ECE 3530: Spring 13 University of Utah

HOMEWORK #5 - DUE: Friday, March 1

Write your name on everything you hand in. Show your work.

1. The following MATLAB function computes and returns P(X = x) according to the binomial distribution b(x; n, p) where n is the number of trials in the Bernoulli process, p is the probability of success in each trial and x is the number of successes we are interested computing the probability of.

```
function b = BinomialDist (x, n, p)
b = (factorial(n)/(factorial(x)*factorial(n-x)))*(p^x)*((1-p)^(n-x));
```

(a) Save the above function in to a file named BinomialDist.m Use the function to compute the numerical value of b(x = 89; n = 100, p = 0.8). You call the function from MATLAB command line with BinomialDist(89, 100, 0.8) in this case.

If one wants to generate and graph the entire Binomial distribution for a given n and p, the following function can be used:

```
function b = BinomialDistGraph (n, p)
for x = 0:n
    b(x+1) = (factorial(n)/(factorial(x)*factorial(n-x)))*p^x*(1-p)^(n-x);
end;
bar(0:n,b);
axis([0 n 0 max(b)]);
```

Save this function into a file called BinomialDistGraph.m

This function computes all P(X = x) for the given n and p values in an array named b and uses the bar command to graph it.

- (b) Use the function given above to graph the Binomial distribution for n = 25 and p = 0.67. What is the mean, variance and standard distribution?
- (c) Use the function given above to graph the Binomial distribution for n=25 and p=0.03. What is the mean, variance and standard distribution?

Note: Do <u>NOT</u> attach printouts of the graphs to your HW.

Note2: MATLAB is available on the computers in the CADE lab. Please see the TA if you have problems with MATLAB.

- 2. (a) Textbook exercise 5.11
 - (b) Textbook exercise 5.12
- 3. The internet connection speed at any time from your home can depend on the amount of overall internet traffic at that time. Let the random variable X denote the speed of connection in megabits per second (MBPS). Assuming X is uniformly distributed on the interval 0.75 to 1.25 MBPS, answer the following questions:
 - (a) Find the mean connection speed and standard deviation.
 - (b) What is the probability that the connection speed will be less than 0.8 MBPS at any given time?
 - (c) What is the probability that the connection speed will be between 0.875 MBPS and 1.125 MBPS at any given time?
- 4. Let the random variable X denote the annual snow fall amount at a well known Utah ski resort. X has a normal distribution with mean 500 inches and standard deviation 50 inches.
 - (a) What is the probability that in a given year the snow fall will be between 432 and 568 inches?
 - (b) Find a value d such that X is in the range $500 \pm d$ with probability 0.999.
 - (c) What is the probability that at least 8 out of 10 consecutive years will have annual snowfall amount greater than 522 inches?
- 5. Let T be a random variable that is the time to failure (in years) of a certain type of electrical component. T has an exponential probability density function

$$f(x;\beta) = \begin{cases} \frac{1}{\beta}e^{-\frac{x}{\beta}}, & x > 0\\ 0, & otherwise \end{cases}$$

with $\beta = 2$ years.

- (a) Compute the probability that a given component will fail in 5 years or less.
- (b) A laboratory uses 10 of these components. Let X be the number of components out of the 10 that have failed in 5 years or less. Compute the probability that 6 components have failed in 5 years or less.
- (c) For the same laboratory, compute the probability that all 10 components have failed in 5 years or less.