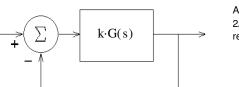
ECE 3510 Root-Locus Plots

$$G(s) = \frac{N_G}{D_G}$$
 = the Open-Loop (O-L) transfer function



A. Stolp 2/16/06, rev 2/22/06

The Rules

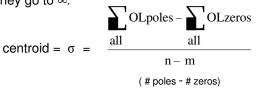
- 1. Root-locus plots are symmetric about the real axis.
- 2. On the real axis, spaces left of an odd number of O-L poles and zeros are always part of the locus. (Essentially, every other space on the real axis (counting leftward) is part of the plot.)
- 3. Each O-L pole originates (k = 0) one branch. (n)

Each O-L zero terminates ($k = \infty$) one branch. (m)

All remaining branches go to ∞ . (n-m)

These remaining branches approach asymptotes as they go to ∞ .

4. The origin of the asymptotes is the *centroia*.



5. The angles of the asymptotes are:	<u>n - m</u> angles (degre			rees)			
$i \cdot \frac{180}{n-m}$ where $i = 1,3,5,7,9,$ full circle Or figure for half circle and mirror around the real axis.	2	90	270		,		
	3	60	180	300 -	\prec		
	4	45	135	225	315	\times	
	5	36	108	180	252	324	\rightarrow
	6	30	90	150	210	270	330
	7	$\frac{180}{7}$	$3 \cdot \frac{180}{7}$	$5 \cdot \frac{180}{7}$	$7 \cdot \frac{180}{7}$		\times
	8	 22.5 	67.5	112.5	157.5		\times
	9	20	60	100	140	180	*
	10	 18 	54	90	126	162	*
6. The angles of departure (and arrival) of the locus are almost always: Only multiple poles result in different departure angles:							$\leftarrow \downarrow \rightarrow$
(or zeros)	-	riple poles:			OR: Check rea		heck real-axis Ile, above
Quadruple poles:				OR: -			heck real-axis Ile, above
Multiple zeros attract branches from these same angles				ECE	ECE 3510 Root-Locus Plots		

ECE 3510 Root-Locus Plots **Additional Rules**

7. Breakaway points from the real axis ($\sigma_{\rm h}$) are the solutions to: (and arrival) $\sum_{i} \frac{1}{(s + p_i)} = \sum_{i} \frac{1}{(s + z_i)}$

$$\frac{d}{ds}G(s) = 0$$

 $G(s) = \frac{1}{s \cdot (s+1) \cdot (s+3) \cdot (s+4)}$

 $\frac{1}{(s-p_1)} + \frac{1}{(s-p_2)} + \frac{1}{(s-p_3)} + \cdots = \frac{1}{(s-z_1)} + \frac{1}{(s-z_2)} + \frac{1}{(s-z_3)} + \cdots$

The breakaway points are also solutions to:

Not all of these solutions will actually be breakaway points, some may be eliminated by the real-axis rule, and some may be arrival points. Both of these methods can be messy and result in high-order equations to solve. The second example will show an iterative way to deal with the complexity.

Example 1

$$G(s) = \frac{s+2}{s \cdot (s+1)}$$
Solve: $\frac{1}{s} + \frac{1}{s+1} = \frac{1}{s+2}$

$$\frac{(s+1)+s}{s \cdot (s+1)} = \frac{1}{s+2}$$

$$(2 \cdot s+1) \cdot (s+2) = s \cdot (s+1)$$

$$s^{2} + 4 \cdot s+2 = 0$$

$$s = -3.414$$

$$s = -0.586$$

Example 2 Iterative process, best shown by example:

Find the breakaway point between 0 and -1.

Must solve:

$$\frac{1}{s} + \frac{1}{(s+1)} + \frac{1}{(s+3)} + \frac{1}{(s+4)} = 0$$

Guess s = -0.4 and use that for all the s's except those closest to the breakaway you want to find.

Solve this instead:

$$\frac{1}{s} + \frac{1}{(s+1)} + \frac{1}{(-0.4+3)} + \frac{1}{(-0.4+4)} = 0$$

$$\frac{1}{s} + \frac{1}{(s+1)} + \left(\frac{1}{2.6} + \frac{1}{3.6}\right) = 0$$
multiply by s(s + 1):

$$\frac{s+1}{1} + \frac{s}{1} + s \cdot (s+1) \cdot \left(\frac{1}{2.6} + \frac{1}{3.6}\right) = 0$$

$$s^{2} + 4.0194 \cdot s + 1.5097 = 0$$

$$s = -\frac{-4.0194 + \sqrt{4.0194^{2} - 4 \cdot 1.5097}}{2} = -0.419$$
Use this a ignore the -3.6

$$\frac{1}{s} + \frac{1}{(s+1)} + \left(\frac{1}{2.581} + \frac{1}{3.581}\right) = 0$$

$$s^{2} + 4 \cdot s + 1.5 = 0$$

$$s = -\frac{-4 + \sqrt{4^{2} - 4 \cdot 1.5}}{2} = -0.419$$
No significant char so this is the break

answer to try again

-3

-1

solution for this answer.

ige, away point

To find the breakaway point between -3 and -4: Guess s = -3.6

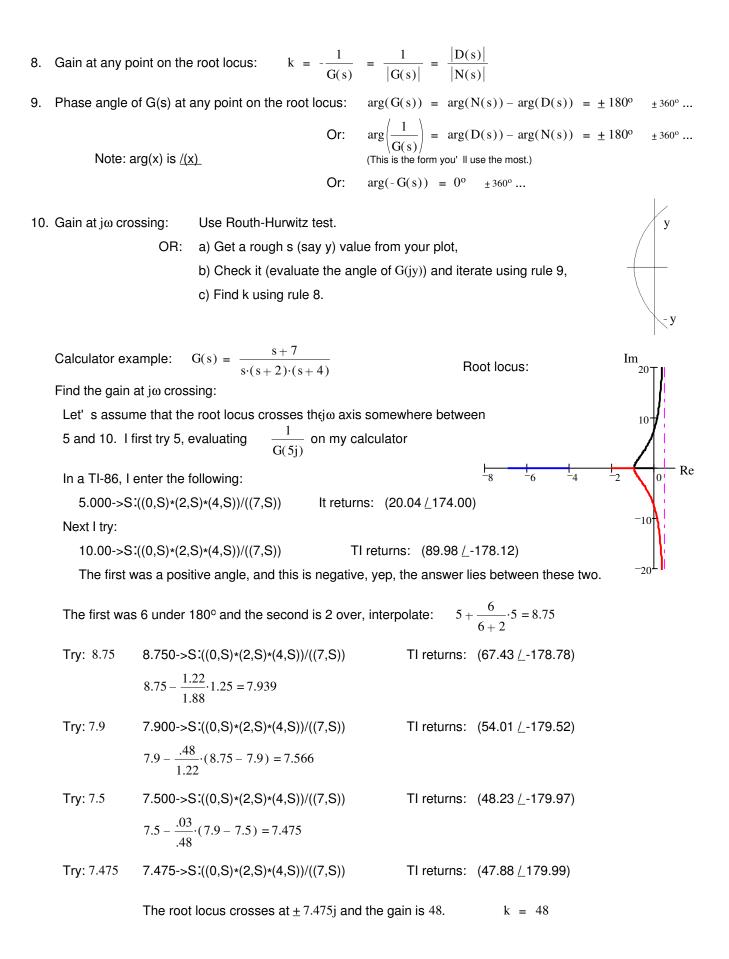
$$\frac{1}{-3.6} + \frac{1}{(-3.6+1)} + \frac{1}{(s+3)} + \frac{1}{(s+4)} = 0$$

solve for s: s = -3.58

Not much change, so this is the breakaway point

Actually, it usually doesn't matter that much just where the breakaway points are.

ECE 3510 Root-Locus Plots p.2



ECE 3510 Root-Locus Plots p.3

- 11. Departure angles from complex poles.
 - $\theta_{\mathbf{D}} = 180 \cdot \deg + \arg \left[G(\mathbf{p}_{i}) \cdot (\mathbf{s} + \mathbf{p}_{i}) \right]$

The O-L phase angle computed at the complex pole, but ignoring the effect of that complex pole.

OR:
$$\theta_{\mathbf{D}} = 90 \cdot \deg + \arg \left[G(\mathbf{p}_i) \cdot \left(s + a_i - b_i \cdot j \right) \cdot \left(s + a_i + b_i \cdot j \right) \right]$$

OR:
$$\theta_{\mathbf{D}} = 90 \cdot \deg + \arg \left[G(\mathbf{p}_i) \cdot \left[(s + a_i)^2 + (b_i)^2 \right] \right]$$

Example: $G(s) := \frac{s+2}{(s+1) \cdot [(s+3)^2 + 1^2]}$ $s = -3 + 1 \cdot j$ $\begin{aligned} \theta_{\rm D} &= 180 \cdot \deg + \arg \left[\frac{s+2}{(s+1) \cdot (s+3+1 \cdot j)} \right] \\ \theta_{\rm D} &= 180 \cdot \deg + \arg \left[\frac{(-3+1 \cdot j)+2}{((-3+1 \cdot j)+1) \cdot ((-3+1 \cdot j)+3+1 \cdot j)} \right] = 71.6 \cdot \deg \end{aligned}$ OR: $\theta_{D} = 90 \cdot \deg + \arg \left[\frac{s+2}{(s+1)} \right] = 90 \cdot \deg + \arg \left[\frac{(-3+1 \cdot j)+2}{((-3+1 \cdot j)+1)} \right] = 71.6 \cdot \deg$

Or, the method from the text: 180 - 90 - 153.4 + 135 = 71.6 deg (probably the best method of all)

12. Arrival angles to complex zeros.

OR:

 $\theta_{A} = 180 \cdot deg - arg \left[\frac{G(z_{i})}{(s + z_{i})} \right]$ The O-L phase angle computed at the complex zero, but ignoring the effect of that complex zero.

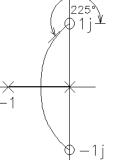
 $= 225 \cdot \text{deg}$

OR:
$$\theta_{A} = 90 \cdot \deg - \arg \left[\frac{G(z_{i})}{(s + a_{i} - b_{i} \cdot j) \cdot (s + a_{i} + b_{i} \cdot j)} \right]$$
 ignoring both zeros
OR: $\theta_{A} = 90 \cdot \deg - \arg \left[\frac{G(z_{i})}{(s + a_{i})^{2} + (b_{i})^{2}} \right]$ ignoring both zeros

Example:
$$G(s) := \frac{s^2 + 1^2}{s \cdot (s+1)} = \frac{(s - 1 \cdot j) \cdot (s + 1 \cdot j)}{s \cdot (s+1)}$$
 $s := 1 \cdot j$

Or, the method from the text: -(180 - 90 - 45 + 90) = -135

$$\theta_{A} = 180 \cdot \deg - \arg\left[\frac{G(z_{i})}{(s+z_{i})}\right] = 180 \cdot \deg - \arg\left[\frac{1 \cdot j + 1 \cdot j}{1 \cdot j \cdot (1 \cdot j + 1)}\right] = 225 \cdot \deg$$
$$\theta_{A} = 90 \cdot \deg - \arg\left[\frac{1}{s \cdot (s+1)}\right] = 90 \cdot \deg - \arg\left[\frac{1}{1 \cdot j \cdot (1 \cdot j + 1)}\right] = 225 \cdot \deg$$



Example:
$$G(s) := \frac{\left[(s+3)^2 + 1^2\right]}{s \cdot (s+1)} = \frac{(s+3-1 \cdot j) \cdot (s+3+1 \cdot j)}{s \cdot (s+1)}$$
 $s := -3+1 \cdot j$
 $\theta_A = -180 \cdot \deg - \arg\left[\frac{G(z_i)}{(s+z_i)}\right] = -180 \cdot \deg - \arg\left[\frac{(s+3+1 \cdot j)}{s \cdot (s+1)}\right]$
 $= -180 \cdot \deg - \arg\left[\frac{((-3+1 \cdot j)+3+1 \cdot j)}{(-3+1 \cdot j) \cdot ((-3+1 \cdot j)+1)}\right] = 45 \cdot \deg$
OR: $\theta_A = -90 \cdot \deg - \arg\left[\frac{1}{s \cdot (s+1)}\right] = 90 \cdot \deg - \arg\left[\frac{1}{(-3+1 \cdot j) \cdot ((-3+1 \cdot j)+1)}\right] = 45 \cdot \deg$

ECE 3510 Root-Locus Plots p.4

For multiple (r) poles:

ignoring both poles

ignoring both poles

Divide the circle into r divisions:
$$\frac{360 \cdot \text{deg}}{r}$$

and rotate all by $\frac{D}{r}$