1. The parameters of a step-down transformer are shown below.

Due: Tue, 9/24/24 V ₂ = 36·V

The transformer is loaded with $\mathbf{Z}_{\mathbf{L}} = (2.5 + 0.8 \cdot \mathbf{j}) \cdot \Omega$ and the secondary voltage is

$$R_m := 2 \cdot k\Omega$$
 $R_s := 2 \cdot \Omega$ $X_m := 800 \cdot \Omega$ $X_s := 5 \cdot \Omega$

a) Draw the model with the load connected. Label parts, voltages and currents as needed for the rest of the problem.

b) Find the primary, source voltage. Magnitude only. $\left|V\right|=?$

c) Find the total complex power supplied the primary, source voltage. $S_S = P_S + j \cdot Q_S = ?$

d) Find the magnitude of the current flowing from the primary, source voltage. $|\mathbf{I}_{\mathbf{S}}| = 1$

p2

f) The transformer would be fully loaded if $V_S = 208 \cdot V$ and $Z_L = 2 \cdot \Omega$ all real Find the voltage regulation as defined in your notes. %VR = ?

2. The parameters of a step-down transformer are shown below. The primary voltage is $V_S := 120 \cdot V$ The transformer is loaded with $\mathbf{Z_L} = R_L + jX_L$ and the secondary current is $I_2 := 3.2 \cdot A$

$$R_{m}:=1.5\cdot k\Omega \qquad \qquad R_{s}:=5\cdot \Omega \qquad \qquad X_{m}:=1\cdot k\Omega \qquad \qquad X_{s}:=7\cdot \Omega \qquad \qquad N:=4$$

a) The primary, source voltage provides $40~\rm{VAR}$ $~\rm{Q}$ $_{S}$ = $40\cdot\rm{VAR}$ $~\rm{Find}$ $~\rm{X}$ $_{L}$ Hint: draw the model with the load.

b) Find $\,{\rm R}_{\,L}$

	c) Find the efficiency of this transformer.
	lon-Ideal transformers, tests A $500V/200V$, 30-kVA , 60-Hz transformer is subjected to a SC test. The secondary is short-circuited and the primary voltage is raised until rated current is flowing. This occurs when the applied voltage equals 8.2% of rated winding voltage. The transformer consumes 600 W during the test. $P_{SC} := 600\text{-W}$ a) Compute the series impedance $\mathbf{Z}_s = R_s + jX_s$ of the transformer.
	b) Compute the core flux during the SC test. (Express its magnitude in percent of normal operating flux.)c) Why is it permissible to assume that all of the 600 W constitute ohmic losses in R, and no part of it is core loss?
4.	The same 30-kVA transformer is subjected to an OC test. The transformer consumes 500 W and draws 1.8 A. a) Find $R_{\rm m}$ and $X_{\rm m}$.
	b) The open-circuit voltage measured on the secondary is $206V$. Find the actual turns ratio.

ECE 3600 homework 8 p3

ECE 3600 Homework 8 p4

- 5. Same transformer, but now the following impedance is hooked to the secondary: $\mathbf{Z}_{L} = (1.3 + 0.2 \cdot \mathbf{j}) \cdot \Omega$
- a) Find the currents in both windings and the secondary voltage by use of the ideal (IT) model. $V_P = 500 \cdot V$

b) Same as in part a) but now include the transformer impedances and actual turns ratio in your analysis. Take note of the change in your answers.

- Differences between the ideal and non-ideal are only minor due to the additional windings on the secondary.
- c) Find the efficiency.

d) Is the transformer current-overloaded?

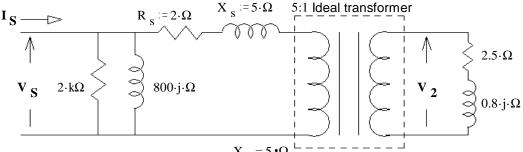
6.	A tra	ansfor	mer is	rated	at 210V	70V,	420VA.
			_	_	_		

The following values were found by making the standard OC and SC tests. $\boldsymbol{R}_{\boldsymbol{m}}$ and $\boldsymbol{X}_{\boldsymbol{m}}$ were neglected when finding the other two components.

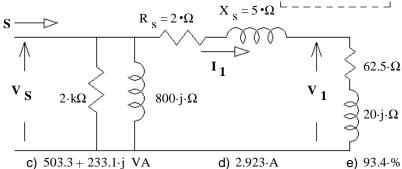
a) Draw the standard non-ideal transformer model and label the parts.

ECE 3600 Homework 8 p5

$$R_{m} = 2 \cdot k\Omega$$
 $X_{m} = 747 \cdot \Omega$


$$R_s := 4 \cdot \Omega$$
 $X_s := 8.2 \cdot \Omega$ $N := 2.85$

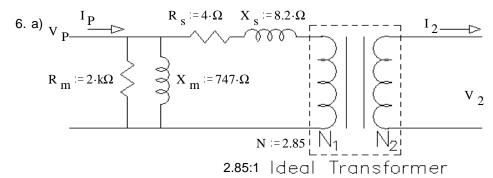
b) What were the measurements that were taken in the standard open-circuit test? (Give me numbers)


c) What were the measurements that were taken in the standard short-circuit test? (Give me numbers)

Answers

1. a)

and/or



- b) 189.7·V
- b) 8.723·Ω
- c) 87.5·%

- 2. a) 2.062·Ω
- 0.723 12
- C) 87.3·70

- 3. a) $0.167 + 0.663j \cdot \Omega$
- b) 8.2% of normal rated value.
- c) Because the core flux is 8.2% of normal rated value, the core losses (which are approximately proportional to the square of the flux) are negligible.
- 4. a) $500 \cdot \Omega$ & $334 \cdot \Omega$
- b) 2.427
- 5. a) 60.8·A 152.1·A 200·V
- b) 62.2·A a little more
- 151-A a little less
- 198.6·V

- c) 96.3·%
- d) yes, barely.

b) 22.05·W 0.3A 73.68·V

f) 4.48·%

c) 16·W 18.25·V