ECE 3600 Transmission Line notes

*Based on copper 97%, aluminum 61% conductivity

- reased on copper 9 7s. and munitum
The conductor at 75℃, air at 25℃, wind 1.4 miles per hour (2 ft/sec), frequency = 60Hz.
‡ "Current Approx, 75% Capacity" is 75% of the "Approx. Current Carrying Capacity in Amps" and

 1.72×10^{-8} R.m. 100% = 10.37 cm¹/f+

$$
1.77 \times 10^{-9} a.m
$$

2.83 x10 - 8 a.m

 C_{Q}

 AI

Other conductor types include the all-aluminum conductor (AAC), allaluminum-alloy conductor (AAAC), aluminum conductor alloy-reinforced (ACAR), and aluminum-clad steel conductor (Alumoweld). There is also a conductor known as "expanded ACSR," which has a filler such as fiber or paper between the aluminum and steel strands. The filler increases the conductor diameter, which reduces the electric field at the conductor surface, to control corona.

EHV lines often have more than one conductor per phase; these conductors are called a *bundle*. The 765-kV line in Figure 5.2 has four conductors per phase, and the 345-kV double-circuit line in Figure 5.3 has two conductors per phase. Bundle conductors have a lower electric field strength at the conductor surfaces, thereby controlling corona. They also have a smaller series reactance.

ECE 3600

Transmission Line notes p1

Transmission Line notes p2 **ECE 3600**

Table 5.1 Typical transmission-line characteristics [1,2]

Figure 5.5

Cut-away view of a standard insulator disc for suspension insulator strings

(Courtesy of Ohio Brass)

ECE 3600 Transmission Line notes p3

Table 5.2

Comparison of SI and English units for calculating conductor resistance

Resistivity depends on the conductor metal. Annealed copper is the international standard for measuring resistivity ρ (or conductivity σ , where $\sigma = 1/\rho$). Resistivity of conductor metals is listed in Table 5.3. As shown, hard-drawn aluminum, which has 61% of the conductivity of the international standard, has a resistivity at 20°C of 17.00 Ω -cmil/ft or 2.83 \times 10⁻⁸ Ω m.

Table 5.3

% Conductivity, resistivity, and temperature constant of conductor metals

Conductor resistance depends on the following factors:

- $+$ 1-2% resistance 1. Spiraling
- 2. Temperature

 $\Rightarrow \rho_{T_2} = \rho_{20} \left(\frac{T_2 + T_1}{n \Delta P_1} \right)$

3. Frequency ("skin effect") $\sim +3\%$

4. Current magnitude—magnetic conductors

Characteristic impedance

From Wikipedia, the free encyclopedia

The characteristic impedance or surge impedance of a uniform transmission line, usually written Z_0 , is the ratio of the amplitudes of a *single* pair of voltage and current waves propagating along the line in the absence of reflections. The SI unit of characteristic impedance is the ohm. The characteristic impedance of a lossless transmission line is purely real, that is, there is no imaginary component $(Z_0 = |Z_0| + i0)$. Characteristic impedance appears like a resistance in this case, such that power generated by a source on one end of an infinitely long lossless

transmission line is dissipated through the line but is not dissipated in the line itself. A transmission line of finite length (lossless or lossy) that is terminated at one end with a resistor equal to the characteristic impedance $(Z_L =$ Z_0) appears like an infinitely long transmission line to the source.

> Transmission Line notes p3 **ECE 3600**

Transmission Line notes p4 **FCF 3600 Transmission line model**

Applying the transmission line model based on the telegrapher's equations, the general expression for the characteristic impedance of a transmission line is:

$$
Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}
$$

where

 R is the resistance per unit length,

 L is the inductance per unit length,

 G is the conductance of the dielectric per unit length,

 C is the capacitance per unit length.

 j is the imaginary unit, and

 ω is the angular frequency.

The voltage and current phasors on the line are related by the characteristic impedance as:

where the superscripts $+$ and $-$ represent forward- and backward-traveling waves, respectively.

Lossless line

For a lossless line, R and G are Zero so the equation for characteristic impedance reduces to

$$
Z_0 = \sqrt{\frac{L}{C}}.
$$

Surge Impedance Loading

In electric power transmission, the characteristic impedance of a transmission line is expressed in terms of the surge impedance loading (SIL), or natural loading, being the MW loading at which reactive power is neither produced nor absorbed:

$$
SIL = \frac{(V_{L-L})^2}{Z_0} = 3 \frac{V_{LN}^2}{Z_0} = 3 \frac{V_R^2}{Z_0}
$$

in which V_L – L is the line-to-line voltage in volts.

Loaded below its SIL, a line supplies lagging reactive power to the system, tending to raise system voltages. Above it, the line absorbs reactive power, tending to depress the voltage. The Ferranti effect describes the voltage gain towards the remote end of a very lightly loaded (or open ended) transmission line. Underground cables normally have a very low characteristic impedance, resulting in an SIL that is typically in excess of the thermal limit of the cable. Hence a cable is almost always a source of lagging reactive power.

ECE 3600 Transmission Line Typical Values

Table 4-1 Transmission Line Parameters with Bundled Conductors (except at 230 kV)

Typical values for transmission lines taken from: First Course on Power Systems by Ned Mohan

ECE 3600 Lumped-Parameter Transmission Line Models c

$e^{\gamma \cdot len} - e^{-\gamma \cdot len}$

If your calculator can't handle complex exponents $e^{(a+b \cdot j)} = e^{a} \cdot e^{b \cdot j} = e^{a} \cdot \underline{b} \text{ (in radians)}$

ECE 3600 Transmission Line Examples

Ex1. A 500 kV transmission line is 500 km long and has the line parameters shown below. Use the long-length model to find \bf{V}_S and \bf{I}_S if the line is loaded to 900 MVA and $|\bf{V}_{RLL}|$ is 490 kV. Assume the phase angle of V_R is 0^o and assume load $pf = 1$.

ECE 3600 Transmission Line notes p8

b

ECE 3600 Transmission Line notes p9

Ex 2. A 345 kV transmission line is 220 km long and has the line parameters shown below. Find \bf{V}_S and \bf{I}_S if the line is loaded to 800MVA with $pf = 91\%$ lagging. $|\bf{V}_{RLL}|$ is 510 kV. pf = 0.91

1.
$$
220 \, \text{km}
$$

\n1. $220 \, \text{km}$

\n2. $20 \, \text{km}$

\n3. $20 \, \text{km}$

\n4. $20 \, \text{km}$

\n4. $20 \, \text{km}$

\n5. $10 \, \text{km}$

\n6. $20 \, \text{km}$

\n7. $20 \, \text{km}$

\n8. $20 \, \text{km}$

\n9. $20 \, \text{km}$

\n1. $20 \, \text{km}$

\n1. $20 \, \text{km}$

\n2. $20 \, \text{km}$

\n3. $20 \, \text{km}$

\n4. $20 \, \text{km}$

\n5. $20 \, \text{km}$

\n6. $20 \, \text{km}$

\n7. $20 \, \text{km}$

\n8. $20 \, \text{km}$

\n9. $20 \, \text{km}$

\n1. $20 \, \text{km}$

\n2. $20 \, \text{km}$

\n3. $20 \, \text{km}$

\n4. $20 \, \text{km}$

\n5. $20 \, \text{km}$

\n6. $20 \, \text{km}$

\n7. $20 \, \text{km}$

\n8. $20 \, \text{km}$

\n9. $20 \, \text{km}$

\n1. $20 \, \text{km}$

\n2. $20 \, \text{km}$

\n3. $20 \, \text{km}$

\n4. $20 \, \text{km}$

\n5. $20 \, \text{km}$

\n6. $20 \, \text{km}$

\n7. $$

Medium-length line model:

Series impedance: $\mathbf{Z}_{\text{series}} = (r + j \cdot x) \cdot$ Z series = 8.14 + 82.72j \cdot Ω Shunt admittance: $Y_{shunt} = j \cdot y \cdot len$ $\frac{Y_{\text{shunt}}}{Y}$ = 2 496.98j µS Not used in my solution Shunt impedance: 1 j·y·len 2⋅**Z** shunt = $-2.012 \cdot 10^3$ j $\cdot \Omega$

Solve circuit:

ECE 3600 Transmission Line notes p9

ECE 3600 Transmission Line notes p10 ECE 3600 Transmission Line notes p10

following length and line parameters.

len := 150·km
\nIm
\nMedian = 150·km
\nIm
\nEquation-length
\nline model:
\nSeries impedance:
\n
$$
z := 0.5 \cdot \frac{\Omega}{km}
$$
\n
$$
y := 4.10^{-6} \cdot \frac{S}{km}
$$
\n
$$
z = 0.5 \cdot \frac{\Omega}{km}
$$
\n
$$
z = 0 \cdot \frac{S}{km}
$$
\n
$$
z = 4.10^{-6} \cdot \frac{S}{km}
$$

a) The load is 250Ω with a power factor of 0.87, leading. Find the line current, I_{Line}.

b) Find the load line voltage.

 I_{Line} $Z_{series} = -6.561 + 45.557j$ kV

$$
\mathbf{V}_{\mathbf{R}} := \mathbf{V}_{\mathbf{S}} - \mathbf{I}_{\text{Line}} \cdot \mathbf{Z}_{\text{series}}
$$
\n
$$
\mathbf{V}_{\mathbf{R}} = 139.352 - 45.557 \mathbf{j} \cdot \mathbf{k} \mathbf{V} = 146.6 \mathbf{k} \mathbf{V} / -18.1^{\circ}
$$
\n
$$
\text{Receiving line voltage} = \left| \sqrt{3} \cdot \mathbf{V}_{\mathbf{R}} \right| = 253.9 \cdot \mathbf{k} \mathbf{V}
$$

Notice that $|{\bf V}_{\bf R}|$ is bigger than $|{\bf V}_{\bf S}|$, this can happen when the receiving-end power factor is leading.

c) What is the "power angle" (δ)?
$$
\delta = -\arg(\mathbf{V}_R) = 18.104 \cdot \text{deg}
$$

d) How much power is delivered to the load?

$$
\mathbf{I}_{R} := \frac{|\mathbf{V}_{R}|}{|\mathbf{Z}_{L}|} \qquad \qquad \mathbf{P}_{L} = 3 \cdot |\mathbf{V}_{R}| \cdot \mathbf{I}_{R} \cdot \mathbf{p}f = 224.4 \cdot \mathbf{MW}
$$

Power estimate for the same
$$
|\mathbf{V}_{\mathbf{R}}|
$$
 and
\n $|\mathbf{V}_{\mathbf{S}}|$, but neglecting the line resistance: $\approx 3 \cdot \frac{|\mathbf{V}_{\mathbf{S}}| \cdot |\mathbf{V}_{\mathbf{R}}| \cdot \sin(18.1 \cdot \text{deg})}{|\mathbf{Z}_{\text{series}}|} = 240 \cdot \text{MW}$
\ne) Express this loading in terms of SIL
\nSuper Impedance: $\mathbf{Z}_{\mathbf{c}} := \sqrt{\frac{x}{y}}$ $\mathbf{Z}_{\mathbf{c}} = 353.6 \cdot \Omega$ $\frac{\mathbf{Z}_{\mathbf{c}}}{\mathbf{Z}_{\mathbf{L}}} = 1.414$ S

IL load Not asked for

ECE 3600 Transmission Line notes p10 in this class

Answer the following questions in your textbook, starting on p.488.

- 9-3 What factors influence the inductance of a transmission line?
- 9-4 Suppose that there are two transmission lines using a single conductor per phase, and that the conductors in the two transniission lines are identical (same material and same diameter). If one transmission line is rated at 345 kV and the other one is rated at 238 kV. which transmission line is likely to have the highest inductance? Why?
- 9-5 Suppose someone asked you to evaluate a proposal for an underwater power cable between North Carolina and the Bahamas. What would you say about the probability of success of this proposal? Why?
- 9-6 What line lengths are generally considered to be short transmission lines? Medium-length transmission lines? Long transmission lines?
- 9-9 What happens to the receiving end voltage as the load on a transmission line is increased if the load has a lagging power factor? Sketch a phasor diagram showing the resulting behavior.
- 9-11 What happens to the receiving end voltage as the load on a transmission line is increased if the load has a leading power factor? Sketch a phasor diagram showing the resulting behavior.
- 9-12 What is the significance of the angle δ between \bf{V}_S and \bf{V}_R in a transmission line?

Problems

1. A 230 kV transmission line is 70 km long and has line parameters shown in Table 4.1 (handout). | V_{SLL}| is 230 kV.

```
Assume the phase angle of \bf{V}_S is 0º and that the source sees a pf = 0.8, lagging.
```

```
From Table 4.1: r = 0.055 Ω/km x = 0.489 Ω/km y = 3.373 \cdot 10^{-6} S/km Assume: g = 0 S/km
```
- a) Use the short-length model to find I_R and V_R if the source is loaded to 170 MVA (as calculated for the line).
- b) What is the angle δ ?
- c) What is the power factor of the load?

Solve the following problems in your textbook, starting on p.489.

2. 9-11 A 138 kV, 200 MVA, 60 Hz, three-phase, power transmission line is 100 km long, and has the following characteristics:

r = 0.103 Ω /km x = 0.525 Ω /km $y = 3.3 \cdot 10^{-6}$ S/km

- a) What is per phase series impedance and shunt admittance of this transmission line?
- b) Should it be modeled as a short, medium, or long transmission line?
- d) Sketch the phasor diagram of this transmission line when the line is supplying rated voltage and apparent power at a 0.90 power factor lagging.
- e) Calculate the sending-end voltage if the line is supplying rated voltage and apparent power at 0.90 PF lagging.
- f) What is the voltage regulation of the transmission line for the conditions in (e)?
- g) What is the efficiency of the transmission line for the conditions in (e)?
- h) 9-13 What is the "power angle", δ ?

Original problem statment: If the series resistance and shunt admittance of the transmission line in Problem 9-11 are not ignored, what would the value of the angle δ be at rated conditions and 0.90 PF lagging?

- 3. 9-12 If the series resistance and shunt admittance of the transmission line in Problem 9-11 are ignored, what would the value of the angle δ be at rated conditions and 0.90 PF lagging?
- 4. A 765 kV transmission line is 200 km long and has line parameters shown in Table 4.1, p.4-10. Use the medium-length model to find **V^S** and **I^S** if the line is loaded to 1800 MVA and |**VRLL**| is 770 kV. Assume the phase angle of **VR** is 0o and assume load $pf = 1$.

Table 4.1: $r = 0.013 \Omega/km$ $x = 0.339 \Omega/km$ $y = 4.988 \cdot 10^{-6}$ S/km

Answers

