ECE 3600 Final Exam Study Guide The Final Exam will be on Thursday 12/17/09. The first part will be a closed book, no calculator questions, ~ 50 - 60 points. 5 or 6 problems, 100 - 110 points The second part will be a open book, open notes, with calculator problems. (closed book) The exam will cover Possible questions 1. Material from Exam 1 and Exam 2 Study the questions from exam 1 and 2 2. HW 1 AC steady-state review, used extensively throughout class 3. HW 2 RMS & Single-phase AC power. P Q S |S| pf correction of pf Basic relationships and units 4. HW 4 Energy sources, plant efficiencies Lots possible 5. HW 5 3-phase AC power. Basic magnitude and phase relationships $V_L V_{LL} V_{LN} I_L I_{LL} I_Y S_{3\phi} S_{1\phi}$ $\mathbf{Z}_{\mathbf{Y}} = \frac{\mathbf{Z}_{\Delta}}{2}$ $\mathbf{Z}_{\Delta} = 3 \cdot \mathbf{Z}_{\mathbf{y}}$ pf correction of pf 6. HW 7 Magnetic circuits Flux density, Field intensity, $H = \frac{N \cdot i}{l m}$ Permeability, B-H curve. effects $B = \mu \cdot H$ of nonlinearity on some currents (3rd harmonic). 7. HW 7 - 9 Transformers losses, ideal/non Calculations construction, ratings, magnetization reactance, Impedance transformation core losses, winding losses, OC & SC Tests --> model leakage reactance. n & VR Autotransformers Autotransformers 3ϕ Transformers Δ & 3rd harmonic 8. HW 9 - 11 One-Line Diagrams, variations pu system Why? basics Per-phase and pu analysis common symbols Calculations **Base Values** S_{base} V_{base} I_{base} Zhase Base transformation 9. HW 12 -14 Synchronous generators and motors losses, construction, limits, operation Know the phasor diagram! 10. HW 15 - 17 Induction motors Poles, slip, why, how Know the model! Question 7-11 HW17, p3 Powers P_{AG} P_{conv} P_{out} etc. η Torque & speeds Types & effect of R₂ Typ torque-speed curves Single phase motors Single phase starting

ECE 3600 Final Exam Study Guide p2

11. HW 18 - 19 DC motors	
Know the model!	Torque-speed curve
Powers P _{conv} P _{out} etc. η	
Torque & speeds	
Series-wound & universal motors	Torque-speed curve
12. HW 20 Transmission Lines	Short Mad Long million
Short, Med, Long Z _C SIL	Short, Med, Long mi, km Surge impedance
Series impedance 7 Shunt admittance 8 Y shunt	Surge impedance loading
Series impedance $\mathbf{Z}_{\text{series}}$ Shunt admittance & $\frac{1}{2}$	Suige impedance loading
Shunt impedance & $2 \cdot \mathbf{Z}_{shunt}$	
Models and calculations	
F08 Answers ECE 3600	Final Exam Study Guide p2
1. 1. Coal 2. Nuclear 2. a) Natural Gas b) peak	
3. a. ≥ 90% b. 35 - 40% c. ~ 38% d. 55 - 60%	
4. a) 0.679 b) yes c) The vehicles should be charged durir	ng off-peak hours.
5. a) B b) μ c) H d) B = $\mu \cdot H$ e) B-H curve or	f) B
6. Air (and distance) Hysteresis curve	H
7. a) Multiple wires per phase b) Reduce corona discharge	V _{b2} V _{a2}
8. Yes, the surge impedance loading does not set the power limit. 9.	leakage reactance
10. a) 20 b) 1000 c) NOT affected d) 50 or 50	
 No connection to ground means no zero-sequence current can flow. Since there is no zero-sequence voltage source, no current means no v 	voltage as well. 12. V_{c2}
Open Book	c2 ¥
1. a) 144·V b) 77.9·% c) 751·µf d) 87.8·%	
2. $1 \cdot \Omega$ $2 \cdot j \cdot \Omega$ $2 \cdot 31 \cdot 1$	$-\frac{4}{$
	1.√3
$3 \cdot j \cdot \Omega$ \exists $1 \cdot k \Omega \neq$ \exists	
	$0.2\Omega \underline{/45^{o}}$
$1 \cdot kV$ $27 \cdot \mu F$	
3. a) $\mathbf{Z}_{\text{series}} = 24 + 96j \cdot \Omega \qquad \left \mathbf{Z}_{\text{series}} \right = 99 \cdot \Omega$	$arg(\mathbf{Z}_{series}) = 75.964 \cdot deg$
v _s	
	$R_{L} := 400 \cdot \Omega$
$2 \cdot \mathbf{Z}_{\text{shunt}} = -2.451 \text{j} \cdot k\Omega$ $2 \cdot \mathbf{Z}_{\text{shunt}}$	
	b) $(191.4 - 15.j) \cdot A$
neutral	192·A / -4.48·deg