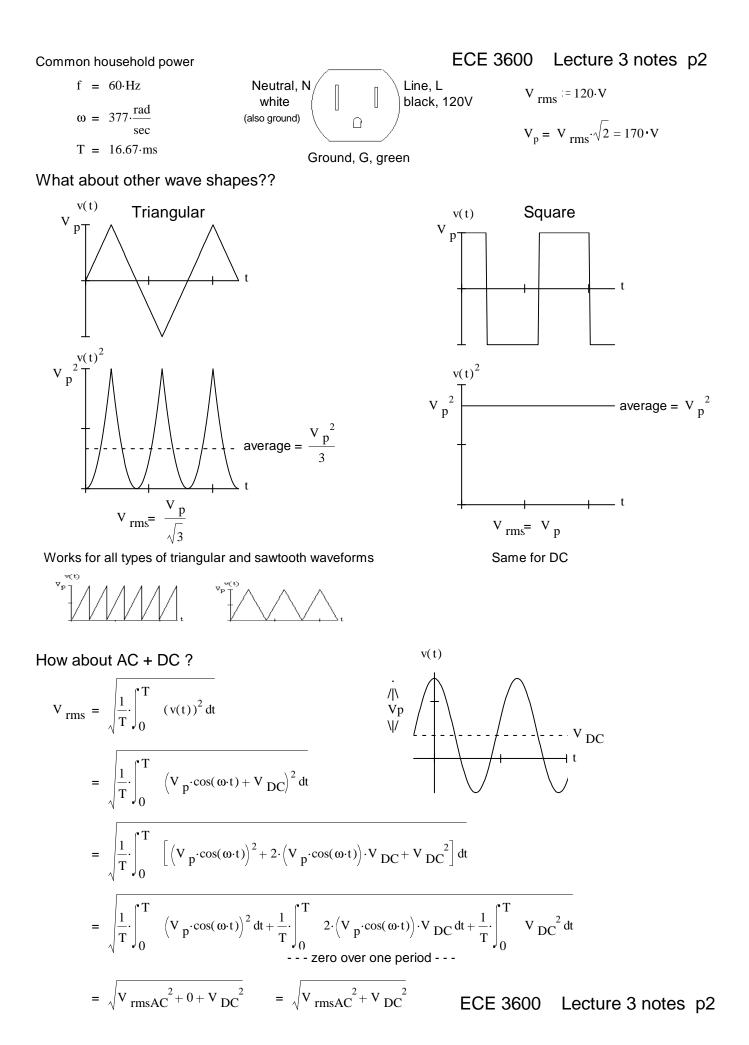


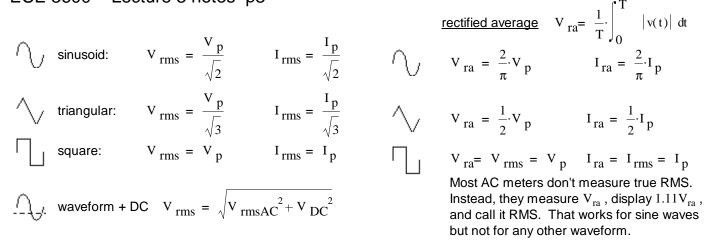
Sinusoids

$$V_{\text{rms}} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t))^{2} dt = \sqrt{\frac{1}{T}} \int_{0}^{T} (V_{p} \cdot \cos(\omega \cdot t))^{2} dt = \sqrt{\frac{1}{T}} \int_{0}^{T} V_{p}^{2} \cdot \left(\frac{1}{2} + \frac{1}{2} \cdot \cos(2 \cdot \omega \cdot t)\right) dt$$
$$= \frac{V_{p}}{\sqrt{2}} \cdot \sqrt{\frac{1}{T}} \int_{0}^{T} (1) dt + \frac{1}{T} \cdot \int_{0}^{T} \cos(2 \cdot \omega \cdot t) dt = \frac{V_{p}}{\sqrt{2}} \cdot \sqrt{1+0}$$

ECE 3600 Lecture 3 notes p1

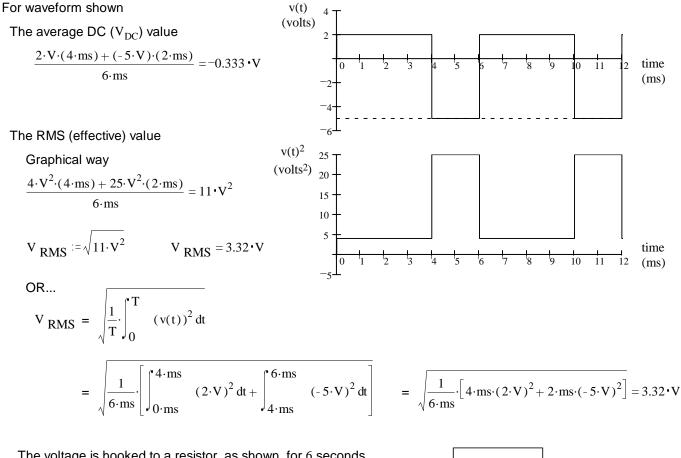


ECE 3600 Lecture 3 notes p3



Use RMS in power calculations

Some waveforms don't fall into these forms, then you have to perform the math from scratch



The voltage is hooked to a resistor, as shown, for 6 seconds.

The energy is transferred to the resistor during that 6 seconds:

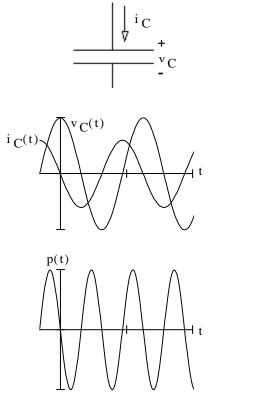
 $P_{I} = 0.22 \cdot W$

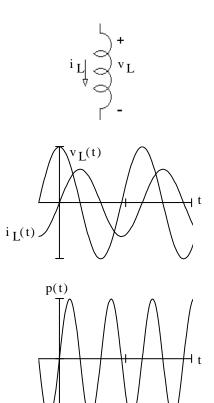
$$P_{L} := \frac{V_{RMS}^{2}}{R_{L}}$$
$$W_{L} := P_{L} \cdot 6 \cdot \sec \alpha$$

 $W_{L} = 1.32 \cdot joule$ All converted to heat

ECE 3600 Lecture 3 notes p3

 $\leq R_{L} = 50 \cdot \Omega$



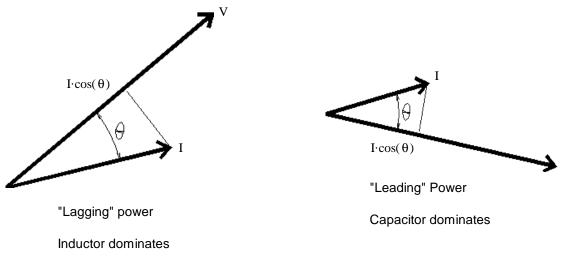


Average power is ZERO P = 0

Average power is ZERO P = 0

Capacitors and Inductors DO NOT dissipate (real) average power.

If current and voltage are not in phase, only the in-phase part of the current matters for the power-- DOT PRODUCT



ECE 3600 Lecture 3 & 4 notes p4

All voltages and currents shown are RMS

$$P = V \cdot I \cdot \cos(\theta) = I^2 \cdot |\mathbf{Z}| \cdot \cos(\theta) = \frac{V^2}{|\mathbf{Z}|} \cdot \cos(\theta)$$

$$P = "\text{Real" Power (average)} = V \cdot I \cdot \text{pf} = I^2 \cdot |\mathbf{Z}| \cdot \text{pf} = \frac{V^2}{|\mathbf{Z}|} \cdot \text{pf} \qquad \text{units}$$

otherwise

Real Power

 $I_R \xrightarrow{V_R} V_R$ for resistors $P = I_R^2 \cdot R = \frac{V_R^2}{R}$

Reactive Power

 $Q = \text{Reactive "power"} = V \cdot I \cdot \sin(\theta)$

otherwise

Complex and Apparent Power

 \mathbf{S} = Complex "power" = P + jQ = $VI \underline{/\theta}$ = $V \cdot \mathbf{I}$ = $I^2 \cdot \mathbf{Z}$

NOT V·I NOR $\frac{V^2}{7}$

S = Apparent "power" =
$$|S| = \sqrt{P^2 + Q^2} = V$$
.

$$\sqrt{P^2 + Q^2} = V \cdot I$$
 units: VA, kVA, etc. "volt-amp"

complex conjugate

Power factor

 $pf = cos(\theta) = power factor (sometimes expressed in %) 0 \le pf \le 1$

 θ is the **phase angle** between the voltage and the current or the phase angle of the impedance. $\theta = \theta_{T}$

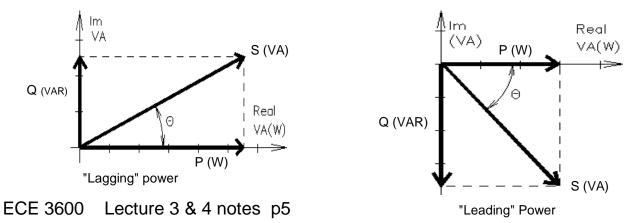
 $\theta < 0$ Load is "Capacitive", power factor is "leading". This condition is very rare

 $\theta > 0$ Load is "Inductive", power factor is "lagging". This condition is so common you can assume any power factor given is lagging unless specified otherwise. Transformers and motors make most loads inductive.

Industrial users are charged for the reactive power that they use, so power factor < 1 is a bad thing.

Power factor < 1 is also bad for the power company. To deliver the same power to the load, they have more line current (and thus more line losses).

Power factors are "corrected" by adding capacitors (or capacitve loads) in parallel with the inductive loads which cause the problems. (In the rare case that the load is capacitive, the pf would be corrected by an inductor.)



units: VA, kVA, etc. "volt-amp"

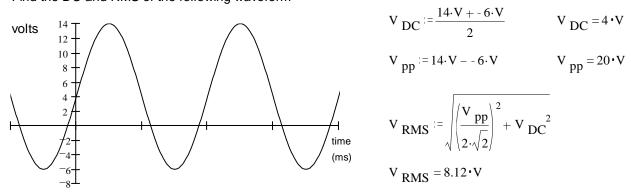
BOLD is a complex number

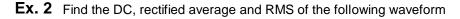
units: VAR, kVAR, etc. "volt-amp-reactive"

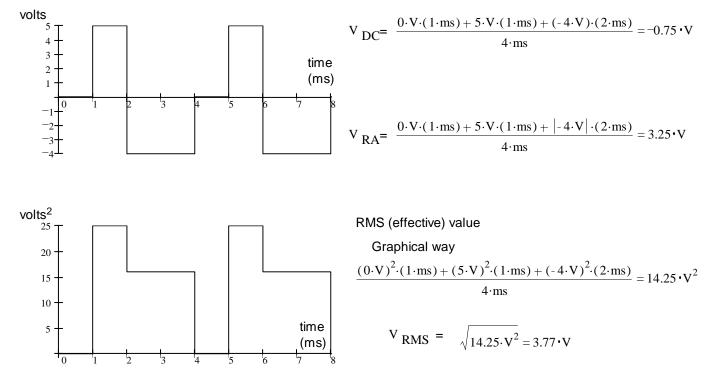
units: watts, kW, MW, etc. pf = $cos(\theta)$ = power factor

ECE 3600

RMS Examples





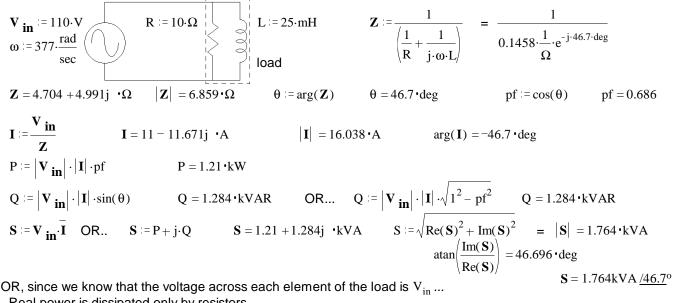


ECE 3600

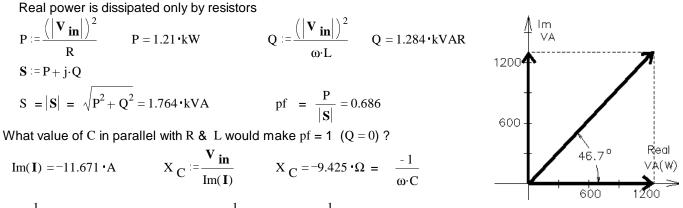
AC Power Examples

A.Stolp 11/06/02 rev 8/28/20

Ex. 1 R & L together are the load. Find the real power P, the reactive power Q, the complex power S, the apparent power |S|, & the power factor pf. Draw phasor diagram for the power.



OR, since we know that the voltage across each element of the load is V_{in} ... Real power is dissipated only by resistors



$$\frac{1}{|X_{C}| \cdot \omega} = 281 \cdot \mu F \qquad \text{OR..} \qquad \omega = \frac{1}{\sqrt{L \cdot C}} \qquad C := \frac{1}{L \cdot \omega^{2}} \qquad C = 281 \cdot \mu F$$

Ex. 2 R & L together are the load. Find the real power P, the reactive power Q, the complex power S, the apparent power |S|, & the power factor pf. Draw phasor diagram for the power.

Series R & L

$$\mathbf{V}_{in} := 110 \cdot \mathbf{V}_{\omega}$$

 $\omega := 377 \cdot \frac{rad}{sec}$
 $\mathbf{I} := 25 \cdot mH$
 $\mathbf{H} := arg(\mathbf{Z})$
 $\mathbf{H} := 43.304 \cdot deg$
 $\mathbf{H} := cos(\mathbf{H})$
 $\mathbf{H} := cos(\mathbf$

ECE 3600 AC Power Examples, p.2

OR, if we first find the magnitude of the current which flows through each element of the load...

$$|\mathbf{I}| = \frac{\mathbf{V}_{\mathbf{in}}}{\sqrt{\mathbf{R}^2 + (\omega \cdot \mathbf{L})^2}} = 8.005 \cdot \mathbf{A}$$

$$\mathbf{P} := (|\mathbf{I}|)^2 \cdot \mathbf{R} \qquad \mathbf{P} = 0.641 \cdot \mathbf{kW} \qquad \mathbf{Q} := (|\mathbf{I}|)^2 \cdot (\omega \cdot \mathbf{L}) \qquad \mathbf{Q} = 0.604 \cdot \mathbf{kVAR}$$

$$\mathbf{S} := \mathbf{P} + \mathbf{j} \cdot \mathbf{Q} \qquad |\mathbf{S}| = \sqrt{\mathbf{P}^2 + \mathbf{Q}^2} = 0.881 \cdot \mathbf{kVA} \qquad \mathbf{pf} = \frac{\mathbf{P}}{|\mathbf{S}|} = 0.728$$
What value of C in parallel with R & L would make pf = 1 (Q = 0)?

$$\mathbf{Q} = 603.9 \cdot \mathbf{VAR} \qquad \text{so we need:} \qquad \mathbf{Q}_{\mathbf{C}} := -\mathbf{Q} \qquad \mathbf{Q}_{\mathbf{C}} = -603.9 \cdot \mathbf{VAR} = \frac{\mathbf{V}_{\mathbf{in}}^2}{\mathbf{X}_{\mathbf{C}}}$$

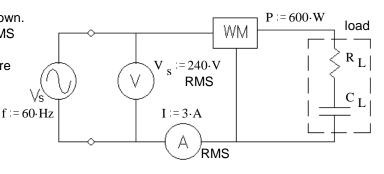
$$X_{C} := \frac{V_{in}^{2}}{Q_{C}} \qquad X_{C} = -20.035 \cdot \Omega = \frac{-1}{\omega \cdot C} \qquad C := \frac{1}{|X_{C}| \cdot \omega} \qquad C = 132 \cdot \mu F$$

Check:
$$\frac{1}{\frac{1}{R+j\cdot\omega\cdot L}+j\cdot\omega\cdot C} = 18.883\cdot\Omega$$
 No j term, so $\theta = 0^{\circ}$

- Ex. 3 R, & C together are the load in the circuit shown. The RMS voltmeter measures 240 V, the RMS ammeter measures 3 A, and the wattmeter measures 600 W. Find the following: Be sure to show the correct units for each value.
 - a) The value of the load resistor. $R_L = ?$

$$P = I^2 \cdot R_L$$

$$R_{L} = \frac{P}{I^{2}} \qquad R_{L} = 66.7 \cdot \Omega$$



- b) The apparent power. $|\mathbf{S}| = ?$ $\mathbf{S} := \mathbf{V}_{\mathbf{S}} \cdot \mathbf{I}$ $\mathbf{S} = 720 \cdot \mathbf{VA}$ c) The reactive power. $\mathbf{Q} = ?$ $\mathbf{Q} := -\sqrt{\mathbf{S}^2 - \mathbf{P}^2}$ $\mathbf{Q} = -398 \cdot \mathbf{VAR}$ d) The complex power. $\mathbf{S} = ?$ $\mathbf{S} := \mathbf{P} + \mathbf{j} \cdot \mathbf{Q}$ $\mathbf{S} = 600 - 398\mathbf{i} \cdot \mathbf{VA}$ e) The power factor. $\mathbf{pf} = ?$ $\mathbf{pf} := \frac{\mathbf{P}}{\mathbf{V}_{\mathbf{S}} \cdot \mathbf{I}}$ $\mathbf{pf} = 0.833$
- f) The power factor is leading or lagging? leading (I

leading (load is capacitive, Q is negative)

g) The two components of the load are in a box which cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf = 1). Show the correct component in the correct place and <u>find its value</u>. This component should not affect the real power consumption of the load.

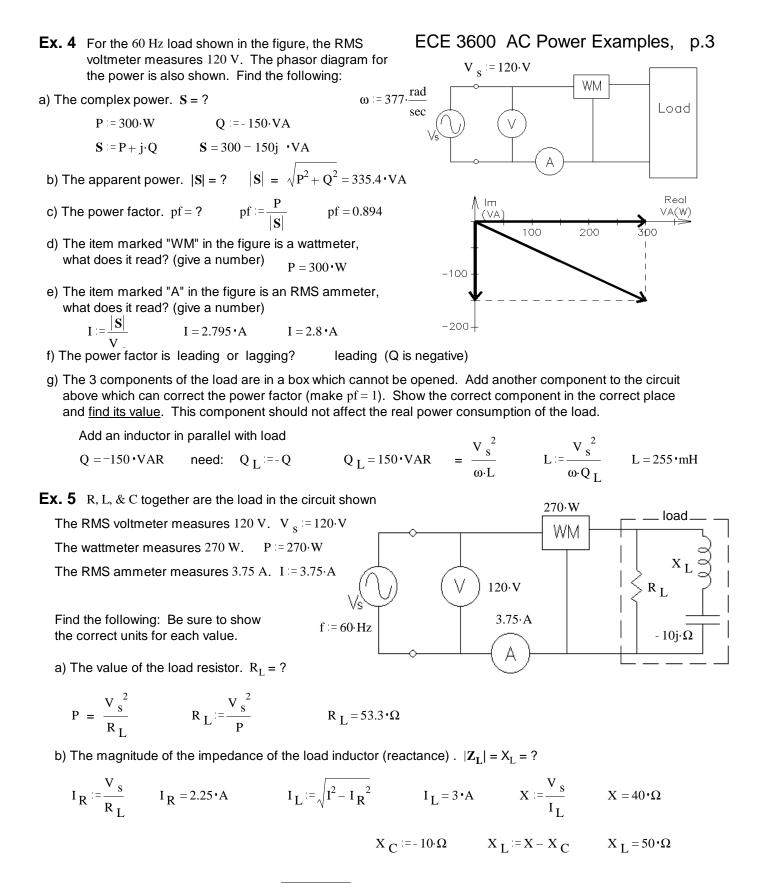
Add an inductor in parallel with load

$$f = 60 \cdot Hz \qquad \omega := 2 \cdot \pi \cdot f \qquad \omega = 376.991 \cdot \frac{140}{sec}$$

$$Q = -398 \cdot VAR \qquad so we need: \qquad Q_{L} := -Q \qquad \qquad Q_{L} = 398 \cdot VAR \qquad = \frac{V_{s}^{2}}{X_{L}}$$

$$X_{L} := \frac{V_{s}^{2}}{Q_{L}} \qquad \qquad X_{L} = 144.725 \cdot \Omega = \omega \cdot L \qquad \qquad L := \frac{|X_{L}|}{\omega} \qquad \qquad L = 384 \cdot mH$$

ECE 3600 AC Power Examples, p.2



c) The reactive power. Q = ? $Q := \sqrt{(V_s \cdot I)^2 - P^2}$ Q = 360 · VAR positive, because the load is primarily inductive

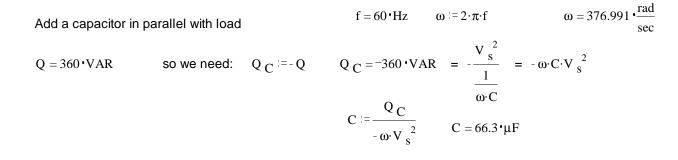
is primarily inductive

lagging (load is inductive, Q is positive)

ECE 3600 AC Power Examples, p.3

ECE 3600 AC Power Examples, p.4

e) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make pf = 1). Show the correct component in the correct place and <u>find its value</u>. This component should not affect the real power consumption of the load.



Ex. 6 An inductor is used to completely correct the power factor of a load.

Find the following: a) The power consumed by the load. $P_L = ?$ I_S $V_S := 120 \cdot V$ $\underline{I_C}^{0^0}$ $I_L := 200 \cdot mH$ $I_L := 200 \cdot mH$ $U := 200 \cdot mH$ $U := 200 \cdot$

b) The power supplied by the source. $P_S = P_L = 440 \cdot W$

- c) The source current (magnitude and phase). $I_{S} := \frac{P_{L}}{V_{S}}$ $I_{S} = 3.67 \cdot A \frac{/0^{\circ}}{because the source}$
 - sees a pf = 1
- d) The load can be modeled as 2 parts in parallel. Draw the model and find the values of the parts.

$$P = \frac{V^{2}}{R}$$

$$R_{L} := \frac{(|V_{S}|)^{2}}{P_{L}}$$

$$R_{L} = 32.7 \cdot \Omega$$

$$Q_{C} = V^{2} \cdot (\omega \cdot C)$$

$$C_{L} := \frac{Q_{load}}{\omega \cdot (|V_{S}|)^{2}}$$

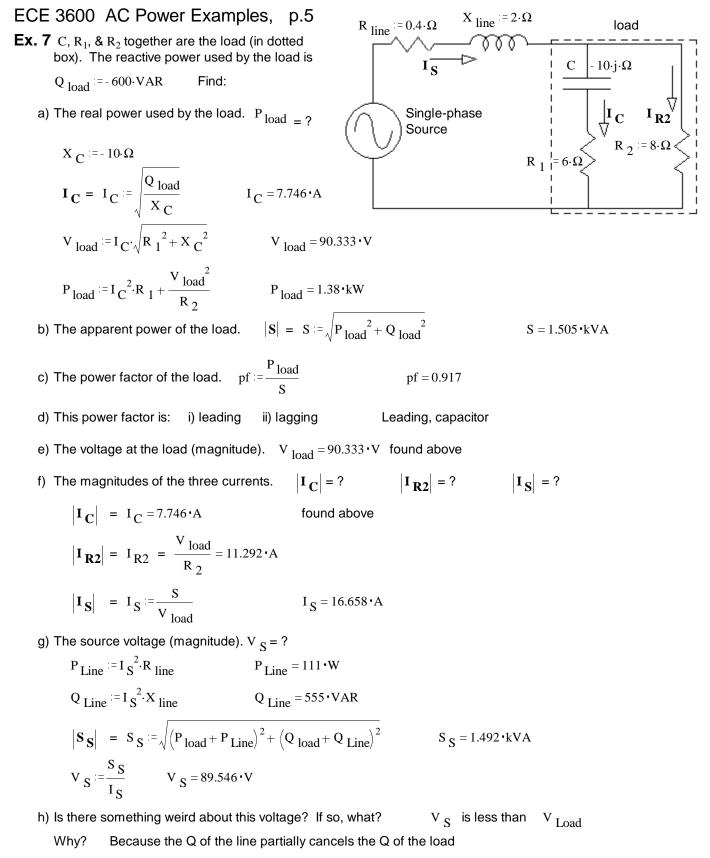
$$C_{L} = 35.181 \cdot \mu F$$

e) The inductor, L, is replaced with a 50 mH inductor.

i) The **new** source current $|I_S|$ is **greater** than that calculated in part c). <-- Answer circle

ii) The **new** source current $|I_S|$ is **the same** as that calculated in part c).

iii) The **new** source current $|I_s|$ is **less** than that calculated in part c).



OR Partial resonance between the inductance in the line and the capacitance of the load.

i) The efficiency. $\eta = ?$

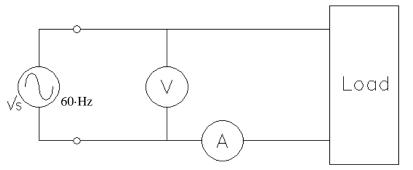
When asked for efficiency, assume the power used by R_{line} is a loss and P_{load} is the output power.

$$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{loss}} = \frac{P_{load}}{P_{load} + P_{Line}} = 92.56 \cdot \%$$
 ECE 3600 AC Power Examples, p.5

ECE 3600 AC Power Examples, p.6

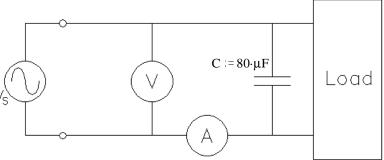
Ex. 8 In the circuit shown, the ideal voltmeter, V, reads 120V and ideal ammeter, A, reads 5A.

$$S_{load} = 120 \cdot V \cdot 5 \cdot A$$
 $S_{load} = 600 \cdot VA$



a) You add a capacitor, C, and the ammeter reading changes to 5.3A. Find the following:

$$P_{load} = ? \qquad Q_{load} = ?$$



I_C is NOT 0.3A, That's subtracting magnitudes

$$S_{load} := 120 \cdot V \cdot 5 \cdot A$$
 $S_{load} = 600 \cdot VA = \sqrt{P_{load}^2 + Q_{load}^2}$
 $OR \quad (600 \cdot VA)^2 = P_{load}^2 + Q_{load}^2$
 $P_{load}^2 = (600 \cdot VA)^2 - Q_{load}^2$

$$Q_{C} := \frac{(120 \cdot V)^{2}}{\left(-\frac{1}{\omega \cdot C}\right)} = -(120 \cdot V)^{2} \cdot \omega \cdot C \qquad Q_{C} = -434.294 \cdot VAR$$

With Capacitor:

$$S_{S} = 120 \cdot V \cdot 5.3 \cdot A \qquad S_{S} = 636 \cdot VA = \sqrt{P_{load}^{2} + (Q_{load} + Q_{C})^{2}}$$
$$OR \qquad (636 \cdot VA)^{2} = P_{load}^{2} + (Q_{load} + Q_{C})^{2}$$

Substitute in

tute in
$$(636 \cdot VA)^2 = [(600 \cdot VA)^2 - Q_{load}^2] + (Q_{load} + Q_C)^2$$

$$= [(600 \cdot VA)^2 - Q_{load}^2] + (Q_{load}^2 + 2 \cdot Q_C \cdot Q_{load} + Q_C^2)$$

$$= (600 \cdot VA)^2 + 2 \cdot Q_C \cdot Q_{load} + Q_C^2$$

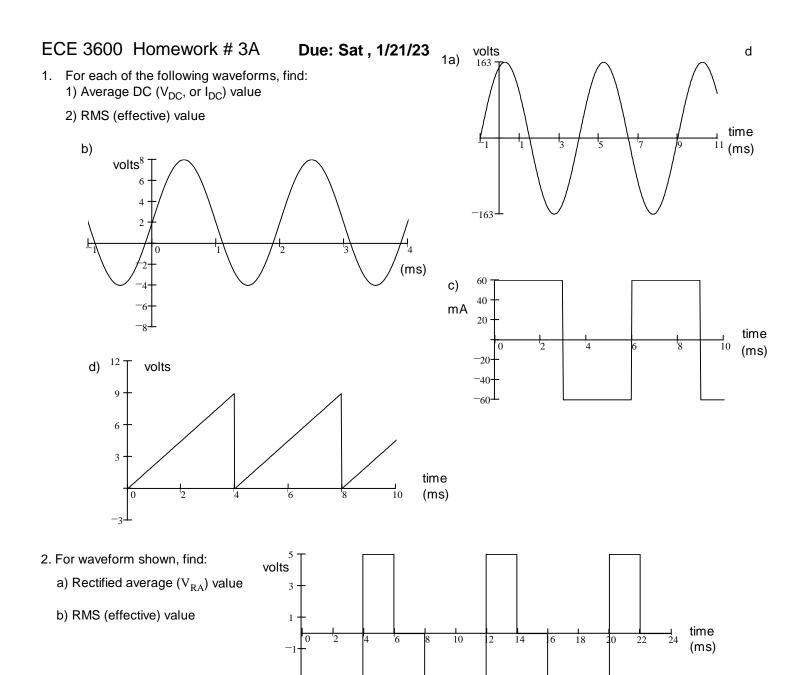
$$Q_{load} := \frac{(636 \cdot VA)^2 - (600 \cdot VA)^2 - Q_C^2}{2 \cdot Q_C}$$

$$Q_{load} := 165.919 \cdot VAR$$

$$P_{load} := \sqrt{S_{load}^2 - Q_{load}^2} \qquad P_{load} = 576.603 \cdot W$$

 $S_{s} = \sqrt{P_{load}^{2} + (Q_{load} + Q_{c})^{2}} = 636 \cdot VA$ Double Check:

The power factor was way over corrected by $C = 80 \cdot \mu F$

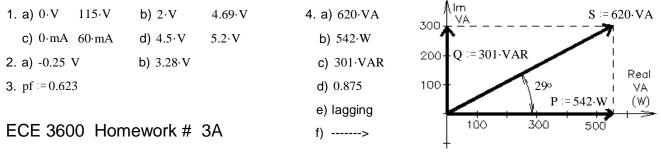


3. Compute the power factor for an inductive load consisting of $L = 20 \cdot mH$ and $R = 6 \cdot \Omega$ in series. $\omega = 377 \cdot \frac{rad}{s}$

4. The complex power consumed by a load is 620 /29º VA. Find:

a) Apparent power (as always, give the correct units).b) Real power.c) Reactive power.d) Power factor.e) Is the power factor leading or lagging?f) Draw a phasor diagram.

Answers



ECE 3600 Homework # 3B

Due: Tue , 1/24/23

- 1. In the circuit shown, the voltmeter measures 120V and the ammeter measures 6.3A (recall that AC meters read RMS). The wattmeter measures 560W. The load consists of a resistor and an inductor. The frequency is 60Hz. Find the following:
 - a) Power factor
 - b) Leading or lagging?
 - c) Real power.
 - d) Apparent power.
 - e) Reactive power.
 - f) Draw a phasor diagram.
 - g) The load is in a box which cannot be opened. Add another component to the circuit above to correct the power factor (make pf = 1). Draw the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

 $f := 400 \cdot Hz$

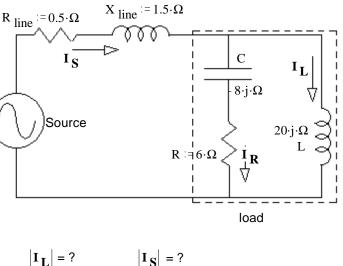
 $I = 1.2 \cdot A$

- h) Find the new readings of voltmeter, ammeter, and wattmeter.
- 2. For the circuit shown, find the following: (as always, give the correct units)
 - a) The complex power.
 - b) Real power.
 - c) Reactive power.
 - d) Apparent power.
 - e) Draw a power phasor diagram.
- 3. A load draws 12kVA at 0.8 pf, lagging when hooked to 480V. A capacitance is hooked in parallel with the load and the power factor is corrected to 0.9, lagging.
 - a) Find the reactive power (VAR) of the capacitor. Draw a phasor diagram as part of the solution.
 - b) Find the value of the capacitor assuming f = 60Hz.
- 4. R, L, & C together are the load (in dotted box). The power used by the load is $P_{Load} = 726 \cdot W$ Find:
 - a) The reactive power used by the load. Q = ?

If you can't find this Q, try parts e) and f) first and then come back to part a).

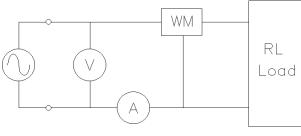
- b) The apparent power of the load. |S| = S = ?
- c) The power factor of the load. pf = ?
- d) Is the power factor i) leading? ii) lagging?
- e) The voltage at the load (magnitude). V Load =?
- $|I_{R}| = ?$ f) The magnitudes of the three currents.
- g) The source voltage (magnitude). V $_{S}$ = ?
- h) Is there something weird about this voltage? If so, what?
- i) The efficiency. $\eta = ?$

When asked for efficiency, assume the power used by R_{line} is a loss and P_{load} is the output power.



Why?

 $C := 2 \cdot \mu F$



i(t) ____>

 $R = 100 \cdot \Omega$

v(t)

ECE 3600 Homework # 3B p2

5. (40 pts) A capacitor (C, shown below) is used to partially correct the power factor of a load to 0.9. A₁ and A₂ are ideal ammeters. V1 and V2 are ideal voltmeters. The load uses 720W. Find the following:

R_{line} = $3 \cdot \Omega$

v_s

60·Hz

1.2·A

С

 $P_{load} = 720 \cdot W$

Load

pf withCap = 0.9

ideal RMS

voltmeter reads

125·V

 V_{2}

a) The RMS readings of the two ideal ammeters.

 $I_{A1} = ?$ $I_{\Delta 2} = ?$ Hint: there are a number of steps involved here. For A1, do calculations on the load and cap together. For A₂ you'll need numbers for the load alone.

- b) The load can be modeled as 2 parts in series. Draw the model and find the values of the parts.
- c) The voltage measured by the ideal voltmeter, labeled V_1 . $V_1 = ?$
- d) The efficiency. $\eta = ?$ Assume the power used by R_{line} is loss and P_{load} is the output power.
- $\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{loss}}$ e) Add an additional component to the drawing above in order to completely correct the power factor Find the value of the component.

V1

f) Without making any additional calculations, would the efficiency be better or worse with the added component of part e)? i) higher η ii) lower η iii) could be either iv) no difference

