ECE 3510 Routh-Hurwitz Lecture

Routh-Hurwitz Stability test
Denominator of transfer function or signal: $\quad a_{n} \cdot s^{n}+a_{n-1} \cdot s^{n-1}+a_{n-2} \cdot s^{n-2}+a_{n-3} \cdot s^{n-3} \quad \ldots a_{1} \cdot s^{n}+a_{0}$
Usually of the Closed-loop transfer function denominator to test fo BIBO stability
Test denominator for poles in CRHP (RHP including imaginary axis)

1. For all poles to be in the LHP, all coefficients must be >0

For a second-order denominator, that is enough, skip the next step.
2. If all coefficients are >0 \& order >2, then:

Create Routh-Hurwitz array:

$b_{1}=\frac{a_{n-1} \cdot a_{n-2}-a_{n} \cdot a_{n-3}}{a_{n-1}}$
$b_{2}=\frac{a_{n-1} \cdot a_{n-4}-a_{n} \cdot a_{n-5}}{a_{n-1}}$
$b_{3}=\frac{a_{n-1} \cdot a_{n-6}-a_{n} \cdot a_{n-7}}{a_{n-1}}$
$c_{1}=\frac{\mathrm{b}_{1} \cdot \mathrm{a}_{\mathrm{n}-3}-\mathrm{a}_{\mathrm{n}-1} \cdot \mathrm{~b}_{2}}{\mathrm{~b}_{1}}$
$c_{2}=\frac{\mathrm{b}_{1} \cdot \mathrm{a}_{\mathrm{n}-5}-\mathrm{a}_{\mathrm{n}-1} \cdot \mathrm{~b}_{3}}{\mathrm{~b}_{1}}$
$c_{3}=\frac{\mathrm{b}_{1} \cdot \mathrm{a}_{\mathrm{n}-7}-\mathrm{a}_{\mathrm{n}-1} \cdot \mathrm{~b}_{4}}{\mathrm{~b}_{1}}$

Look at first column:
All positive $=$ All roots left of imaginary axis
If any negative or 0 , then there are poles on the Imaginary axis or in the RHP (Right-Half Plane) Count sign reversals down the first column

Sign reversals = number of poles on the Imaginary axis or in the RHP (Right-Half Plane)
0 can be replaced by $-\varepsilon$ to see if there are any other sign reversals

The transfer functions of $\mathrm{C}(\mathrm{s})$ and $\mathrm{P}(\mathrm{s})$ are given below. In each case determine if the steady-state error will go to zero and whether disturbances will be completely rejected. Be sure to check for closed-loop stability when needed.

0 steady-state error?
a) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+2}{\mathrm{~s}^{2}+5 \cdot \mathrm{~s}+4} \quad \mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}^{2}+5 \cdot \mathrm{~s}+15}$

$$
P(s)=\frac{s+1}{s^{2}+5 \cdot s+15}
$$

Reject Disturbances?
$\mathrm{e}_{\mathrm{ss}}(\infty)=0$?
No
no pole at zero
$\mathrm{e}_{\mathrm{ss}}(\infty)=0$ for disturbance?
No no pole at zero

No stability test needed to answer those questions
b) $C(s)=\frac{s+5}{s^{2}+4 \cdot s+3}$

$$
P(s)=\frac{s+1}{s^{2}+2 \cdot s}
$$

Yes (Tentative answer) No
$\mathrm{P}(\mathrm{s})$ has pole at zero
$\mathrm{C}(\mathrm{s})$ has no pole at zero
Must test for stability: \quad Closed loop transfer function $=\frac{C(s) \cdot P(s)}{1+C(s) \cdot P(s)} \quad=\frac{N_{C}(\mathrm{~s}) \cdot \mathrm{N}_{\mathrm{P}}(\mathrm{s})}{\mathrm{D}_{\mathrm{C}^{(s)}} \cdot \mathrm{D}_{\mathrm{P}}(\mathrm{s})+\mathrm{N}_{\mathrm{C}^{(s)}} \cdot \mathrm{N}_{\mathrm{P}}(\mathrm{s})}$
Closed loop denominator $=\mathrm{D}_{\mathrm{C}}(\mathrm{s}) \cdot \mathrm{D}_{\mathrm{P}}(\mathrm{s})+\mathrm{N}_{\mathrm{C}}(\mathrm{s}) \cdot \mathrm{N}_{\mathrm{P}}(\mathrm{s})$
$C(s) \cdot P(s)=\frac{s+5}{\left(s^{2}+4 \cdot s+3\right)} \cdot \frac{s+1}{\left(s^{2}+2 \cdot s\right)}$
Closed loop denominator $=\left(s^{2}+4 \cdot s+3\right) \cdot\left(s^{2}+2 \cdot s\right)+(s+5) \cdot(s+1)$
$D_{H^{(s)}}=s^{4}+6 \cdot s^{3}+12 \cdot s^{2}+12 \cdot s+5$

Routh-Hurwitz Stability test

Test denominator for poles in CRHP (RHP including imaginary axis)

1. All coefficients must be >0

For a second-order denominator, that is enough
2. Create Routh-Hurwitz array:

		$D_{H}(s)=s^{4}+6 \cdot s^{3}+12 \cdot s^{2}+12 \cdot s+5$			0
	s^{4}	1	12	5	
	s^{3}	6	12	0	
	s^{2}	$\frac{6 \cdot 12-1 \cdot 12}{6}=10$	$\frac{6 \cdot 5-1 \cdot 0}{6}=5$		
	s^{1}	$\frac{10 \cdot 12-6 \cdot 5}{10}=9$	$\frac{10 \cdot 0-6 \cdot 0}{10}=0$		
	s^{0}	$\frac{9.5-10.0}{9}=5$			
Look at first column:		All positive, so All roots left of imaginary axis, so tentative answers above are correct			
		If any were negative or 0 , then			

Alternatively, check the actual roots

Using your calculator, find the roots of: $0=s^{4}+6 \cdot s^{3}+12 \cdot s^{2}+12 \cdot s+5 \quad$ Roots:

ECE 3510 Routh-Hurwitz Lecture
 p. 3

More Routh-Hurwitz method examples

RH Ex. 2 Given a cloosed-loop denominator: $\quad D(s)=s^{4}+10 \cdot s^{3}+3 \cdot s^{2}+5 \cdot s+2 \quad$ Are all the poles in the OLHP?

$=\mathrm{s}^{4}:$	1	3	2

RH Ex. 3

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})=\frac{3 \cdot \mathrm{~s}^{2}+8}{\mathrm{~s}^{3}+2 \cdot \mathrm{~s}^{2}+4 \cdot \mathrm{~s}} \quad \mathrm{P}(\mathrm{~s})=\frac{2}{\mathrm{~s}^{2}+3} \quad \text { (Notice that the Plant is not inherently stable) } \\
& \mathrm{C}(\mathrm{~s}) \cdot \mathrm{P}(\mathrm{~s})=\frac{3 \cdot \mathrm{~s}^{2}+8}{\left(\mathrm{~s}^{3}+2 \cdot \mathrm{~s}^{2}+4 \cdot \mathrm{~s}\right)} \cdot \frac{2}{\left(\mathrm{~s}^{2}+3\right)} \quad \text { Closed loop denominator }=\left(\mathrm{s}^{3}+2 \cdot \mathrm{~s}^{2}+4 \cdot \mathrm{~s}\right) \cdot\left(\mathrm{s}^{2}+3\right)+\left(3 \cdot \mathrm{~s}^{2}+8\right) \cdot 2 \\
& =\mathrm{s}^{5}+2 \cdot \mathrm{~s}^{4}+7 \cdot \mathrm{~s}^{3}+12 \cdot \mathrm{~s}^{2}+12 \cdot \mathrm{~s}+16
\end{aligned}
$$

Doesn't make sense to progress to the next row if all you want to know is stability, but if you count above as $-\varepsilon$, this answer would come out + , indicating two problem poles
Actual roots: \(\left[\begin{array}{c}2 \cdot \mathrm{j}

-2 \cdot \mathrm{j}

-1.651

p. 3\end{array}\right]\)| First 2 roots are on |
| :--- |
| imaginary axis, unstable |

ECE 3510 Routh-Hurwitz Lecture p. 4

Closed-loop transfer-function denominator
a) $D(s)=s^{5}+3 \cdot s^{4}-18 \cdot s^{3}+3 \cdot s^{2}+s+2$
b) $D(s)=s^{6}+3 \cdot s^{4}+18 \cdot s^{3}+3 \cdot s^{2}+s+2$
c) $D(s)=s^{6}+3 \cdot s^{5}+18 \cdot s^{4}+3 \cdot s^{3}+s^{2}+2 \cdot s$
d) $D(s)=\left(s^{2}+2 \cdot s+5\right) \cdot\left(s^{2}+4 \cdot s+4\right)$
(Example 1 in text)
e) $D(s)=\left(s^{2}-2 \cdot s+5\right) \cdot\left(s^{2}+4 \cdot s+4\right)$
(Example 2 in text)
f) $D(s)=s^{5}+4 \cdot s^{4}+2 \cdot s^{3}+6 \cdot s^{2}+2 \cdot s+1$

RH Ex. 4

Actual roots: $\left[\begin{array}{c}-3.855 \\ -0.187-0.4 \cdot \mathrm{j} \\ -0.187+0.4 \cdot \mathrm{j} \\ 0.114-1.147 \cdot \mathrm{j} \\ 0.114+1.147 \cdot \mathrm{j}\end{array}\right]$ Last two roots are in the RHP

No Not stable
RH Ex. 5 Use the Routh-Hurwitz method to determine the value range of K that will produce a stable system.
$D(s)=s^{4}+2 \cdot s^{3}+1 \cdot s^{2}+s+K \quad$ Characteristic equation of a feedback sytem.

$$
\begin{array}{c:cccc}
\mathrm{s}^{4} & 1 & 1 & \mathrm{~K} & 0 \\
\mathrm{~s}^{3} & 2 & 1 & 0 & \\
\mathrm{~s}^{2} & \frac{2 \cdot 1-1 \cdot 1}{2}=0.5 & \frac{2 \cdot \mathrm{~K}-1 \cdot 0}{2}=\mathrm{K} & \\
\mathrm{~s}^{1} & \frac{0.5 \cdot 1-2 \cdot \mathrm{~K}}{0.5}=1-4 \cdot \mathrm{~K} & 0 & & \\
\mathrm{~s}^{0} & \frac{(1-4 \cdot \mathrm{~K}) \cdot \mathrm{K}-0.5 \cdot 0}{1-4 \cdot \mathrm{~K}}=\mathrm{K} & \mathrm{~K}>0 & & 0=1-4 \cdot \mathrm{~K} \\
& & \mathrm{~K}<\frac{1}{4}=0.25 \\
3510 & \text { Routh-Hurwitz Lecture } \quad \mathrm{p} .4 & & 0<\mathrm{K}<0.25
\end{array}
$$

ECE 3510 Routh-Hurwitz Lecture p. 5

RH Ex. 6 Use the Routh-Hurwitz method to determine the value range of K that will produce a stable system.
$D(s)=s^{4}+4 \cdot K \cdot s^{3}+12 \cdot s^{2}+2 \cdot K \cdot s+K$

$K>0 \quad$ This could have been seen from the original expression

$$
\begin{aligned}
& 0<2-\frac{4}{11.5} \cdot \mathrm{~K} \quad \mathrm{~K}<2 \cdot \frac{11.5}{4}=5.75 \\
& 0<\mathrm{K}<5.75
\end{aligned}
$$

RH Ex. 7 Use the Routh-Hurwitz method to determine if all the poles are to the left of -5 .
$D(s)=s^{3}+44 \cdot s^{2}+320 \cdot s+648 \quad$ Characteristic equation of a feedback sytem.
Replace all occurances of s with (s -5)

$$
\begin{aligned}
& (s-5)^{3}+44 \cdot(s-5)^{2}+320 \cdot(s-5)+648 \\
& \left(s^{3}-15 \cdot s^{2}+75 \cdot s-125\right)+44 \cdot\left(s^{2}-10 \cdot s+25\right)+320 \cdot(s-5)+648 \\
& s^{3}-15 \cdot s^{2}+75 \cdot s-125+44 \cdot s^{2}-44 \cdot 10 \cdot s+44 \cdot 25+320 \cdot s-320 \cdot 5+648=s^{3}+29 \cdot s^{2}-45 \cdot s+23
\end{aligned}
$$

RH Ex.7b Are all the poles are to the left of -4 ?
No, this has a negative coefficient
Replace all occurances of s with ($s-4$)

$$
\begin{aligned}
& (s-4)^{3}+44 \cdot(s-4)^{2}+320 \cdot(s-4)+648 \\
& \left(s^{3}-12 \cdot s^{2}+48 \cdot s-64\right)+44 \cdot\left(s^{2}-8 \cdot s+16\right)+320 \cdot(s-4)+648 \\
& s^{3}-12 \cdot s^{2}+48 \cdot s-64+44 \cdot s^{2}-44 \cdot 8 \cdot s+44 \cdot 16+320 \cdot s-320 \cdot 4+648 \quad=s^{3}+32 \cdot s^{2}+16 \cdot s+8
\end{aligned}
$$

$$
\begin{array}{l:l|l}
2 & 1 & 16 \\
\mathrm{~s}^{2} & 32 & 0 \\
\mathrm{~s}^{1} & \frac{32 \cdot 16-1 \cdot 8}{32}=15.75 & \frac{32 \cdot 0-1 \cdot 0}{32}=0 \\
\mathrm{~s}^{0} & \frac{15.75 \cdot 8-32 \cdot 0}{15.75}=8 \\
\text { Look at first column: } & \text { All positive, so all roots are indeed left of }-4 .
\end{array}
$$

Actual roots of:
$0=s^{3}+44 \cdot s^{2}+320 \cdot s+648$

