
## ECE 3600 Exam 2 given: Spring 24

## DO NOT use erasable ink

- 1. (35pts) A 20-hp, 60-Hz,  $\Delta$ -connected, three-phase, 8-pole synchronous motor operates from a 600-V bus. Neglect electrical and mechanical losses.
  - a) The shaft of the motor is spinning freely (no mechanical load). What is the power angle? Remember, the motor is not loaded and we are neglecting all losses.



- b) The DC field current is  $10~\rm A$ . The armature current is  $0~\rm A$ . What is the value of  $\rm E_A$  in this condition?
- c) The DC field current is increased to 11 A, assume the field is proportional to this current. The armature current is now 2 A and is leading the phase voltage by 90°. Draw the phasor diagram of this condition.

- d) Is the motor under or over excited?
- e) Find the synchronous reactance.

If you can't find  $X_S$ , or doubt your value, mark here \_\_\_\_ and use  $X_S = 25~\Omega$  for the rest of the problem. If it still doesn't seem like you have enough information to answer the following parts, Ask. I will answer questions for points.

f) Find the total reactive power "used" by the motor.

| <ol> <li>continued A mechanical load is now hooked to the motor so that the s</li> <li>g) Find the mechanical power. Pout = ?</li> </ol> | haft torque is | $\tau_{out} := 150 \cdot N \cdot m$ | Exam 2<br>Sp 24 p2 |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------|--------------------|
|                                                                                                                                          |                |                                     |                    |
| h) Find the group and a S = 0                                                                                                            |                |                                     |                    |
| h) Find the power angle. $\delta = ?$                                                                                                    |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
| i) Find the total reactive power used.                                                                                                   |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
| j) We would like to produce 4.2 kVAR (use -4.2 kVAR), no change in real p                                                                | ower. Find the | required $\mathrm{E_{A}}.$          |                    |
|                                                                                                                                          |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
|                                                                                                                                          |                |                                     |                    |
| k) What does the operator change to get this new $\boldsymbol{E}_{\!\boldsymbol{A}}\!,$ and to what new value                            | Je.            |                                     |                    |

| it has an overall effi | ciency of 92.265%, a          | a power factor of 0.8       | 30, and total rotational los         | sses (mechanical) of 415W.   | Sp 24 p3 |
|------------------------|-------------------------------|-----------------------------|--------------------------------------|------------------------------|----------|
| Also known are:        | $X_1 := 0.4 \cdot \Omega$     | $R_C := \infty$             | R <sub>2</sub> := $0.9 \cdot \Omega$ | $1 \cdot hp = 745.7 \cdot W$ |          |
| a) Make a drawing      | the circuit model of o        | one phase. Label <b>all</b> | the parts and add know               | n values as you work the pro | blem.    |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        | e for rated conditions        |                             |                                      |                              |          |
| b) The slip. Make a    | a reasonable assump           | otion as necessary.         |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
| c) The power conve     | erted from electrical t       | o mechanical form.          |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
| d) Find the magnitu    | de of I <sub>2</sub> Note, yo | ou may want to find the     | he parts e) and f) first.            |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
| e) The power transf    | formed from the state         | or to the rotor (the ai     | r-gap power).                        |                              |          |
| -, -,                  |                               | (                           | 3-1-1 <i>/</i>                       |                              |          |
|                        |                               |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |
| f) The rotor copper    | loss.                         |                             |                                      |                              |          |
|                        |                               |                             |                                      |                              |          |

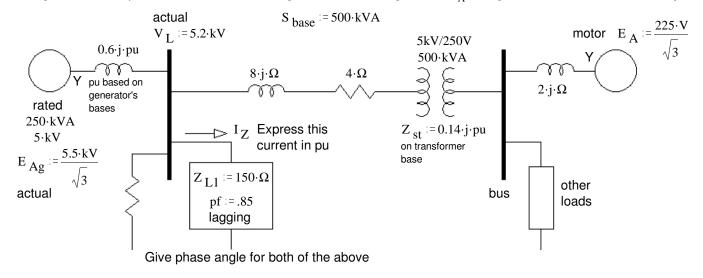
2. (40 pts) A 3-phase,  $\Delta$ -connected, induction motor is rated at 50-hp, 1134-rpm, 480-V, 60-Hz. At rated conditions,

Exam 2

| g) The stator copper loss. | Hint: | The input power is the sum of two or three different pover. | vers |
|----------------------------|-------|-------------------------------------------------------------|------|
| g, The states copper loce. |       | The input perior is the same of the or three amoretic per   |      |

| Exa | am | 2  |
|-----|----|----|
| Sp  | 24 | p4 |

| h) The magnitude of the line current. (Remember, it's $\Delta$ -connec |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|


i) Find R 
$$_{\rm 1}$$

j) The total reactive power used by j $X_2$  is:  $Q_{X2}$  = 2.926 kVAR Find:  $X_2$ 

k) Find:  $X_m$  Note: This will require the calculation of several numbers you probably don't have yet. Hint: The input Q is the sum of several different Qs.

3. (25 pts) A one-line, per-phase diagram is shown below. Using the  $S_{base}$  given, draw a per-phase, per-unit diagram. Include pu values for all the values given in the drawing below.  $E_{A}$  voltages are line-to-neutral.

Exam 2 Sp 24 p5



\_\_\_\_\_/ 25 Total \_\_\_\_\_/ 100

## **Answers**

1. a) 0·deg

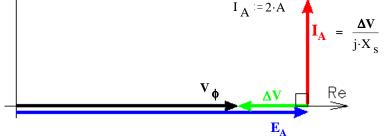
b) 600·V

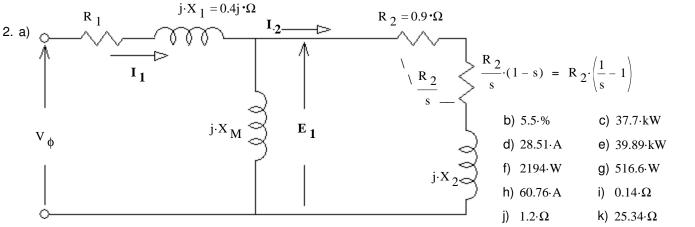
c)

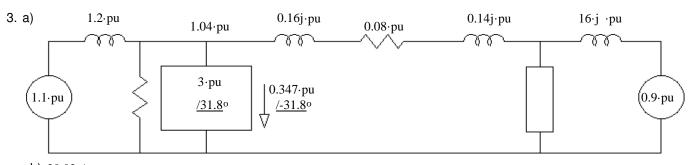
d) over excited

e) 30·Ω

f) - 3.6·kVAR


g) 18.96·hp


h) 20.92·deg + or - acceptable


i) -990.6·VAR

j) 710.2·V

k) 11.8·A





