<table>
<thead>
<tr>
<th>Week</th>
<th>Month</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thur</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan</td>
<td>8</td>
<td>L1 Introduction, Energy sources, generation, & environment</td>
<td>9</td>
<td>10 L2 Hw1, Review of steady-state AC and phasors</td>
<td>11</td>
<td>12 L3 Review of steady-state AC and phasors</td>
</tr>
<tr>
<td>2 Mar</td>
<td>15 Martin Luther King Day</td>
<td>16</td>
<td>17 L4 RMS, Single-phase AC power</td>
<td>18</td>
<td>19 L5 Single-phase AC power, P, Q, S,</td>
<td></td>
</tr>
<tr>
<td>3 Mar</td>
<td>22</td>
<td>L6 Single-phase AC power, 3-phase power</td>
<td>23</td>
<td>24 L7 3-phase power, Y- and delta-connections</td>
<td>25</td>
<td>26 L8 3-phase power, balanced systems, efficiency, One-line diagrams</td>
</tr>
<tr>
<td>4 Mar</td>
<td>29 Field Trip</td>
<td>30</td>
<td>31 L9 Electromagnetics, Ideal transformers, Ratings</td>
<td>1</td>
<td>2 L10 Transformation of impedance, Model of the non-ideal transformer</td>
<td></td>
</tr>
<tr>
<td>5 Feb</td>
<td>5</td>
<td>L11 Non-ideal transformer, tests</td>
<td>6</td>
<td>7 L12 Transformer voltage reg., Autotransformers, 3-phase, etc.</td>
<td>8</td>
<td>9 L13 Power system diagrams Per-unit system</td>
</tr>
<tr>
<td>6 Feb</td>
<td>12 Exam 1</td>
<td>13</td>
<td>14 L14 Per-unit system</td>
<td>15</td>
<td>16 L15 Rotational Motion, AC Machinery Fundamentals</td>
<td></td>
</tr>
<tr>
<td>7 Feb</td>
<td>19 Presidents Day</td>
<td>20</td>
<td>21 L16 Synchronous machines</td>
<td>22</td>
<td>23 L17 Synchronous machines as generators, examples</td>
<td></td>
</tr>
<tr>
<td>8 Feb</td>
<td>26 L18 Placing generator on line, Synchronous machines as motors</td>
<td>27</td>
<td>28 L19 Synchronous motors, pf correction</td>
<td>29</td>
<td>1 L20 3-phase Induction motors,</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>4 Spring Break</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9 Mar</td>
<td>11 L21 3-phase Induction motors, examples</td>
<td>12</td>
<td>13 L22 3-phase Induction motors, tests</td>
<td>14</td>
<td>15 L23 Single-phase Induction motors</td>
<td></td>
</tr>
<tr>
<td>10 Mar</td>
<td>18 Exam 2</td>
<td>19</td>
<td>20 L24 DC motors</td>
<td>21</td>
<td>22 L25 DC motors</td>
<td></td>
</tr>
<tr>
<td>11 Mar</td>
<td>25 Field Trip</td>
<td>26</td>
<td>27 L26 DC motors & loads</td>
<td>28</td>
<td>29 L27 Finish DC motors, Transmission lines</td>
<td></td>
</tr>
<tr>
<td>12 Mar</td>
<td>1 L28 Transmission lines</td>
<td>2</td>
<td>3 L29 Transmission line models, calculations & examples</td>
<td>4</td>
<td>5 Exam 3</td>
<td></td>
</tr>
<tr>
<td>13 Mar</td>
<td>8 Field Trip</td>
<td>9</td>
<td>10 L30 Power System & Power Flow Problem</td>
<td>11</td>
<td>12 L31 Power Flow Problem, Faults</td>
<td></td>
</tr>
<tr>
<td>14 Mar</td>
<td>15 L32 Types of faults, The 3 "sequences"</td>
<td>16</td>
<td>17 L33 Faults, Sequence Impedances</td>
<td>18 ME Design Day, Union Build.</td>
<td>19 L34 Protection</td>
<td></td>
</tr>
<tr>
<td>15 Mar</td>
<td>22 L35 Protection</td>
<td>23 Last Day of Classes</td>
<td>24 Reading Day, ECE 3600 Review</td>
<td>25 ECE3600 Final 3:30 pm</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>16 Mar</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2 Freedom</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>