ESTIMATION PROBLEMS

Two types of Statistical Inference

Estimation of population parameters (Chapter 9)
ex: A manufacturer of a certain electronics component wishes to estimate the true life-time of components from a sample of size n.

Hypothesis Testing (Chapter 10)
ex: The same manufacturer claims that the life-time of the components have a mean 5 years. He takes a sample of size n to test this hypothesis.

Defn: A point estimate of some population parameter \(\theta \) is a single value \(\hat{\theta} \) of a statistic \(\Theta \).

Ex: the value \(\overline{x} \) of the statistic \(\overline{X} \), computed from a sample of size n is a point estimate of the parameter \(\mu \).

Defn: A statistic \(\hat{\theta} \) is said to be an unbiased estimator of the parameter \(\theta \) if

\[
E[\hat{\theta}] = \theta
\]

Example: \(\mu \overline{x} = \mu \) hence \(\overline{X} \) is an unbiased estimator of \(\mu \).

Example: \(S^2 \) is an unbiased estimator of the population parameter \(\sigma^2 \).

Proof:
\[
\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} \left[(X_i - \mu) - (\overline{X} - \mu) \right]^2
\]
\[
= \sum_{i=1}^{n} (X_i - \mu)^2 - 2(\overline{X} - \mu) \sum_{i=1}^{n} (X_i - \mu) + n(\overline{X} - \mu)^2
\]
\[
= \sum_{i=1}^{n} (X_i - \mu)^2 - n(\overline{X} - \mu)^2 \quad (**)
\]
\[E(S^2) = E \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] \]

Substitute \(\bar{X} \) for this

\[= \frac{1}{n-1} \left(E \left[\sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X} - \mu)^2 \right] \right) \]

\[= \frac{1}{n-1} \left(\frac{n}{\text{Var}(X)} \right) \left(\text{Var}(X) - n \text{Var}(\bar{X}) \right) \]

\[= \frac{1}{n-1} \left(n \sigma^2 - n \frac{\sigma^2}{n} \right) = \frac{1}{n-1} \left((n-1) \sigma^2 \right) = \sigma^2 \]

This is why the definition of \(S^2 \) has a division by \(n-1 \) instead of \(n \).

If \(\hat{\Theta}_1 \) and \(\hat{\Theta}_2 \) are two unbiased estimators of the same population parameter \(\Theta \), the one with the smaller variance is called the more efficient estimator.

Ex: If \(\sigma^2 \hat{\Theta}_1 < \sigma^2 \hat{\Theta}_2 \), \(\hat{\Theta}_1 \) is a more efficient estimator of \(\Theta \) than \(\hat{\Theta}_2 \) and is preferable.

Defn: Of all the unbiased estimators of some parameter \(\Theta \), the one with smallest variance is called the most efficient estimator of \(\Theta \).

Note: For a given estimator, increasing the sample size decreases the variance.
Definition: Interval Estimation

\[P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha \]

This is called a \(100(1-\alpha)\% \) confidence interval.

Interpretation: Different samples yield different values of \(\hat{\theta} \). We find confidence limits \(\hat{\theta}_L \) and \(\hat{\theta}_U \) such that the true population parameter \(\theta \) is within those limits with probability \(1 - \alpha \).

1. \(\alpha = 0.05 \) → 95% confidence limits
2. \(\alpha = 0.01 \) → 99% confidence limits

Generally, the range for the confidence limits in case (2) will be wider than the range in (1).

Estimating the Mean of a Single Sample

We first study the simpler but unrealistic case where we are trying to estimate \(\mu \) and \(\theta \) is known.

The sampling distribution of \(X \) is centred at \(\mu \). Its variance is \(\theta^2 / n \) as we learned previously.

\[Z = \frac{X - \mu}{\theta / \sqrt{n}} \]

\(Z \) is the value for which

\[P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha \]

We learned previously that

\[\frac{X - \mu}{\theta / \sqrt{n}} \]

has standard normal distribution for \(n \geq 30 \).

\[P\left(\frac{\bar{X} - z_{\alpha/2} \frac{\theta}{\sqrt{n}}}{\theta / \sqrt{n}} \leq \mu \leq \bar{X} + z_{\alpha/2} \frac{\theta}{\sqrt{n}} \right) = 1 - \alpha \]

Multiply by \(\theta / \sqrt{n} \), subtract \(X \), multiply by \(-1\) to get this.
Now we select a particular sample of size \(n \) and get a specific value of \(\bar{x} \). Then:

Confidence interval for \(\mu \):

If \(\bar{x} \) is the mean of a random sample of size \(n \) from a population with known variance \(\sigma^2 \), a 100(1-\(\alpha\))% confidence interval for \(\mu \) is given by:

\[
\bar{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
\]

where \(Z_{\alpha/2} \) is the value from the standard normal distribution leaving an area of \(\alpha/2 \) to the right.

Note 1:
\[\hat{\theta}_L = \bar{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad \hat{\theta}_U = \bar{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \]

Note 2: We invoked the central limit theorem so we need the same assumptions.

Note 3: The larger \(n \), the tighter the confidence interval.

Note 4: The smaller \(\alpha \), the wider """".""

Example: A sample of 64 resistors from a production line were found to have a mean resistance of 206 Ohms. Find the 95% and 99% confidence intervals for the mean resistance of the population. Assume that the population standard deviation is 4 Ohms.

Solution: The point estimate of \(\mu \) is \(\bar{x} = 206 \)

(1) \(95\%: 1 - \alpha = 0.95 \) \(\alpha = 0.025 \). From table A.3 \(Z_{0.025} = 1.96 \)

(remember \(Z_{\alpha/2} \) leaves an area \(\alpha/2 \) to the right)

\[
206 - 1.96 \frac{4}{\sqrt{64}} < \mu < 206 + 1.96 \frac{4}{\sqrt{64}}
\]

95% confidence interval: \(205.02 < \mu < 206.98 \)
99% : 1 - \alpha = 0.99 \quad \alpha = 0.005 \quad z_{\alpha/2} = 2.575 (Table A.3)

\[
\frac{206 - 2.575 \cdot \frac{4}{\sqrt{n}}}{\sqrt{n}} < \mu < \frac{206 + 2.575 \cdot \frac{4}{\sqrt{n}}}{\sqrt{n}}
\]

Notice this is wider than the 95% interval.

Also note if we want tighter confidence intervals we should increase \(n \) (sample size).

Theorem: If \(\bar{x} \) is used as an estimate of \(\mu \), we can be 100(1-\alpha)% confident that the error will not exceed

\[
\frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}
\]

Theorem: If \(\bar{x} \) is used as an estimate of \(\mu \), we can be 100(1-\alpha)% confident that the error will not exceed a specified amount \(e \) when the sample size is

\[
n = \left(\frac{2 \cdot x/2 \cdot \sigma}{e} \right)^2 \text{ rounded up.}
\]

Example: How large a sample size is required if \(\bar{x} \) in our previous example we want to be 95% confident that our estimate of \(\mu \) (mean resistance of population) is off by less than 0.1?

\[
z_{\alpha/2} = 1.96 \text{ for 95% confidence interval (} \alpha = 0.025 \text{) }
\]

\[
\sigma = \frac{1.96 \cdot 4}{0.1} = 614.656
\]

\[
n = \left(\frac{z_{\alpha/2} \cdot \sigma}{e} \right)^2 = 6147.
\]

One-sided confidence bands:

Sometimes we are interested in questions of the form “What is the probability that the mean life-time of a component is at least 2 years?” (worst case scenarios)
\[P \left(\mu < \bar{X} + z_x \frac{\sigma}{\sqrt{n}} \right) = 1 - \alpha \]

one-sided upper bound for 100(1-\alpha)% confidence for \(\mu \) when \(\bar{X} \) is the mean of a sample of size \(n \) from a population of variance \(\sigma^2 \)

\[P \left(\bar{X} - z_x \frac{\sigma}{\sqrt{n}} < \mu \right) = 1 - \alpha \]

one-sided lower bound.

Notice that \(z_x \) appears in the equation rather than \(z_{\alpha/2} \).

Example: A quality control engineer takes a sample of 100 light bulbs from a production line and finds the sample mean life time to be 480 hours. The population standard deviation is known to be 25 hours. Find a lower band for the 95% confidence for the population mean.

\[\alpha = 0.05 \quad z_\alpha = 1.645 \]

\[\bar{X} - z_\alpha \frac{\sigma}{\sqrt{n}} = 480 - 1.645 \times \frac{25}{10} = 475.9 \]

\[P \left(475.9 < \mu \right) = 0.95 \]

Example: A clean room for chip manufacturing has to limit the number of particles found per volume. In an university clean room air samples are taken at 36 different time points and the mean number of particles per cubic foot is found as 105. Find an upper bound for the 95% confidence for the population mean.

\[\alpha = 0.05 \quad z_\alpha = 1.645 \]

Assume pop \(\sigma = 12 \).

\[\bar{X} + z_\alpha \frac{\sigma}{\sqrt{n}} = 105 + 1.645 \times \frac{12}{6} = 108.25 \]

\[P \left(\mu < 108.25 \right) = 0.95 \]
Usually when we are trying to estimate \(\mu \), \(\sigma \) is also unknown. From Chapter 6, if we have a random sample from a normal distribution, then the random variable

\[T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \]

has a t-distribution with \(n-1 \) degrees of freedom.

\(\sigma \) (population standard dev) is unknown, but is replaced with
\(s \) (sample standard dev)

Similar to before

\[P(-t_{\alpha/2} < \frac{\bar{X} - \mu}{s/\sqrt{n}} < t_{\alpha/2}) = 1 - \alpha \]

with \(t_{\alpha/2} \) being the t-value (Table A.4) for \(\nu = n-1 \) degrees of freedom above which we can find an area of \(\alpha/2 \). The difference from before is the use of

\(t \)-distribution (Table A.4) rather than the standard normal dist.

Confidence interval for \(\mu \); \(\sigma \) unknown

If \(\bar{X} \) and \(s \) are the mean and standard deviation of a random sample of size \(n \) from a normal distributed population, a 100(1-\(\alpha \))% confidence interval for \(\mu \) is

\[\bar{X} - t_{\alpha/2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{\alpha/2} \frac{s}{\sqrt{n}} \]

where \(t_{\alpha/2} \) is the t-value with \(\nu = n-1 \) degrees of freedom leaving an area of \(\alpha/2 \) to the right.

One-sided 100(1-\(\alpha \))% bounds are:

\[\bar{X} + t_{\alpha} \frac{s}{\sqrt{n}} \text{ upper bound} \]
\[\bar{X} - t_{\alpha} \frac{s}{\sqrt{n}} \text{ lower bound} \]

Not \(t_{\alpha} \) instead of \(t_{\alpha/2} \).
Example: Assume that electrical potential measurements made at a particular node in a circuit are normally distributed (due to error in the measurements). Ten measurements are made, finding:

8.95, 9.6, 10.7, 9.45, 10.5, 10.05, 10.7, 9.6, 9.9, 9.4

Find a 95% confidence interval for the true mean voltage.

Soln: \(\bar{x} = 9.825 \quad s = 0.655 \quad \alpha = \frac{1-0.95}{2} \)

From Table A-4 with \(v = 10 - 1 = 9 \) degrees of freedom, \(t_{0.025} = 2.262 \)

Then, the 95% confidence interval for \(\mu \) is

\[
9.825 - 2.262 \frac{0.655}{\sqrt{10}} < \mu < 9.825 + 2.262 \frac{0.655}{\sqrt{10}}
\]

\[
9.3565 < \mu < 10.2935
\]

In other words, \(P(9.3565 < \mu < 10.2935) = 0.95 \)

Example: Assume that the internet connection speed at your house is normally distributed. You take a sample of 15 connection speeds at different times and find that the sample mean \(\bar{x} = 2.3 \) Mbps and \(s = 0.5 \) Mbps. Find the 99% lower bound for the true mean.

Soln: \(\alpha = 0.01 \quad v = 15 - 1 = 14 \) Table A-4 \(t_{0.01} = 2.624 \)

lower bound = \(\bar{x} - t_{\alpha} \frac{s}{\sqrt{v}} = 2.3 - 2.624 \frac{0.5}{\sqrt{14}} = 1.9612 \)

In other words, \(P(1.9612 < \mu) = 0.01 \)
Estimating the Difference Between Two Means

\(\bar{X}_1 - \bar{X}_2 \) is a point estimator of \(\mu_1 - \mu_2 \)

Central Limit Theorem: \(\bar{X}_1 - \bar{X}_2 \) has normal distribution with mean \(\mu_1 - \mu_2 \) and standard deviation \(\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \) if both \(n_1, n_2 \geq 30 \) (or underlying population distributions normal)

\[
P\left(-z_{a/2} < \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < z_{a/2}\right) = 1 - \alpha
\]

100(1-\(\alpha \))% confidence interval for \(\mu_1 - \mu_2 \)

\[
\left(\bar{X}_1 - \bar{X}_2\right) - \frac{2z_{a/2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < \mu_1 - \mu_2 < \left(\bar{X}_1 - \bar{X}_2\right) + \frac{2z_{a/2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
\]

where \(z_{a/2} \) is the \(z \)-value leaving an area \(\alpha/2 \) to the right.

Variances unknown, but known to be equal

Pooled estimate of variance \(S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2} \)

\[
T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}
\]

has a \(t \)-distribution with \(n_1 + n_2 - 2 \) degrees of freedom.

If \(\bar{X}_1 \) and \(\bar{X}_2 \) are the means of independent random samples of sizes \(n_1 \) and \(n_2 \) from approximately normal populations with unknown but equal variances, the 100(1-\(\alpha \))% confidence interval for \(\mu_1 - \mu_2 \) is given by

\[
\left(\bar{X}_1 - \bar{X}_2\right) - t_{a/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < \left(\bar{X}_1 - \bar{X}_2\right) + t_{a/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}
\]

where \(S_p \) is the pooled estimate of the standard deviation and \(t_{a/2} \) is the \(t \)-value with \(v = n_1 + n_2 - 2 \) degrees of freedom leaving an area of \(\alpha/2 \) to the right.
Example: Two manufacturing processes for an electrical component. Independent samples taken from both to assess the difference in life-time.

Sample 1: \(n_1 = 72 \), \(\bar{x}_1 = 3.4 \), \(s_1 = 0.5 \)

Sample 2: \(n_2 = 50 \), \(\bar{x}_2 = 3.8 \), \(s_2 = 0.6 \)

Find a 90% confidence interval for \(\mu_1 - \mu_2 \), the difference of the population mean lifetimes.

Solution:

\[\bar{x}_1 - \bar{x}_2 = 3.4 - 3.8 = -0.4 \]

pooled variance
\[s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} \]

\[= \frac{71 \times 0.5^2 + 49 \times 0.6^2}{72 + 50 - 2} = 0.2945 \]

\[s_p = \sqrt{s_p^2} = 0.543 \]

90% confidence interval, \(\alpha = 0.1 \)

\[V = n_1 + n_2 - 2 = 72 + 50 - 2 = 120 \]

\[t_{0.05} = 1.658 \] (Table A.4)

\[(\bar{x}_1 - \bar{x}_2) - t_{0.05} \frac{s_p}{\sqrt{n_1}} < \mu_1 - \mu_2 < (\bar{x}_1 - \bar{x}_2) + t_{0.05} \frac{s_p}{\sqrt{n_2}} \]

\[= (3.4 - 3.8) - 1.658 \frac{0.543}{\sqrt{72}} \]

\[= -0.4 - 1.658 \times 0.543 \times 0.184 < \mu_1 - \mu_2 < 0.4 + 1.658 \times 0.543 \times 0.184 \]

\[= -0.4 - 0.2356 < \mu_1 - \mu_2 < 0.4 + 0.2356 \]

-0.5656 \(\neq \) 0.2356 < \(\mu_1 - \mu_2 \) < 0.5644

with confidence 90%
Estimating a single sample variance

S^2 is a point estimator of σ^2.

Let

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

Chi-squared distribution with $n-1$ degrees of freedom

$$P\left(\chi^2_{1-\alpha/2} < X^2 < \chi^2_{\alpha/2}\right) = 1 - \alpha$$

$$P\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{\alpha/2}}\right) = 1 - \alpha$$

where $\chi^2_{1-\alpha/2}$ and $\chi^2_{\alpha/2}$ are the values of the chi-squared distribution with $n-1$ degrees of freedom leaving areas $1 - \alpha/2$ and $\alpha/2$ to the right, respectively.

If S^2 is the variance of a random sample of size n from a normal population, the $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{\alpha/2}}$$

where $\chi^2_{1-\alpha/2}$ and $\chi^2_{\alpha/2}$ are the chi-squared values with $v = n-1$ degrees of freedom, leaving areas $\alpha/2$ and $1 - \alpha/2$ to the right, respectively.
Example: A sample has the observations:

46.4, 46.1, 45.8, 47.0, 46.1, 45.5, 45.8,
46.9, 45.2 and 46.0.

Find a 95% confidence interval for the population variance σ^2.

\[
\text{Soln: } s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

or

\[
s^2 = \frac{n}{n-1} \left(\sum_{i=1}^{n} x_i^2 - \left(\frac{n}{n-1} \right) \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 \right)
\]

\[
n = 10 \quad s^2 = 0.2862
\]

95% confidence interval $\alpha = 0.05$

$v = 10 - 1 = 9$ degrees of freedom

From Table A.5 $\chi^2_{0.025} = 19.023$

$\chi^2_{0.975} = 2.7$

Note the lack of symmetry unlike the normal and t-distributions.

\[
\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{\alpha/2}}
\]

\[
9 \times 0.286 < \sigma^2 < 9 \times 0.286
\]

\[
\frac{19.023}{2.7}
\]

\[
0.135 < \sigma^2 < 0.953
\]

95% confidence