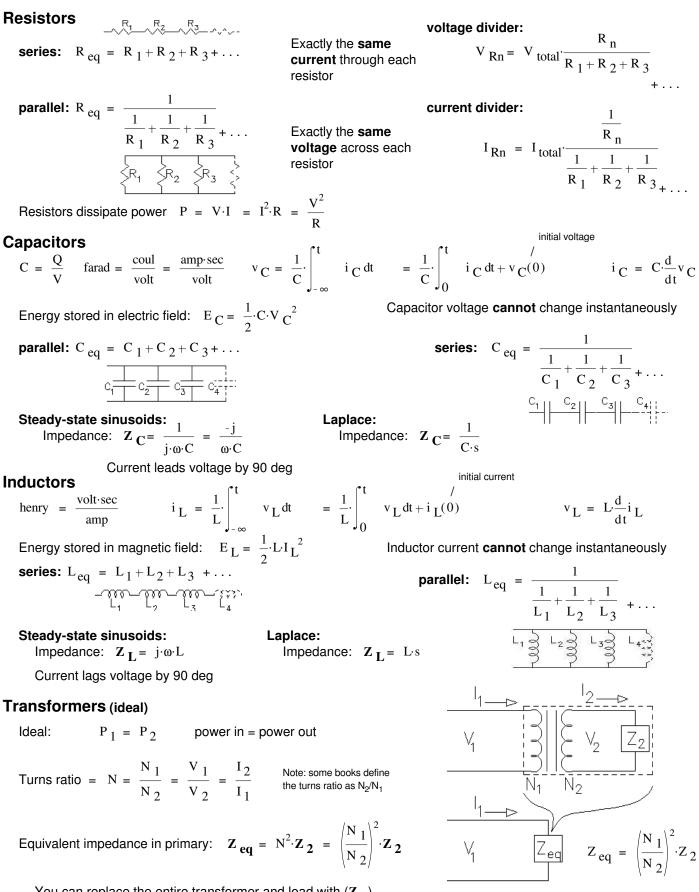
ECE 3510

Electrical Analogies of Mechanical Systems

A.Stolp 2/07/06,

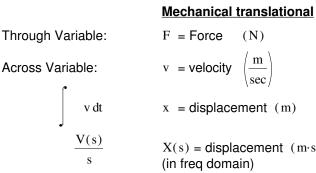
This method is based on the method of Linear Graphs. In Linear Graphs, all systems are reduced to a universal ^{rev,} symbology peculiar to Linear Graphs (system graph) and then analyzed by methods very similar to those used with electric circuits. Since we, as electrical engineers, are already well versed in the symbology of electric circuits, my variation of linear graphs reduces mechanical systems to electric circuits and leaves them in that symbology for ready analysis by methods, tools and computer programs that we are already familiar with.


Across and Through Variables

	Across Variable	Through Variat	ble	
Electrical	V = voltage (volts) or ((V) I = current (A	Amps) or (A)	
Mechanical translational	$v = velocity \left(\frac{m}{sec}\right)$	F = force (n	ewtons) or (N) or $\left(\text{Kg} \cdot \frac{\text{m}}{\text{sec}^2} \right)$	
Mechanical rotational	ω = angular velocity $\left(\frac{rac}{sec}\right)$		J⋅m)	
Fluid	$P = pressure \left(rac{N}{m^2} ight) or$	(Pa) $Q = flow \left(\frac{m^3}{sec}\right)$		
		Across Variable	Through Variable	
Elements	Dissipation	Energy Storage	Energy Storage	
Electrical	$R = resistance \left(\frac{V}{A}\right) or (\Omega)$	C = capacitance $\left(\frac{A \cdot sec}{V}\right)$ or (F)	$L = \text{inductor } \left(\frac{\mathbf{V} \cdot \text{sec}}{\mathbf{A}}\right) \text{ or } (\mathbf{H})$	
Mechanical translational	$B = \text{damping} \left(\frac{N \cdot \text{sec}}{m}\right)$	M = mass (Kg) or $\left(\frac{N \cdot \sec^2}{m}\right)$	$\mathbf{k} = \mathbf{Spring \ constant} \left(\frac{\mathbf{N}}{\mathbf{m}}\right)$	
Mechanical rotational	$B = damping \left[\frac{N \cdot m}{\left(\frac{rad}{sec} \right)} \right]$	$ \begin{array}{l} \textbf{J} &= \textbf{moment of inertia} \\ \left(\textbf{Kg}{\cdot}\textbf{m}^2 \right) \textbf{or} \left(\frac{\textbf{N}{\cdot}\textbf{m}^3}{\text{sec}^2} \right) \end{array} $	$k = \text{Spring constant} \left(\frac{N \cdot m}{rad}\right)$	
Fluid	R_{f} = fluid resistance $\left(\frac{N \cdot sec}{m^{5}}\right)$	C $_{f}$ = fluid capacitance $\left(\frac{m^{5}}{N}\right)$	I = fluid inertia $\left(\frac{Kg}{m^4}\right)$	
Pagia Elastria Circuit Analysia				

Basic Electric Circuit Analysis

Element	Parts like resistors, capacitors, inductors & transformers		
Wires and connections	Direct the current, but do not affect voltage		
Circuit	Wires and elements connected to form loops		
Voltage	Measured as a difference across an element		
Current	Flows through a wire or element		
Kirchhoff's Current Law (KCL)	Current in = current out of all elements, wires & connections		
Kirchhoff's Voltage Law (KVL)	Voltage gains = voltage "losses" around any circuit loop		
Node	Connected wires and connections which all have the same voltage		
Ground	Zero-reference node for all other nodal voltages		
Branch	Connected wires and elements which all have the same current		
Power $P = V \cdot I$	Power = Across variable x Through variable		
Voltage Source	Constant voltage regardless of current in or out		
Current Source	Constant current regardless of voltage + or -		
\bigvee	ECE 3510 Electrical Analogies of Mechanical Systems p.1		


Passive Electrical Elements

You can replace the entire transformer and load with (Z_{eq}) . This "impedance transformation" can work across systems.

ECE 3510 Electrical Analogies of Mechanical Systems p.2

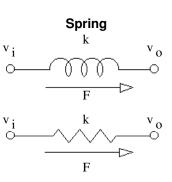
Mechanical system with linear motion (translational)

= Force	(N)		
= velocity	$\left(\frac{\mathbf{m}}{\mathbf{sec}}\right)$		
= displacement (m)			
$(s) = displacement (m \cdot sec)$ in freq domain)			

Dissipation element:

$$P = v \cdot F = \frac{1}{B}$$
$$= v^2 \cdot B$$

 \mathbf{F}^2


v_i

Ō

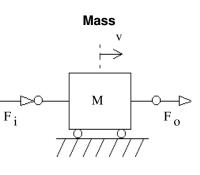
 $E = \frac{1}{2} \cdot \frac{1}{k} \cdot F^2$

Springs are Sometimes shown like this:

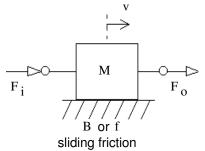
Damper or friction

v_o

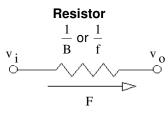
Ο


⊳

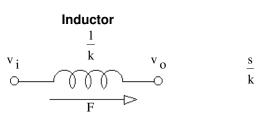
B or f


F

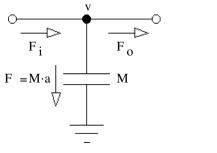
Through variable energy storage:

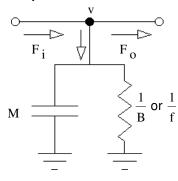


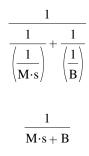
Mass with friction



Electrical I = current (A) Source: V = voltage (V)Source:




Impedance



Capacitor and resistor

1

M·s

Mechanical system with circular motion (rotational)

Through Variable:

Across Variable:

ω dt $\omega(s)$ s

sec θ = angular displacement (rad)

Mechanical rotational

 $T = Torque (N \cdot m)$

 ω = angular velocity

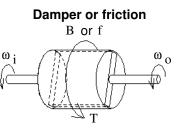
 $\theta(s)$ = angular displacement (rad·sec) (in freq domain)

rad

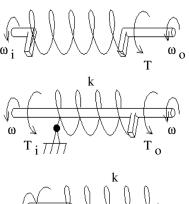
Dissipation element:

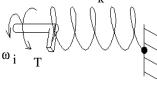
power

$$P = v \cdot T = \frac{T^2}{B}$$
$$= \omega^2 \cdot B$$

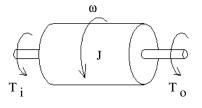

Through variable energy storage:

Through variable

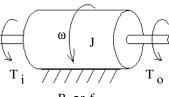

 $E = \frac{1}{2} \cdot J \cdot \omega^2$


energy storage:

 $E = \frac{1}{2} \cdot \frac{1}{k} \cdot T^2$



Springs k



Moment of Inertia, J

J with friction

ECE 3510 Electrical Analogies p.4

B or f sliding friction

Electrical

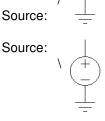
I = current (A)

V = voltage (V)Source:

Resistor

 $\frac{1}{-}$ or $\frac{1}{-}$

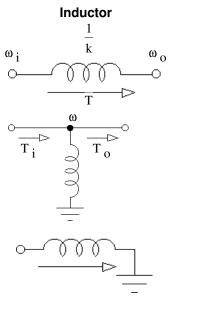
f

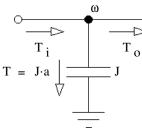

Т

ωο

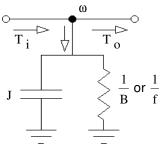
В

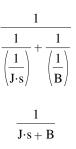
 ω_i


Ō



 $\frac{s}{k}$


Capacitor hooked to ground

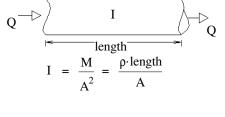


 $\frac{1}{J \cdot s}$

Capacitor and resistor

Fluid (hydraulic) system

Through Variable:


Across Variable:

Dissipation element: power

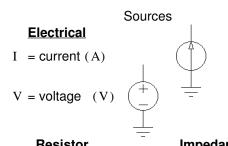
$$P = P \cdot Q = \frac{Q^2}{R_f}$$
$$= P^2 \cdot R_f$$

Through variable energy storage:

$$E = \frac{1}{2} \cdot I \cdot Q^2$$

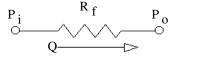
Fluid resistance

R_f

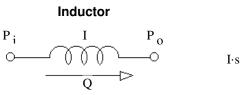

Fluid Inertia

m

P_o


P_o

or (Pa)



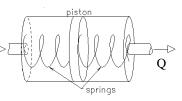
Resistor

Impedance

R_f

Through variable energy storage:

$$E = \frac{1}{2} \cdot C_{f} P^{2}$$

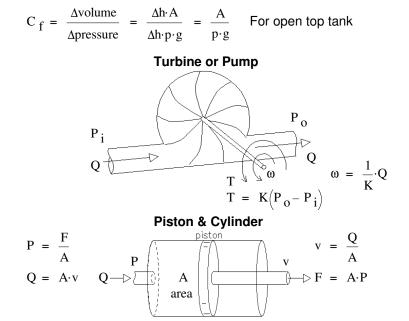

open top tank

 Q_i

Fluid Capacitors

OR

Q₀


Capacitor Cfs Q

Turbines & pistons convert through variables to across variables & vice versa, so there are no good electrical analogies.

Yet you can still transform an impedance from a mechanical system into the fluid system. But you will find that capacitors become inductors, inductors become capacitors and parallel swaps with series.

$$\mathbf{Z}_{\mathbf{eq}} = \frac{\left(\frac{\mathbf{F}}{\mathbf{A}}\right)}{\mathbf{A} \cdot \mathbf{v}} = \frac{1}{\mathbf{A}^2} \cdot \frac{\mathbf{F}}{\mathbf{v}} = \frac{1}{\mathbf{A}^2} \cdot \frac{1}{\mathbf{Z}_2} = \frac{1}{\mathbf{A}^2 \cdot \mathbf{Z}_2}$$

h

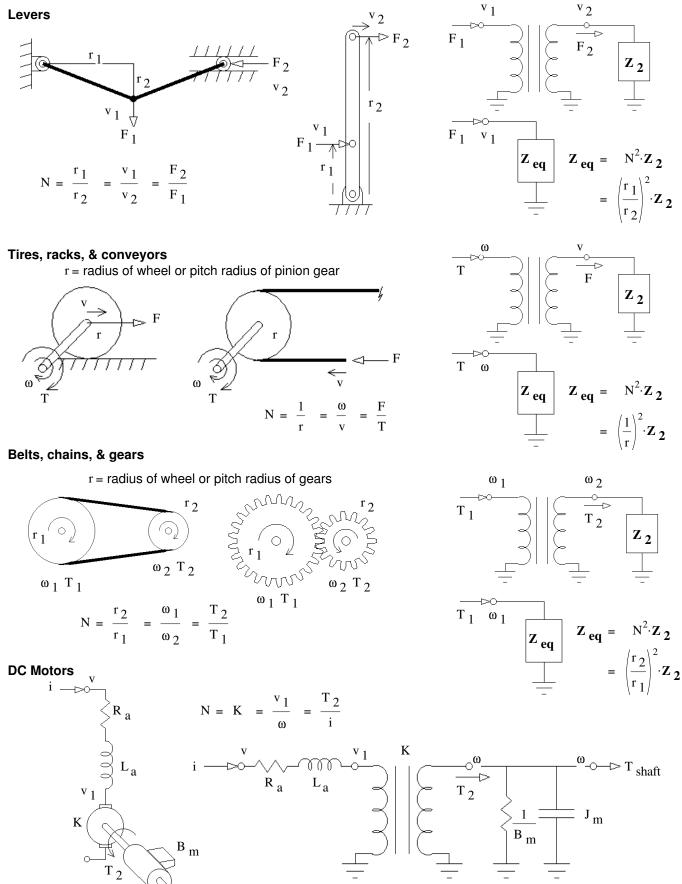
ECE 3510 Electrical Analogies of Mechanical Systems p.5

Q = volumetric flow rate

Fluid

P = Pressure

P_i


P;

Transducers and Transformers

 ^{J}m

 $\omega \ T_{shaft}$

A transducer converts power from one type to another. We can model many of them with transformers. Transformers increase the through variable and correspondingly decrease the across variable or vice-versa.

ECE 3510 Electrical Analogies of Mechanical Systems p.6