. The parameters of a step-down transformer are shown below. The primary voltage is $V_S = 120 \cdot V_T$ The transformer is loaded with $Z_L = R_L + jX_L$ and the secondary current is $I_2 = 3.2 \cdot A$

 $R_{m} := 1.5 \cdot k\Omega \qquad R_{s} := 5 \cdot \Omega \qquad X_{m} := 1 \cdot k\Omega \qquad X_{s} := 7 \cdot \Omega \qquad N := 4$


a) The primary, source voltage provides 40 VARs Q $_{\text{S}} = 40 \text{ VAR}$ Find X $_{\text{L}}$ Hint: draw the model with the load.

b) Find R $_L$

р3

c) Find the efficiency of this transformer.

