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A 4.42 Ziegler-Nichols Tuning of PID Regulators

Transfer function for a
high-order system with a
characteristic process
reaction curve

Tuning by decay ratio of 0.25

Figure 4.18
Process reaction curve
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As we will see in later chapters, sophisticated methods are available to develop
a controller that will meet steady-state and transient specifications for both
tracking input references and rejecting disturbances. These methods require
that the designer have either a dynamic model of the process in the form of
equations of motion or a detailed frequency response over a substantial range
of frequencies. Either of these data can be quite difficult to obtain, and the dif-
ficulty has led to the development of sophisticated techniques of system model
identification. Engineers early on explored ways to avoid these requirements.

Callender et al. (1936) proposed a design for the widely used PID controller
by specifying satisfactory values for the controller settings based on estimates
of the plant parameters that an operating engineer could make from experi-
ments on the process itself. The approach was extended by J. G. Ziegler and
N. B. Nichols (1942, 1943) who recognized that the step responses of a large
number of process control systems exhibit a process reaction curve like that
shown in Fig. 4.18, which can be generated from experimental step response
data. The S-shape of the curve is characteristic of many systems and can be
approximated by the step response of

Y(s) Aed
Us) ts+1"

(4.109)

which is a first-order system with a time delay of t; seconds. The constants in
Eq. (4.109) can be determined from the unit step response of the process. If a
tangent is drawn at the inflection point of the reaction curve, then the slope of
the line is R = A/t and the intersection of the tangent line with the time axis
identifies the time delay L = t,.

Ziegler and Nichols gave two methods for tuning the PID controller for
such a model. In the first method the choice of controller parameters is designed
to result in a closed-loop step response transient with a decay ratio of approxi-
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Figure 4.19

TABLE 4.2

Quarter decay ratio

kr = ky
ko= he
Tz
\,\d = \'(?TD
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mately 0.25. This means that the transient decays to a quarter of its value after
one period of oscillation, as shown in Fig. 4.19. A quarter decay corresponds
to ¢ = 0.21 and is a reasonable compromise between quick response and ade-
quate stability margins. The authors simulated the equations for the system on
an analog computer and adjusted the controller parameters until the transients
showed the decay of 25% in one period. The regulator parameters suggested
by Ziegler and Nichols for the controller terms, defined by

1
De(s) = kp(1 + = + Tps), (4.110)
TIJ‘

are given in Table 4.2.

Ziegler-Nichols Tuning for the Regulator
D(s) = k,(1+1/T;s + Tps), for a decay ratio of 0.25

Type of Controller Optimum Gain
Proportional k, =1/RL
k, =0.9/RL,
! [ T, =L/03 T, hr
k, = 1.2/RL, S
PID T, =2L,
Tp =05L To= ha
ke
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Tunipg by evallatian at limit of In the ultimate sensitivity method, the criteria for adjusting the parameters
mlgz)(ultimate sensitivity are based on evaluating the amplitude and frequency of the oscillations of

the system at the limit of stability rather than on taking a step response. To
use the method, the proportional gain is increased until the system becomes
marginally stable and continuous oscillations just begin, with amplitude limited
by the saturation of the actuator. The corresponding gain is defined as K,
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Figure 4.20
Determination of the
ultimate gain and period

TABLE 4.3

Figure 4.21
Neutrally stable system

Process

(called the ultimate gain) and the period of oscillation is P, (called the ultimate
period). These are determined as shown in Figs. 4.20 and 4.21. P, should be
measured when the amplitude of oscillation is as small as possible. Then the
tuning parameters are selected as shown in Table 4.3.

Ziegler—Nichols Tuning for the Regulator
Dc(s) = kp(1 41/ Tys + Tps), Based on the Ultimate
Sensitivity Method

Type of Controller Optimum Gain
Proportional k, =0.5K,
k, =0.45K,,
PI P - k
T = ﬁ =N )
k, =0.6K,,
Y]
PID T, =3R.,
To=1n = K
he

Experience has shown that the controller settings according to Ziegler-
Nichols rules provide acceptable closed-loop response for many systems. The
process operator will often do final tuning of the controller iteratively on the
actual process to yield satisfactory control.'°

¥ Pu

1%%uning of PID controllers has been the subject of continuing study since 1936. A modem
publication on the topic is H, Panagopoulous, K. 1. Astrom, and T. Hagglund, Proceedings of
the American Control Conference, San Diego, CA, June 1999,

Figure 4.22
A measured process
reaction curve

EXAMPLE 4.9
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Tuning of a Heat Exchanger: Quarter Decay Ratio

Consider the heat exchanger of Example 2.13. The process reaction curve of this system
is shown in Fig. 4.22. Determine proportional and PI regulator gains for the system using
the Zeigler—Nichols rules to achieve a quarter decay ratio. Plot the corresponding step
Tesponses.

Solution. From the process reaction curve, we measure the maximum slope to be
2 91—0 and the time delay to be L =13 sec. According to the Zeigler-Nichols rules of
Table 4.2 the gains are as follows:
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Figure 4.23 Closed-loop step responses
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EXAMPLE 4.10

Figure 4.24
Ultimate period of heat
exchanger

1 %
Proportional : k, = =B 6.92,

PI:k,,:%:G.ZZ and T,=ﬁ=61%=43.3

Figure 4.23(a) shows the step respanses of the closed-loop system to these two regula-
tors. Note that the proportional regulator results in a steady-state offset, while the P1
regulator tracks the step exactly in the steady-state. Both regulators are rather oscilla-
tory and have considerable overshoot. Tf we arbitrarily reduce the gain £, by a factor
of 2 in each case, the overshoot and oscillatory behaviors are substantially reduced. as
shown in Fig. 4.23(b).

Tuning of a Heat Exchanger: Oscillatory Behavior

Proportional feedback was applied to the heat exchanger in the previous example until
the system showed nondecaying oscillations in response to a short pulse (impulse) input,
as shown in Fig. 4.24, The ultimate gain was X, = 15.3, and the period was measured
at P, = 42 sec. Determine the proportional and PEregulators according to the Zeigler-
Nichols rules based on the ultimate sensitivity method. Plot the corresponding step
responses.
Solution. The regulators from Table 4.3 are

Proportional : k, = 0.5K, =7.65.

1
Pl:k,=045K,=6885 and T, = 1—2P,, =}353

The step responses of the closed-loop system are shown in Fig. 4.25(a). Note that the
responses are similar to those in Example 4.9. Ifwe reduce &, by 30%. then the overshoot
is substantially reduced, as shown in Fig. 4.25(h).
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A 4.43 Truxal’'s Formula for the Error Constant
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Figure 4.25 Closed-loop step response
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nts in terms of the
type 1 system, whose

In this chapter we have derived formulas for the error con
system Lransfér___funciion. The most common case is t
error constant is K, . the velocity error constant. Tr (1955) derived a formula
for the velocity constant in terms of the closed-ldop poles and zeros, a formula
that connects the steady-state error to the-ynamic response. Since control
design often requires a trade-off betw these two characteristics, Truxal’s
formula can be useful to know [ts derivation is quite direct. Suppose the closed-

loop transfer function 7(:)of/a\1-.m/c 1 system is
(s —a)s—22) - (s — zm)
Ts) =K i
/t (s —pO(s=p2):-- (s — pn)
. :

Since the steady-state error in response to ﬁ'sltcp input in a type 1 system is

(4.111)

zero, the D(;_,g’ain is unity. Thus,
' T0) = 1. " (4.112)
Thc system error is given by b et
.
Y
E(s) 2 R(s) — Y(5) = R(5) [1 - %] CRO[-T))  (113)



How do the PID parameters affect system

dynamics?
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The effects of Increasing each of the controller parameters Kp,
Ki and Kp can be summarized as
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Response | Rise Time | Overshoot Settling Time | S-S Error
Kp Decrease Increase NT Decrease
K, Decrease Increase Increase Eliminate
Kp NT _ Decrease Decrease NT
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NT: No definite trend. Minor change.

You may want to take notes of this table. It will be useful in
the later part of the lesson.




